Mechanistic Investigation of Oxygen Rebound in a Mononuclear Nonheme Iron Complex

DOI: 10.1021/acs.inorgchem.9b01208

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Inorganic Chemistry

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Mechanistic Investigation of Oxygen Rebound in a Mononuclear Nonheme Iron Complex

Thomas M. Pangia,†,1 Vishal Yadav, riot Emilie F. Gérard,‡ Yen-Ting Lin,‡ Sam P. de Visser,*‡ Guy N. L. Jameson,* and David P. Goldberg*‡

†Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
‡Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
§School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia

These authors contributed to this work equally

ABSTRACT: An iron(III) methoxide complex reacts with para-substituted triarylmethyl radicals to give iron(II) and methoxyether products. Second-order rate constants for the radical derivatives were obtained. Hammett and Marcus plots suggest the radical transfer reactions proceed via a concerted process. Calculations support the concerted nature of these reactions involving a single transition state with no initial charge-transfer. These findings have implications for the radical “rebound” step invoked in nonheme iron oxygenases, halogenases, and related synthetic catalysts.

The preferential formation of C-O bonds by heme and nonheme iron enzymes typically occurs through C-H bond cleavage by a high-valent iron(IV)-oxo species, followed by a radical “rebound” step in which the newly formed carbon radical (R•) and Fe(OH) intermediate combine to give R-OH and a reduced Fe product.1–4 However, alternative outcomes are sometimes observed, including desaturation or decarboxylation (e.g. heme: Cytochrome P450 (CYP) OleT; nonheme: AsqJ, NapI, VioC, UndA).5–12 In the nonheme iron halogenases (e.g. CytC3, WelO5, SyrB2),13–17 the radical selectively combines with a halide ligand rather than an OH ligand, leading to halogenation. Interestingly, the nonheme iron enzyme isopenicillin N synthase (IPNS) may operate through a similar pathway, in which a Cβ radical combines selectively with a coordinated thiolate ligand, instead of a bound OH group, to give the final thiazolidine ring.18 Studies on biomimetic, high-valent metal-oxo complexes showed that different outcomes can occur from the carbon radical stage, including conventional hydroxylation as well as simple radical dissociation away from the Fe(OH) species.6,19–23 The factors that control the rates and selectivities of these reactions remain poorly understood.

The synthesis of a heme-like Fe(OH) corrole complex provided us with a platform to examine reactions with carbon radicals (trityl radical derivatives).21–22 These model reactions could be compared to the rebound hydroxylation process seen in CYP, involving protonated Compound II (Cpd-II, Scheme 1).21 The heme-based CYP undergoes reduction of a formal FeIV(OH)(porphyrin) to an FeII(porphyrin). The analogous nonheme chemistry, exemplified by the hydroxylation carried out by TauD shown in Scheme 1, occurs by the lower-valent FeII(OH) to FeI transformation.1,23 Recently, we showed a nonheme FeII(OMe) complex reacts with trityl radical via homolytic cleavage of the Fe−OMe bond to give Ph2COMe and FeI.24 However, no kinetic data were obtained and the mechanism was not examined in detail. To our knowledge, experimentally determined rates of the rebound reaction in nonheme enzymes or models are not known.

Scheme 1. Comparison of Heme and Nonheme Iron Enzymes
Herein we show that \(\text{[Fe}^{II}(\text{N3PyO}^{2-})(\text{OCH}_3))\text{(ClO}_4)\) (1) reacts with a series of triaryl radical derivatives, and a detailed kinetic study provides key insights regarding the mechanism of these reactions. Density functional theory (DFT) calculations help support the observed reactivity.

