
The University of Manchester Research

Synthesizing benchmarks for predictive modeling

DOI:
10.1109/CGO.2017.7863731

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Cummins, C., Petoumenos, P., Wang, Z., & Leather, H. (2017). Synthesizing benchmarks for predictive modeling.
In V. J. Reddi, A. Smith, & L. Tang (Eds.), CGO 2017 - Proceedings of the 2017 International Symposium on Code
Generation and Optimization (pp. 86-99). Article 7863731 (CGO 2017 - Proceedings of the 2017 International
Symposium on Code Generation and Optimization). IEEE. https://doi.org/10.1109/CGO.2017.7863731
Published in:
CGO 2017 - Proceedings of the 2017 International Symposium on Code Generation and Optimization

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:29. Apr. 2024

https://doi.org/10.1109/CGO.2017.7863731
https://research.manchester.ac.uk/en/publications/5652a01d-a49e-4d5a-ac6a-e0082d6f0838
https://doi.org/10.1109/CGO.2017.7863731

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
CSynthesizing Benchmarks for Predictive Modeling

Chris Cummins
Pavlos Petoumenos

University of Edinburgh, UK
{c.cummins,ppetoume}@inf.ed.ac.uk

Zheng Wang
Lancaster University, UK
z.wang@lancaster.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract
Predictive modeling using machine learning is an effective
method for building compiler heuristics, but there is a short-
age of benchmarks. Typical machine learning experiments
outside of the compilation field train over thousands or mil-
lions of examples. In machine learning for compilers, how-
ever, there are typically only a few dozen common bench-
marks available. This limits the quality of learned models,
as they have very sparse training data for what are often
high-dimensional feature spaces. What is needed is a way
to generate an unbounded number of training programs that
finely cover the feature space. At the same time the generated
programs must be similar to the types of programs that human
developers actually write, otherwise the learning will target
the wrong parts of the feature space.

We mine open source repositories for program fragments
and apply deep learning techniques to automatically con-
struct models for how humans write programs. We sample
these models to generate an unbounded number of runnable
training programs. The quality of the programs is such that
even human developers struggle to distinguish our generated
programs from hand-written code.

We use our generator for OpenCL programs, CLgen, to
automatically synthesize thousands of programs and show
that learning over these improves the performance of a
state of the art predictive model by 1.27×. In addition, the
fine covering of the feature space automatically exposes
weaknesses in the feature design which are invisible with
the sparse training examples from existing benchmark suites.
Correcting these weaknesses further increases performance
by 4.30×.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—code generation, compilers,
optimization

Keywords Synthetic program generation, OpenCL, Bench-
marking, Deep Learning, GPUs

1. Introduction
Predictive modeling is a well researched method for building
optimization heuristics that often exceed human experts and

Ad-hoc
Drivers

clsmithclsmithDatasets

clsmithclsmithTraining
Programs

Feature
Extractor

clsmithclsmithTraining
Data

Predictive
Model

Parameters

Features

Performance
measurements

Figure 1. Training a predictive model.

reduces development time [1–11]. Figure 1 shows the process
by which these models are trained. A set of training programs
are identified which are expected to be representative of the
application domain. The programs are compiled and executed
with different parameter values for the target heuristic, to de-
termine which are the best values for each training program.
Each program is also summarized by a vector of features
which describe the information that is expected to be impor-
tant in predicting the best heuristic parameter values. These
training examples of program features and desired heuristic
values are used to create a machine learning model which,
when given the features from a new, unseen program, can
predict good heuristic values for it.

It is common for feature vectors to contain dozens of
elements. This means that a large volume of training data is
needed to have an adequate sampling over the feature space.
Without it, the machine learned models can only capture
the coarse characteristics of the heuristic, and new programs
which do not lie near to training points may be wrongly
predicted. The accuracy of the machine learned heuristic is
thus limited by the sparsity of the training points.

There have been efforts to solve this problem using tem-
plates. The essence of the approach is to construct a prob-
abilistic grammar with embedded semantic actions that de-
fines a language of possible programs. New programs may be
created by sampling the grammar and, through setting proba-
bilities on the grammar productions, the sampling is biased
towards producing programs from one part of the space or an-
other. This technique is potentially completely general, since
a grammar can theoretically be constructed to match any de-
sired program domain. However, despite being theoretically
possible, it is not easy to construct grammars which are both
suitably general and also produce programs that are in any

978-1-5090-4931-8/17 c© 2017 IEEE CGO 2017, Austin, USA

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

86

way similar to human written programs. It has been shown to
be successful over a highly restricted space of stencil bench-
marks with little control flow or program variability [4, 8].
But, it is not clear how much effort it will take, or even if it
is possible for human experts to define grammars capable of
producing human like programs in more complex domains.

By contrast, our approach does not require an expert to
define what human programs look like. Instead, we automat-
ically infer the structure and likelihood of programs over a
huge corpus of open source projects. From this corpus, we
learn a probability distribution over sets of characters seen
in human written code. Later, we sample from this distribu-
tion to generate new random programs which, because the
distribution models human written code, are indistinguish-
able from human code. We can then populate our training
data with an unbounded number of human like programs,
covering the space far more finely than either existing bench-
mark suites or even the corpus of open source projects. Our
approach is enabled by two recent developments:

The first is the breakthrough effectiveness of deep learning
for modeling complex structure in natural languages [12, 13].
As we show, deep learning is capable not just of learning the
macro syntactical and semantic structure of programs, but
also the nuances of how humans typically write code. It is
truly remarkable when one considers that it is given no prior
knowledge of the syntax or semantics of the language.

The second is the increasing popularity of public and open
platforms for hosting software projects and source code. This
popularity furnishes us with the thousands of programming
examples that are necessary to feed into the deep learning.
These open source examples are not, sadly, as useful for
directly learning the compiler heuristics since they are not
presented in a uniform, runnable manner, nor do they typically
have extractable test data. Preparing each of the thousands
of open source projects to be directly applicable for learning
compiler heuristics would be an insurmountable task. In
addition to our program generator, CLgen, we also provide
an accompanying host driver which generates datasets for,
then executes and profiles synthesized programs.

We make the following contributions:

• We are the first to apply deep learning over source codes
to synthesize compilable, executable benchmarks.

• A novel tool CLgen1 for general-purpose benchmark
synthesis using deep learning. CLgen automatically and
rapidly generates thousands of human like programs for
use in predictive modeling.

• We use CLgen to automatically improve the performance
of a state of the art predictive model by 1.27×, and expose
limitations in the feature design of the model which, after
correcting, further increases performance by 4.30×.

1https://github.com/ChrisCummins/clgen

R
od

in
ia

N
V

ID
IA

 S
D

K

A
M

D
 S

D
K

P
ar

bo
il

N
A

S

P
ol

yb
en

ch

S
H

O
C

A
d-

ho
c

IS
P

A
S

S

P
lo

yb
en

ch

Lo
ne

st
ar

S
P

E
C

-V
ie

w
pe

rf

M
A

R
S

G
P

G
P

U
si

m

0
1
2
3
4
5
6
7

#.
 b

en
ch

m
ar

ks
 u

se
d

Figure 2. The average number of benchmarks used in
GPGPU research papers, organized by origin. In this work
we use the seven most popular benchmark suites.

2. Motivation
In this section we make the argument for synthetic bench-
marks. We identified frequently used benchmark suites in a
survey of 25 research papers in the field of GPGPU perfor-
mance tuning from four top tier conferences between 2013–
2016: CGO, HiPC, PACT, and PPoPP. We found the average
number of benchmarks used in each paper to be 17, and that
a small pool of benchmarks suites account for the majority of
results, shown in Figure 2. We selected the 7 most frequently
used benchmark suites (accounting for 92% of results), and
evaluated the performance of the state of the art Grewe et
al. [14] predictive model across each. The model predicts
whether running a given OpenCL kernel on the GPU gives
better performance than on the CPU. We describe the full
experimental methodology in Section 7.

Table 1 summarizes our results. The performance of a
model trained on one benchmark suite and used to predict the
mapping for another suite is generally very poor. The bench-
mark suite which provides the best results, NVIDIA SDK,
achieves on average only 49% of the optimal performance.
The worst case is when training with Parboil to predict the
optimal mappings for Polybench, where the model achieves
only 11.5% of the optimal performance. From this it is clear
that heuristics learned on one benchmark suite fail to general-
ize across other suites.

This problem is caused both by the limited number of
benchmarks contained in each suite, and the distribution of
benchmarks within the feature space. Figure 3 shows the fea-
ture space of the Parboil benchmark suite, showing whether,
for each benchmark, the model was able to correctly predict
the appropriate optimization. We used Principle Component
Analysis to reduce the multi-dimensional feature space to aid
visualization.

As we see in Figure 3a, there is a dense cluster of neigh-
boring benchmarks, a smaller cluster of three benchmarks,
and two outliers. The lack of neighboring observations means
that the model is unable to learn a good heuristic for the two
outliers, which leads to them being incorrectly optimized. In

87

AMD NPB NVIDIA Parboil Polybench Rodinia SHOC

AMD - 38.0% 74.5% 76.7% 21.7% 45.8% 35.9%
NPB 22.7% - 45.3% 36.7% 13.4% 16.1% 23.7%

NVIDIA 29.9% 37.9% - 21.8% 78.3% 18.1% 63.2%
Parboil 89.2% 28.2% 28.2% - 41.3% 73.0% 33.8%

Polybench 58.6% 30.8% 45.3% 11.5% - 43.9% 12.1%
Rodinia 39.8% 36.4% 29.7% 36.5% 46.1% - 59.9%

SHOC 42.9% 71.5% 74.1% 41.4% 35.7% 81.0% -

Table 1. Performance relative to the optimal of the Grewe et al. predictive model across different benchmark suites on an AMD
GPU. The columns show the suite used for training; the rows show the suite used for testing.

Principle Component 1 →

P
rin

ci
pl

e
C

om
po

ne
nt

 2
 → Correct

Incorrect

(a)

Principle Component 1 →

P
rin

ci
pl

e
C

om
po

ne
nt

 2
 → Correct

Incorrect

Additional

(b)

Figure 3. A two dimensional projection of the Grewe et al.
feature space, showing predictive model results over Parboil
benchmarks on an NVIDIA GPU. Two outliers in (a) are
incorrectly predicted due to the lack of nearby observations.
The addition of neighboring observations in (b) corrects this.

Figure 3b, we hand-selected benchmarks which are neigh-
bouring in the feature space and retrained the model. The
addition of these observations (and the information they pro-
vide about that part of the feature space) causes the two
outliers to be correctly optimized. We found such outliers in
all of the benchmark suites of Table 1.

These results highlight the significant effect that the num-
ber and distribution of training programs has on the quality
of predictive models. Without good coverage of the feature
space, any machine learning methodology is unlikely to pro-
duce high quality heuristics, suitable for general use on ar-
bitrary real applications, or even applications from different
benchmark suites. Our novel approach, described in the next
section, solves this problem by generating an unbounded
number of programs to cover the feature space with fine
granularity.

3. Overview of Our Approach
In this paper we present CLgen, a tool for synthesizing
OpenCL benchmarks, and an accompanying host driver for
executing synthetic benchmarks for gathering performance
data for predictive modeling. While we demonstrate our
approach using OpenCL, it is language agnostic. Our tool
CLgen learns the semantics and structure from over a million
lines of hand-written code from GitHub, and synthesizes
programs through a process of iterative model sampling.