In our initial report, we employed triphenylmethyl radical (Ph$_3$C), a stable carbon radical, for reaction with 1. In the current work, we varied the electronic character of the radical derivatives by \textit{para} substitution. A series of \textit{para}-X-substituted radicals (X = OCH$_3$, tBu, Ph, CN) were prepared. Addition of (4-tBu-C$_6$H$_4$)$_2$C• to (5 equiv) to 1 (Scheme 2) led to the conversion of dark purple to yellow-orange within 5 min. Analysis by 1H NMR spectroscopy of the same reaction mixture in toluene-d_6 showed formation of the methoxy group of (4-tBu-C$_6$H$_4$)$_2$C\cdotCOCH$_3$. Quantitation gave a 70% yield of methoxyether (Figure S8). The 57Fe-labeled 1 in THF/toluene revealed a broad doublet in the Mössbauer spectrum ($\delta = 0.5$ mm s$^{-1}$, $|\Delta E_O| = 1.29$ mm s$^{-1}$) indicative of an FeII complex in an intermediate relaxation regime, as reported earlier. This doublet disappears following addition of (4-tBu-C$_6$H$_4$)$_2$C•, giving rise to two new high-spin FeII subcomponents: $\delta = 1.16$ mm s$^{-1}$, $|\Delta E_O| = 2.68$ mm s$^{-1}$ (80% of total fit) and $\delta = 1.34$ mm s$^{-1}$, $|\Delta E_O| = 3.29$ mm s$^{-1}$ (20% of total fit) (Figure S10). The latter component exhibits parameters that are similar to the FeII species formed after reaction with the unsubstituted Ph$_3$C• although this previous reaction was run in pure THF. The solvent mixture employed here (toluene/THF 1:2) likely leads to different solvent binding equilibria that produces two, related high-spin FeII products, which in turn gives rise to the two overlapping Mössbauer signals. There is no evidence of any FeIII starting material remaining. When acetonitrile is added to the product mixture, the spectrum resolves to a single high-spin FeII component, $\delta = 1.16$ mm s$^{-1}$, $|\Delta E_O| = 2.66$ mm s$^{-1}$, matching that for \[\text{[Fe}^{II}(\text{N3PyO}^{2-})(\text{CH}_3CN))\]$_2$, and indicating that 1 is quantitatively reduced to iron(II) via the radical reaction. The 1H NMR and Mössbauer spectra indicate that (4-tBu-C$_6$H$_4$)$_2$C• reacts with 1 in good yield via the radical reaction shown in Scheme 2.

Scheme 2. Reaction of 1 with \textit{para}-X-Substituted Triphenylmethyl Radicals

Mechanistic information was obtained from kinetic studies. Complex 1 was reacted with (4-X-C$_6$H$_4$)$_2$C• derivatives under pseudo-first-order conditions (excess radical) in toluene at 23 °C. The consumption of 1 could be followed by UV-vis spectroscopy, leading to decay curves that give a pseudo-first-order rate constant (k_{obs}) (Figure S2-S5). Measuring the k_{obs} values at different radical concentrations led to second-order rate constants (k_2) (Figure 1a) with a range of k_2 values between 2 - 25 M$^{-1}$ s$^{-1}$ ($X =$ CN < Ph < tBu < OMe), which increased with the electron-donating ability of the \textit{para}-substituent.

Although there are no other analogous rate constants available for nonheme iron complexes for comparison, we can compare these rate constants to those measured previously for a heme-like corrole complex. The iron corrole Fe(11H)(ttppc) (ttppc = tris(2,4,6-triphenylphenyl corrole) undergoes similar radical reactivity with (4-X-C$_6$H$_4$)$_2$C• ($X =$ -OCH$_3$, -tBu, -Ph, Cl) to give (4-X-C$_6$H$_4$)$_2$COH and FeIII(ttppc), with rate constants ranging from 12.6(1) to 357(4) M$^{-1}$ s$^{-1}$.21 The ttppc complex is stericly encumbered by large triphenylphenyl groups, but appears to react significantly faster than 1; e.g. Fe(OH)(ttppc) reacts 14 times faster than 1 with the \textit{para}-OMe derivative. The physical oxidation state of the iron center in the ttppc complex is not easily assigned because of the possible non-innocent behavior of the corrole ligand, but the overall redox level is one unit above the nonheme system (formally FeIV(OH)), and this difference in redox levels may in part help to explain the enhanced reactivity of the corrole complex. Additionally, the difference in reactivity may be due to the steric demands of the axial OMe versus OH ligand, or may arise from an inherent difference in Fe-OMe versus Fe-OH homolytic bond strengths. Further work is needed on both heme and nonheme systems to resolve these fundamental questions.

![Scheme 2: Reaction of 1 with para-X-Substituted Triphenylmethyl Radicals](image-url)
Figure 1. (a) Plot of k_{obs} versus $[\text{(p-tBu-C}_6\text{H}_{12})_2\text{C}^+]$, where slope of the best fit (red line) gives $k_0 = 13.4(1) \times 10^3 \text{ s}^{-1}$. (b) Eyring plot of $(\ln(k_{obs}/T))$ vs $1/T$ for the reaction of 1 and $\text{(p-tBu-C}_6\text{H}_{12})_2\text{C}^+$ from -10 - 25 °C. (c) Hammett plot. (d) Marcus plot.

A Hammett plot (Figure 1c) consisting of log k_2 versus $3\sigma^+$, where σ^+ is the Hammett parameter for the para-X substituents in $\text{(p-X-C}_6\text{H}_{12})_2\text{C}^+$. The rates decrease linearly with the σ^+ values, indicating that 1 is behaving as an electrophile, as expected. However, the slope is small ($\rho = -0.25$). In fact, it is less than half the slope seen for the Hammett plot for Fe(OH)(tppc) ($\rho = -0.55$) with the same trityl radical derivatives. Both ρ values suggest little charge separation in the transition state, 21,26 and 1 is even less sensitive to the electrophilicity of the radical derivatives.

The reaction for 1 with the carbon radicals could occur as a concerted process in which C-O bond formation occurs with concomitant Fe-O bond cleavage and reduction of FeII to Fe0, or it could proceed following a stepwise electron-transfer/cation transfer (ET/CT) pathway shown in Scheme 3. The possibility of an ET/CT mechanism was addressed by a Marcus plot (Figure 1). The plot shows reasonable linearity, but the slope ($\rho = -0.098$) is quite small, showing only a weak dependence on the redox potentials of the radical substrates. In comparison, a rate-limiting, outer-sphere ET process gives typical slopes on the order of -0.5.21,27 The same plot for the reaction of Fe(OH)(tppc) also gave a small slope ($\rho = -0.15$). This analysis indicates the mechanism for 1 is best described as a concerted process (i.e. the diagonal path in Scheme 3). The same Marcus analysis has also been applied to metal-mediated H-atom transfer reactions, with small slopes indicating a concerted proton electron-transfer (CPET) process.28,29

The pseudo-first-order rate constants (k_{obs}) were measured between -10 and 25 °C, and a plot of $\ln(k/T)$ versus $1/T$ (Figure 1) gave activation parameters: $\Delta H^\ddagger = 13.2(1.6) \text{ kcal mol}^{-1}$ and $\Delta S^\ddagger = -22.1(0.4) \text{ cal mol}^{-1} \text{ K}^{-1}$; and $\Delta G^\ddagger = 19.7(1.7) \text{ kcal mol}^{-1}$ at 298 K. These values are consistent with a bimolecular rate-determining step.

Scheme 3. Concerted versus ET/CT Pathways

![Scheme 3](image)

Reaction of 1 and trityl cation, Ph$_3$C$,^+$, gives very different results. Combining 1 and (Ph$_3$C)BF$_4$ (4 equiv) in THF at 23 °C led to a reaction that was over within seconds as seen by UV-vis. The ether product (Ph$_3$COCH$_3$) was formed in 80% yield (Figure S9), and the iron complex did not change oxidation state, as seen by UV-vis (Figure S7) and Mössbauer spectroscopy (Figure S10). The nucleophilic reactivity of 1 with trityl cation is consistent with the reactivity observed for other metal-alkoxide complexes.30 It appears as though heterolytic cleavage of the Fe-O bond in 1 is facile compared to homolytic cleavage, although the origins of this difference is not well understood at this time.

DFT calculations on [Fe(OCH$_3$)(N3PyO$_{29h}$)$_2$]$,^+$, and the related hypothetical hydroxide complex [Fe(OH)(N3PyO)$_{29h}$]$^+$, led to optimized geometries for the sextet spin ground states of these species (Figure S11). The metrical parameters for [Fe(OCH$_3$)(N3PyO)$_{29h}$]$^+$ match reasonably well with the reported crystal structure, except for Fe-Nl(py), which is elongated by ~0.10 Å in the DFT structure. The initial reactant complex (Re) involves the association of the Fe0 complex with a radical substrate whose unpaired spin is aligned parallel (septet) or anti-parallel (quintet) to the Fe d electrons. The quintet states were uniformly lower in energy. No charge-transfer in the Re was observed. Attempts to interchange molecular orbitals to generate a charge-transfer state (e.g. $^3[\text{Fe(OH)(N3PyO$_{29h}$)}]^-$(4-Cl-C$_6$H$_{12})_2\text{C}^+$) for $\text{Re}_{\text{OCH}_3\text{C}}$ always converged back to the structure with a radical on the carbon moiety. The [Fe0(N3PyO$_{29h}$)$^±$ + ROC$_3$]$^+$ (R = H, Me) products (Pr) were also calculated, and their relative energies showed similar exothermicities ($^3\text{Pr}^0(\Delta E + \text{ZPE}) = $ ($\text{Re}^0(\Delta E + \text{ZPE}) = -7$ to -8 kcal mol$^{-1}$) for the Fe0(OMe) and Fe0(OH) complexes, suggesting similar reaction pathways for these species. Transition state (TS) structures were located for the Fe0(OMe) and Fe0(OH) complexes and the ρ-Cl$^-$ radical, and free energies of activation with the Wertz-entropy correction give values of 23.9 and 25.0 kcal mol$^{-1}$, respectively. The calculated enthalpy values (Table S9) are relatively close to the experimental value obtained from the Eyring analysis.