CLgen

Host Driver

Language
Corpus

GitHub
Software

Repositories

clsmithclsmithContent Files Rejection
Filter

Search
engine

Code
Rewriter

Model
parameters

Rejection
Filter

LSTM network

Synthesizer

Synthesis
parameters

Argument
Extractor

Benchmark
parameters

clsmithclsmithSynthesized
Benchmarks

Benchmark
Driver

clsmithclsmithSynthesized
Payloads

clsmithclsmithPerformance
Results

Dynamic
Checker

Figure 4. Benchmark synthesis and execution pipeline.

We use a host driver to execute the synthesized programs
to gather performance data for use in predictive modeling.
Figure 4 provides an overview of the program synthesis and
execution pipeline. Our approach extends the state of the
art by providing a general-purpose solution for benchmark
synthesis, leading to better and more accurate predictive
models.

In the course of evaluating our technique against prior
work we discovered that it is also useful for evaluating the
quality of features. Since we are able to cover the space
so much more finely than the prior work, which only used
standard benchmark suites, we are able to find multiple
programs with identical feature values but different best
heuristic values. This indicates that the features are not
sufficiently discriminative and should be extended with more
information to allow those programs to be separated. We
go on to show that doing this significantly increases the
performance of the learned heuristics. We expect that our
technique will be valuable for feature designers.

88

4. CLgen: Benchmark Synthesis
CLgen is an undirected, general-purpose program synthesizer
for OpenCL. It adopts and augments recent advanced tech-
niques from deep learning to learn over massive codebases. In
contrast to existing grammar and template based approaches,
CLgen is entirely probabilistic. The system learns to program
using neural networks which model the semantics and usage
of a huge corpus of code fragments in the target programming
language. This section describes the assembly of an OpenCL
language corpus, the application of deep learning over this
corpus, and the process of synthesizing programs.

4.1 An OpenCL Language Corpus
Deep learning requires large datasets [15]. For the purpose of
modeling a programming language, this means assembling a
very large collection of real, hand-written source codes. We
assembled OpenCL codes by mining public repositories on
the popular code hosting site GitHub.

This is itself a challenging task since OpenCL is an
embedded language, meaning device code is often difficult
to untangle since GitHub does not presently recognize it as
a searchable programming language. We developed a search
engine which attempts to identify and download standalone
OpenCL files through a process of file scraping and recursive
header inlining. The result is a 2.8 million line dataset of
8078 “content files” which potentially contain OpenCL code,
originating from 793 GitHub repositories.

We prune the raw dataset extracted from GitHub using
a custom toolchain we developed for rejection filtering and
code rewriting, built on LLVM.

Rejection Filter The rejection filter accepts as input a
content file and returns whether or not it contains compilable,
executable OpenCL code. To do this we attempt to compile
the input to NVIDIA PTX bytecode and perform static
analysis to ensure a minimum static instruction count of three.
We discard any inputs which do not compile or contain fewer
than three instructions.

During initial development it became apparent that isolat-
ing the OpenCL device code leads to a higher-than-expected
discard rate (that is, seemingly valid OpenCL files being
rejected). Through analyzing 148k lines of compilation er-
rors, we discovered a large number of failures caused by
undeclared identifiers — a result of isolating device code
— 50% of undeclared identifier errors in the GitHub dataset
were caused by only 60 unique identifiers. To address this,
we developed a shim header which contains inferred values
for common type definitions (e.g. FLOAT_T), and common
constants (e.g. WGSIZE), shown in Listing 1.

Injecting the shim decreases the discard rate from 40%
to 32%, responsible for an additional 88k lines of code in
the final language corpus. The resulting dataset is 2.0 million
lines of compilable OpenCL source code.

1 / * Enable OpenCL f e a t u r e s * /
2 # d e f i n e c l _ c l a n g _ s t o r a g e _ c l a s s _ s p e c i f i e r s
3 # d e f i n e c l _ k h r _ f p 6 4
4 # i n c l u d e < c l c / c l c . h>
5
6 / * I n f e r r e d t y p e s * /
7 t y p e d e f f l o a t FLOAT_T ;
8 t y p e d e f unsigned i n t INDEX_TYPE ;

. . . (36 more)
9

10 / * I n f e r r e d c o n s t a n t s * /
11 # d e f i n e M_PI 3 .14025
12 # d e f i n e WG_SIZE 128

. . . (185 more)

Listing 1. The shim header file, providing inferred type
aliases and constants for OpenCL on GitHub.

Code Rewriter Programming languages have few of the
issues of semantic interpretation present in natural language,
though there remains many sources of variance at the syntac-
tic level. For example, the presence and content of comments
in code, and the choice of identifying names given to vari-
ables. We consider these ambiguities to be non-functional
variance, and developed a tool to normalize code of these
variances so as to make the code more amenable to machine
learning. This is a three step process:

1. The source is pre-processed to remove macros, conditional
compilation, and source comments.

2. Identifiers are rewritten to have a short but unique name
based on their order of appearance, using the sequential
series {a, b, c, . . . , aa, ab, ac, . . .} for variables and {A,
B,C, . . . , AA,AB,AC, . . .} for functions. This process
isolates the syntactic structure of the code, and unlike prior
work [16], our rewrite method preserves program behavior.
Language built-ins (e.g. get_global_id, asin) are not
rewritten.

3. A variant of the Google C++ code style is enforced to
ensure consistent use of braces, parentheses, and white
space.

An example of the code rewriting process is shown in Figure 5.
A side effect of this process is a reduction in code size,
largely due to the removal of comments and excess white
space. The final language corpus contains 1.3 million lines
of transformed OpenCL, consisting of 9487 kernel functions.
Identifier rewriting reduces the bag-of-words vocabulary size
by 84%.

4.2 Learning OpenCL
Generating valid, executable program code is an ambitious
and challenging goal for unsupervised machine learning. We
employ state of the art deep language modeling techniques to
achieve this task.

We use the Long Short-Term Memory (LSTM) architec-
ture of Recurrent Neural Network [17, 18] to learn a character-
level language model over the corpus of OpenCL compute
kernels. The LSTM network architecture comprises recurrent

89

1 # d e f i n e DTYPE f l o a t
2 # d e f i n e ALPHA(a) 3 . 5 f * a
3 i n l i n e DTYPE ax (DTYPE x) { re turn ALPHA(x) ; }
4
5 _ _ k e r n e l void saxpy (/ * SAXPY k e r n e l * /
6 _ _ g l o b a l DTYPE * i n p u t 1 ,
7 _ _ g l o b a l DTYPE * i n p u t 2 ,
8 c o n s t i n t nelem)
9 {

10 unsigned i n t i d x = g e t _ g l o b a l _ i d (0) ;
11 / / = ax + y
12 i f (i d x < nelem) {
13 i n p u t 2 [i d x] += ax (i n p u t 1 [i d x]) ; }}

(a) Example content file

1 i n l i n e f l o a t A(f l o a t a) {
2 re turn 3 . 5 f * a ;
3 }
4
5 _ _ k e r n e l void B(_ _ g l o b a l f l o a t * b , _ _ g l o b a l f l o a t * c ,

↪→ c o n s t i n t d) {
6 unsigned i n t e = g e t _ g l o b a l _ i d (0) ;
7
8 i f (e < d) {
9 c [e] += A(b [e]) ;

10 }
11 }

(b) Content file after code rewriting

Figure 5. The code rewriting process, which transforms code
to make it more amenable to language modeling.

layers of memory cells, each consisting of an input, output,
and forget gate, and an output layer providing normalized
probability values from a 1-of-K coded vocabulary [19].

We use a 3-layer LSTM network with 2048 nodes per layer,
implemented in Torch. We train this 17-million parameter
model using Stochastic Gradient Descent for 50 epochs,
using an initial learning rate of 0.002, decaying by a factor
of one half every 5 epochs. Training took three weeks on a
single machine using an NVIDIA GTX Titan, with a final
model size of 648MB. Training the network is a one-off cost,
and can be parallelized across devices. The trained network
can be deployed to lower-compute machines for use.

4.3 Synthesizing OpenCL
We synthesize OpenCL compute kernels by iteratively sam-
pling the learned language model. We implemented two
modes for model sampling: the first involves providing an ar-
gument specification, stating the data types and modifiers of
all kernel arguments. When an argument specification is pro-
vided, the model synthesizes kernels matching this signature.
In the second sampling mode this argument specification is
omitted, allowing the model to synthesize compute kernels of
arbitrary signatures, dictated by the distribution of argument
types within the language corpus.

In either mode we generate a seed text, and sample the
model, character by character, until the end of the compute
kernel is reached, or until a predetermined maximum number
of characters is reached. Algorithm 1 illustrates this process.

Algorithm 1 Sampling a candidate kernel from a seed text.
Require: LSTM model M , maximum kernel length n.
Ensure: Completed sample string S.

1: S ←“__kernel void A(const int a) {” Seed text
2: d← 1 Initial code block depth
3: for i← |S| to n do
4: c← predictcharacter(M,S) Generate new character
5: if c =“{” then
6: d← d+ 1 Entered code block, increase depth
7: else if c =“}” then
8: d← d− 1 Exited code block, decrease depth
9: end if

10: S ← S + c Append new character
11: if depth = 0 then
12: break Exited function block, stop sampling
13: end if
14: end for

The same rejection filter described in Section 4.1 then either
accepts or rejects the sample as a candidate synthetic bench-
mark. Listing 6 shows three examples of unique compute
kernels generated in this manner from an argument specifi-
cation of three single-precision floating-point arrays and a
read-only signed integer. We evaluate the quality of synthe-
sized code in Section 6.

5. Benchmark Execution
We developed a host driver to gather performance data from
synthesized CLgen code. The driver accepts as input an
OpenCL kernel, generates payloads of user-configurable
sizes, and executes the kernel using the generated payloads,
providing dynamic checking of kernel behavior.

5.1 Generating Payloads
A payload encapsulates all of the arguments of an OpenCL
compute kernel. After parsing the input kernel to derive
argument types, a rule-based approach is used to generate
synthetic payloads. For a given global size Sg: host buffers
of Sg elements are allocated and populated with random
values for global pointer arguments, device-only buffers
of Sg elements are allocated for local pointer arguments,
integral arguments are given the value Sg , and all other scalar
arguments are given random values. Host to device data
transfers are enqueued for all non-write-only global buffers,
and all non-read-only global buffers are transferred back to
the host after kernel execution.

5.2 Dynamic Checker
For the purpose of performance benchmarking we are not
interested in the correctness of computed values, but we
define a class of programs as performing useful work if they
predictably compute some result. We devised a low-overhead
runtime behavior check to validate that a synthesized program
does useful work based on the outcome of four executions of
a tested program:

90

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,
2 _ _ g l o b a l f l o a t * b ,
3 _ _ g l o b a l f l o a t * c ,
4 c o n s t i n t d) {
5 i n t e = g e t _ g l o b a l _ i d (0) ;
6 f l o a t f = 0 . 0 ;
7 f o r (i n t g = 0 ; g < d ; g ++) {
8 c [g] = 0 . 0 f ;
9 }

10 b a r r i e r (1) ;
11
12 a [g e t _ g l o b a l _ i d (0)] = 2*b [g e t _ g l o b a l _ i d (0)] ;
13 }

(a) Vector operation with branching and synchronization.