Transition state (TS) structures were located for the Fe0(OMe) and Fe0(OH) complexes and the ρ-Cl$^-$ radical, and they are indeed similar in both geometry and relative energies, although one of the py donors appears dissociated from the metal in both structures (Figure 2) due to steric clash as a result of substrate approach. However, this Fe-py bond is restored during product formation, giving the expected Fe0 product. The structures shown in Figure 2 indicate relatively early transition states, consistent with facile, exothermic reactions. The DFT results show that a concerted, radical group transfer mechanism is favored for both the Fe0(OMe) and Fe0(OH) complexes, and the electronic changes are similar for both species. Calculations for other heme and nonheme iron-hydroxo complex-
es have also shown a single transition state, implicating a concerted process. 31-33

![Figure 2. Transition state structures for $[\text{Fe}^{III}(\text{OCH}_3)(\text{N3PyO}^{2-})]^+$ (left) and $[\text{Fe}^{III}(\text{OH})(\text{N3PyO}^{2-})]^+$ (right) with (4-Cl-C_6H_4):C•. The C-O and Fe-O distances (in Å), and imaginary frequencies, are listed for each structure.](image)

The combined experimental and computational data suggest that the radical rebound step in nonheme iron enzymes or synthetic catalysts may proceed by a concerted process, with little or no charge-transfer prior to C-O bond formation. The sizeable reaction barrier for the rebound process for complex 1 is significantly different from the nearly barrierless rebound processes predicted for nonheme iron enzymes. However, the model complex reacts via a bimolecular process, whereas the radicals in the enzymes are trapped in the active site pocket and react directly via a first-order process. In addition, the trityl radical derivatives are significantly more stable than typical primary or secondary alkyl radicals generated in the biological systems. The conclusion that a concerted "rebound" pathway is operative for 1 suggests that radical rebound in nonheme iron enzymes may also be concerted, which could help determine product selectivity. The substrate radical needs to be held in a close, appropriate orientation for a concerted pathway to lead to a productive reaction. Obtaining such information from model systems should further our understanding of the selectivity of rebound processes in nonheme iron enzymes such as the α-KG halogenases, IPNS, and related systems.

ASSOCIATED CONTENT
The Supporting Information is available free of charge on the ACS Publications Website at DOI: #########. Experimental procedures, UV-vis data, kinetics, Mössbauer data, and DFT methods (PDF).

AUTHOR INFORMATION

Corresponding Author
*dpg@jhu.edu (DPG); sam.devisser@manchester.ac.uk (SPdV)

ORCID

Vishal Yadav: 0000-0002-7016-2991; David P. Goldberg: 0000-0003-4645-1045; Guy L. Jameson: 0000-0001-9416-699X; Sam P. de Visser: 0000-0002-2620-8788

NOTES
The authors declare no competing interest.

ACKNOWLEDGMENTS

This work was supported by NIH through GM119374 to D.P.G. SDV and EPG thank the BBSC for a studentship under grant number BB/M011208/1.

REFERENCES

Synopsis: The reactivity of an FeIII(OCH$_3$) complex with a series of triarylmethyl radicals leads to a model of a radical rebound reaction in which a new C-O bond and reduced FeII product is formed. Kinetic studies (Hammett, Marcus, Eyring analyses) reveal a concerted mechanism, which is supported by DFT calculations, providing new insights relevant to the mechanism of radical rebound in nonheme Fe enzymes and catalysts.