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,
2 _ _ g l o b a l f l o a t * b ,
3 _ _ g l o b a l f l o a t * c ,
4 c o n s t i n t d) {
5 i n t e = g e t _ g l o b a l _ i d (0) ;
6 i f (e >= d) {
7 re turn ;
8 }
9 c [e] = a [e] + b [e] + 2 * a [e] + b [e] + 4 ;

10 }

(b) Zip operation which computes ci = 3ai + 2bi + 4.

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,
2 _ _ g l o b a l f l o a t * b ,
3 _ _ g l o b a l f l o a t * c ,
4 c o n s t i n t d) {
5 unsigned i n t e = g e t _ g l o b a l _ i d (0) ;
6 f l o a t 1 6 f = (f l o a t 1 6) (0 . 0) ;
7 f o r (unsigned i n t g = 0 ; g < d ; g ++) {
8 f l o a t 1 6 h = a [g] ;
9 f . s0 += h . s0 ;

10 f . s1 += h . s1 ;
11 f . s2 += h . s2 ;
12 f . s3 += h . s3 ;
13 f . s4 += h . s4 ;
14 f . s5 += h . s5 ;
15 f . s6 += h . s6 ;
16 f . s7 += h . s7 ;
17 f . s8 += h . s8 ;
18 f . s9 += h . s9 ;
19 f . sA += h . sA ;
20 f . sB += h . sB ;
21 f . sC += h . sC ;
22 f . sD += h . sD ;
23 f . sE += h . sE ;
24 f . sF += h . sF ;
25 }
26 b [e] = f . s0 + f . s1 + f . s2 + f . s3 + f . s4 + f . s5 +

↪→ f . s6 + f . s7 + f . s8 + f . s9 + f . sA + f . sB +
↪→ f . sC + f . sD + f . sE + f . sF ;

27 }

(c) Partial reduction over reinterpreted vector type.

Figure 6. Compute kernels synthesized with CLgen. All
three kernel were synthesized from the same argument spec-
ification: three single-precision floating-point arrays and a
read-only signed integer.

1. Create 4 equal size payloads A1in, B1in, A2in, B2in,
subject to restrictions: A1in = A2in, B1in = B2in,
A1in 6= B1in.

2. Execute kernel k 4 times: k(A1in)→ A1out, k(B1in)→
B1out, k(A2in)→ A2out, k(B2in)→ B2out.

3. Assert:
• A1out 6= A1in and B1out 6= B1in, else k has no output

(for these inputs).
• A1out 6= B1out and A2out 6= B2out, else k is input

insensitive t (for these inputs).
• A1out = A2out and B1out = B2out, else k is non-

deterministic.

Equality checks for floating point values are performed with
an appropriate epsilon to accommodate rounding errors, and
a timeout threshold is also used to catch kernels which are
non-terminating. Our method is based on random differential
testing [20], though we emphasize that this is not a general
purpose approach and is tailored specifically for our use
case. For example, we anticipate a false positive rate for
kernels with subtle sources of non-determinism which more
thorough methods may expose [21–23], however we deemed
such methods unnecessary for our purpose of performance
modeling.

6. Evaluation of Synthetic Programs
In this section we evaluate the quality of programs synthe-
sized by CLgen by their likeness to hand-written code, and
discuss limitations of the synthesis and execution pipeline.

6.1 Likeness to Hand-written Code
Judging whether a piece of code has been written by a
human is a challenging task for a machine, so we adopt a
methodology from machine learning research based on the
Turing Test [24–26]. We reason that if the output of CLgen
is human like code, then a human judge will be unable to
distinguish it from hand-written code.

We devised a double blind test in which 15 volunteer
OpenCL developers from industry and academia were shown
10 OpenCL kernels each. Participants were tasked with
judging whether, for each kernel, they believed it to have
been written by hand or by machine. Kernels were randomly
selected for each participant from two equal sized pools of
synthetically generated and hand-written code from GitHub.
We applied the code rewriting process to all kernels to
remove comments and ensure uniform identifier naming. The
participants were divided into two groups, with 10 of them
receiving code generated by CLgen, and 5 of them acting as
a control group, receiving code generated by CLSmith [27],
a program generator for differential testing1.

We scored each participant’s answers, finding the average
score of the control group to be 96% (stdev. 9%), an unsurpris-

1An online version of this test is available at http://humanorrobot.uk/.

91

Raw Code Features

comp static #. compute operations
mem static #. accesses to global memory
localmem static #. accesses to local memory
coalesced static #. coalesced memory accesses
transfer dynamic size of data transfers
wgsize dynamic #. work-items per kernel

(a) Individual code features

Combined Code Features

F1: transfer/(comp+mem) commun.-computation ratio
F2: coalesced/mem % coalesced memory accesses
F3: (localmem/mem)×wgsize ratio local to global mem accesses

× #. work-items
F4: comp/mem computation-mem ratio

(b) Combinations of raw features

Table 2. Grewe et al. model features.

ing outcome as generated programs for testing have multiple
“tells”, for example, their only input is a single ulong pointer.
There were no false positives (synthetic code labeled human)
for CLSmith, only false negatives (human code labeled syn-
thetic). With CLgen synthesized programs, the average score
was 52% (stdev. 17%), and the ratio of errors was even. This
suggests that CLgen code is indistinguishable from hand-
written programs, with human judges scoring no better than
random chance.

6.2 Limitations
Our new approach enables the synthesis of more human-like
programs than current state of the art program generators,
and without the expert guidance required by template based
generators, but it has limitations. Our method of seeding the
language models with the start of a function means that we
cannot support user defined types, or calls to user-defined
functions. This means that we only consider scalars and ar-
rays as inputs; while 6 (2.3%) of the benchmark kernels from
Table 3 use irregular data types as inputs. We will address
this limitation through recursive program synthesis, whereby
a call to a user-defined function or unrecognized type will
trigger candidate functions and type definitions to be synthe-
sized. Currently we only run single-kernel benchmarks. We
will extend the host driver to explore multi-kernel schedules
and interleaving of kernel executions. Our host driver gener-
ates datasets from uniform random distributions, as do many
of the benchmark suites. For cases where non-uniform in-
puts are required (e.g. profile-directed feedback), an alternate
methodology for generating inputs must be adopted.

7. Experimental Methodology
7.1 Experimental Setup
Predictive Model We reproduce the predictive model from
Grewe, Wang, and O’Boyle [14]. The predictive model is
used to determine the optimal mapping of a given OpenCL
kernel to either a GPU or CPU. It uses supervised learning
to construct a decision tree with a combination of static and

Version #. benchmarks #. kernels

NPB (SNU [29]) 1.0.3 7 114
Rodinia [30] 3.1 14 31
NVIDIA SDK 4.2 6 12
AMD SDK 3.0 12 16
Parboil [31] 0.2 6 8
PolyBench [32] 1.0 14 27
SHOC [33] 1.1.5 12 48
Total - 71 256

Table 3. List of benchmarks.

Intel CPU AMD GPU NVIDIA GPU

Model Core i7-3820 Tahiti 7970 GTX 970
Frequency 3.6 GHz 1000 MHz 1050 MHz
#. Cores 4 2048 1664
Memory 8 GB 3 GB 4 GB
Throughput 105 GFLOPS 3.79 TFLOPS 3.90 TFLOPS
Driver AMD 1526.3 AMD 1526.3 NVIDIA 361.42
Compiler GCC 4.7.2 GCC 4.7.2 GCC 5.4.0

Table 4. Experimental platforms.

dynamic kernel features extracted from source code and the
OpenCL runtime, detailed in Table 2b.

Benchmarks As in [14], we test our model on the NAS
Parallel Benchmarks (NPB) [28]. We use the hand-optimized
OpenCL implementation of Seo, Jo, and Lee [29]. In [14]
the authors augment the training set of the predictive model
with 47 additional kernels taken from 4 GPGPU benchmark
suites. To more fully sample the program space, we use
a much larger collection of 142 programs, summarized in
Table 3. These additional programs are taken from all 7
of the most frequently used benchmark suites identified in
Section 2. None of these programs were used to train CLgen.
We synthesized 1,000 kernels with CLgen to use as additional
benchmarks.

Platforms We evaluate our approach on two 64-bit CPU-
GPU systems, detailed in Table 4. One system has an AMD
GPU and uses OpenSUSE 12.3; the other is equipped with an
NVIDIA GPU and uses Ubuntu 16.04. Both platforms were
unloaded.

Datasets The NPB and Parboil benchmark suites are pack-
aged with multiple datasets. We use all of the packaged
datasets (5 per program in NPB, 1-4 per program in Par-
boil). For all other benchmarks, the default datasets are used.
We configured the CLgen host driver to synthesize payloads
between 128B-130MB, approximating that of the dataset
sizes found in the benchmark programs.

7.2 Methodology
We replicated the methodology of [14]. Each experiment is
repeated five times and the average execution time is recorded.
The execution time includes both device compute time and
the data transfer overheads.

We use leave-one-out cross-validation to evaluate predic-
tive models. For each benchmark, a model is trained on data
from all other benchmarks and used to predict the mapping

92

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,
2 _ _ g l o b a l f l o a t * b ,
3 _ _ g l o b a l f l o a t * c ,
4 c o n s t i n t d) {
5 i n t e = g e t _ g l o b a l _ i d (0) ;
6 i f (e < 4 && e < c) {
7 c [e] = a [e] + b [e] ;
8 a [e] = b [e] + 1 ;
9 }

10 }

Listing 2. In the Grewe et al. feature space this
CLgen program is indistinguishable from AMD’s Fast
Walsh–Hadamard transform benchmark, but has very
different runtime behavior and optimal device mapping. The
addition of a branching feature fixes this.

for each kernel and dataset in the excluded program. We re-
peat this process with and without the addition of synthetic
benchmarks in the training data. We do not test model predic-
tions on synthetic benchmarks.

8. Experimental Results
We evaluate the effectiveness of our approach on two hetero-
geneous systems. We first compare the performance of a state
of the art predictive model [14] with and without the addi-
tion of synthetic benchmarks, then show how the synthetic
benchmarks expose weaknesses in the feature design and how
these can be addressed to develop a better model. Finally we
compare the ability of CLgen to explore the program feature
space against a state of the art program generator [27].

8.1 Performance Evaluation
Figure 7 shows speedups of the Grewe et al. predictive model
over the NAS Parallel Benchmark suite with and without the
addition of synthesized benchmarks for training. Speedups
are calculated relative to the best single-device mapping for
each experimental platform, which is CPU-only for AMD
and GPU-only for NVIDIA. The fine grained coverage of the
feature space which synthetic benchmarks provide improves
performance dramatically for the NAS benchmarks. Across
both systems, we achieve an average speedup of 2.42×
with the addition of synthetic benchmarks, with prediction
improvements over the baseline for 62.5% of benchmarks on
AMD and 53.1% on NVIDIA.

The strongest performance improvements are on NVIDIA
with the FT benchmark which suffers greatly under a single-
device mapping. However, the performance on AMD for the
same benchmark slightly degrades after adding the synthetic
benchmarks, which we address in the next section.

8.2 Extending the Predictive Model
Feature designers are bound to select as features only prop-
erties which are significant for the sparse benchmarks they
test on, which can limit a model’s ability to generalize over a
wider range of programs. We found this to be the case with
the Grewe et al. model. The addition of automatically gener-

ated programs exposed two distinct cases where the model
failed to generalize as a result of overspecializing to the NPB
suite.

The first case is that F3 is sparse on many programs. This is
a result of the NPB implementation’s heavy exploitation of lo-
cal memory buffers and the method by which they combined
features (we speculate this was a necessary dimensionality
reduction in the presence of sparse training programs). To
counter this we extended the model to use the raw feature
values in addition to the combined features.

The second case is that some of our generated programs
had identical feature values as in the benchmark set, but had
different behavior (i.e. optimal mappings). Listing 2 shows
one example of a CLgen benchmark which is indistinguish-
able in the feature space to one the of existing benchmarks
— the Fast Walsh-Hadamard transform — but with different
behavior. We found this to be caused by the lack of dis-
criminatory features for branching, since the NPB programs
are implemented in a manner which aggressively minimized
branching. To counter this we extended the predictive model
with an additional feature containing a static count of branch-
ing operations in a kernel.

Figure 8 shows speedups of our extended model across
all seven of the benchmark suites used in Section 2. Model
performance, even on this tenfold increase of benchmarks, is
good. There are three benchmarks on which the model per-
forms poorly: MatrixMul, cutcp, and pathfinder. Each
of those programs make heavy use of loops, which we be-
lieve the static code features of the model fail to capture. This
could be addressed by extracting dynamic instruction counts
using profiling, but we considered this beyond the scope of
our work. It is not our goal to perfect the predictive model,
but to show the performance improvements associated with
training on synthetic programs. To this extent, we are suc-
cessful, achieving average speedups of 3.56× on AMD and
5.04× on NVIDIA across a very large test set.

8.3 Comparison of Source Features
As demonstrated in Section 2, the predictive quality of a
model for a given point in the feature space is improved with
the addition of observations from neighboring points. By
producing thousands of artificial programs modeled on the
structure real OpenCL programs, CLgen is able to consis-
tently and automatically generate programs which are close
in the feature space to the benchmarks which we are testing
on.

To quantify this effect we use the static code features
of Table 2a, plus the branching feature discussed in the
previous subsection, to measure the number of CLgen kernels
generated with the same feature values as those of the
benchmarks we examined in the previous subsections. We
examine only static code features to allow comparison with
the GitHub kernels for which we have no automated method
to execute them and extract runtime features, and CLSmith
generated programs.

93

B
T
.A

B
T
.B

B
T
.S

B
T
.W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P
.A

E
P
.B

E
P
.C

E
P
.W

FT
.A

FT
.B

FT
.S

FT
.W

LU
.A

LU
.B

LU
.C

LU
.S

LU
.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P
.A

S
P
.B

S
P
.C

S
P
.S

S
P
.W

A
v
e
ra

g
e

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
p

e
e
d

u
p

 o
v
e
r

C
P
U Grewe et al.

w. CLgen

(a) AMD Tahiti 7970

B
T
.A

B
T
.B

B
T
.S

B
T
.W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P
.A

E
P
.B

E
P
.C

E
P
.W

FT
.A

FT
.B

FT
.S

FT
.W

LU
.A

LU
.B

LU
.C

LU
.S

LU
.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P
.A

S
P
.B

S
P
.C

S
P
.S

S
P
.W

A
v
e
ra

g
e

1
3
5
7
9

11
13
15
17

S
p

e
e
d

u
p

 o
v
e
r

G
P
U Grewe et al.

w. CLgen

(b) NVIDIA GTX 970

Figure 7. Speedup of programs using Grewe et al. predictive model with and without synthetic benchmarks. The predictive
model outperforms the best static device mapping by a factor of 1.26× on AMD and 2.50× on NVIDIA. The addition of
synthetic benchmarks improves the performance to 1.57× on AMD and 3.26× on NVIDIA.

Figure 9 plots the number of matches as a function of
the number of kernels. Out of 10,000 unique CLgen kernels,
more than a third have static feature values matching those
of the benchmarks, providing on average 14 CLgen kernels
for each benchmark. This confirms our original intuition:
CLgen kernels, by emulating the way real humans write
OpenCL programs, are concentrated in the same area of the
feature space as real programs. Moreover, the number of
CLgen kernels we generate is unbounded, allowing us to
continually refine the exploration of the feature space, while
the number of kernels available on GitHub is finite. CLSmith
rarely produces code similar to real-world OpenCL programs,
with only 0.53% of the generated kernels have matching
feature values with benchmark kernels. We conclude that the
unique contribution of CLgen is its ability to generate many
thousands of programs that are appropriate for predictive
modeling.

9. Related Work
Our work lies at the intersections of a number of areas: pro-
gram generation, benchmark characterization, and language
modeling and learning from source code. There is no existing
work which is similar to ours, in respect to learning from
large corpuses of source code for benchmark generation.

GENESIS [34] is a language for generating synthetic train-
ing programs. Users annotate template programs with sta-
tistical distributions over features, which are instantiated to
generate statistically controlled permutations of templates.
Template based approaches provide domain-specific solutions
for a constrained feature and program space, for example, gen-
erating permutations of Stencil codes [35, 36]. Our approach
provides general-purpose program generation over unknown
domains, in which the statistical distribution of generated
programs is automatically inferred from real world code.

Random program generation is an effective method for
software testing. Grammar-based fuzz testers have been de-
veloped for C [37] and OpenCL [27]. A mutation-based ap-
proach for the Java Virtual Machine is demonstrated in [38].
Goal-directed program generators have been used for a vari-
ety of domains, including generating linear transforms [39],
MapReduce programs [40], and data structure implementa-
tions [41]. Program synthesis from input/output examples
is used for simple algorithms in [42], string manipulation
in [43], and geometry constructions in [44].

Machine learning has been applied to source code to aid
software engineering. Naturalize employs techniques devel-
oped in the natural language processing domain to model cod-
ing conventions [45]. JSNice leverages probabilistic graphical
models to predict program properties such as identifier names
for Javascript [46].

94

Figure 8. Speedups of predictions using our extended model over Grewe et al. on both experimental platforms. Synthetic
benchmarks and the additional program features outperform the original predictive model by a factor 3.56× on AMD and 5.04×
on NVIDIA.

0 2000 4000 6000 8000 10000

#. kernels

0

500

1000

1500

2000

2500

3000

3500

#.
 m

at
ch

es

GitHub

CLSmith

CLgen

Figure 9. The number of kernels from GitHub, CLSmith,
and CLgen with static code features matching the bench-
marks. CLgen generates kernels that are closer in the feature
space than CLSmith, and can continue to do so long after we
have exhausted the extent of the GitHub dataset. Error bars
show standard deviation of 10 random samplings.

There is an increasing interest in mining source code repos-
itories at large scale [16, 47, 48]. Previous studies have in-
volved data mining of GitHub to analyze software engineer-
ing practices [49–52], for example code generation [53], code
summarization [54], comment generation [55], and code com-
pletion [56]. However, no work so far has exploited mined
source code for benchmark generation. This work is the first
to do so.

10. Conclusion
The quality of predictive models is bound by the quantity and
quality of programs used for training, yet there is typically
only a few dozen common benchmarks available for experi-
ments. We present a novel tool which is the first of it’s kind

— an entirely probabilistic program generator capable of gen-
erating an unbounded number of human like programs. Our
approach applies deep learning over a huge corpus of publicly
available code from GitHub to automatically infer the seman-
tics and practical usage of a programming language. Our tool
generates programs which to trained eyes are indistinguish-
able from hand-written code. We tested our approach using a
state of the art predictive model, improving its performance
by a factor of 1.27×. We found that synthetic benchmarks
exposed weaknesses in the feature set which, when corrected,
further improved the performance by 4.30×. Our hope for
this work is to demonstrate a proof of concept for an exciting
new avenue of program generation, and that the full release
of CLgen will expedite discovery in other domains. In future
work we will extend the approach to multiple programming
languages, and investigate methods for performing an auto-
matic directed search of feature spaces.

Acknowledgments
Our thanks to the volunteers at Codeplay Software Ltd and
the University of Edinburgh for participating in the qual-
itative evaluation. This work was supported by the UK
Engineering and Physical Sciences Research Council un-
der grants EP/L01503X/1 (CDT in Pervasive Parallelism),
EP/L000055/1 (ALEA), EP/M01567X/1 (SANDeRs), EP/M0
15823/1, and EP/M015793/1 (DIVIDEND). The code and
data for this paper are available at:
http://chriscummins.cc/cgo17.

95

References
[1] P. Micolet, A. Smith, and C. Dubach. “A Machine

Learning Approach to Mapping Streaming Workloads
to Dynamic Multicore Processors”. In: LCTES. 2016.

[2] Z. Wang, G. Tournavitis, B. Franke, and M. O’Boyle.
“Integrating Profile-driven Parallelism Detection and
Machine-learning-based Mapping”. In: TACO (2014).

[3] A. Magni, C. Dubach, and M. O’Boyle. “Automatic
Optimization of Thread-Coarsening for Graphics Pro-
cessors”. In: PACT. ACM, 2014, pp. 455–466.

[4] C. Cummins, P. Petoumenos, M. Steuwer, and H.
Leather. “Towards Collaborative Performance Tuning
of Algorithmic Skeletons”. In: HLPGPU. 2016.

[5] Z. Wang and M. O’Boyle. “Mapping Parallelism to
Multi-cores: A Machine Learning Based Approach”.
In: PPoPP. 15. ACM, 2009, pp. 75–84.

[6] Y. Wen, Z. Wang, and M. O’Boyle. “Smart Multi-
Task Scheduling for OpenCL Programs on CPU/GPU
Heterogeneous Platforms”. In: HiPC. IEEE, 2014.

[7] Z. Wang and M. O’Boyle. “Partitioning Streaming
Parallelism for Multi-cores: A Machine Learning Based
Approach”. In: PACT. ACM, 2010, pp. 307–318.

[8] T. L. Falch and A. C. Elster. “Machine Learning Based
Auto-tuning for Enhanced OpenCL Performance Porta-
bility”. In: IPDPSW. IEEE, 2015.

[9] A. Collins, C. Fensch, and H. Leather. “Auto-Tuning
Parallel Skeletons”. In: Parallel Processing Letters
22.02 (June 2012), p. 1240005.

[10] H. Leather, E. Bonilla, and M. O’Boyle. “Automatic
Feature Generation for Machine Learning Based Opti-
mizing Compilation”. In: TACO 11 (2014).

[11] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather.
“Fast Automatic Heuristic Construction Using Active
Learning”. In: LCPC. 2014.

[12] A. Graves. “Generating Sequences with Recurrent
Neural Networks”. In: arXiv:1308.0850 (2013).

[13] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to
Sequence Learning with Neural Networks”. In: NIPS.
2014.

[14] D. Grewe, Z. Wang, and M. O’Boyle. “Portable Map-
ping of Data Parallel Programs to OpenCL for Hetero-
geneous Systems”. In: CGO. IEEE, 2013.

[15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”.
In: Nature 521.7553 (2015), pp. 436–444.

[16] M. Allamanis and C. Sutton. “Mining Source Code
Repositories at Massive Scale using Language Model-
ing”. In: MSR. 2013, pp. 207–216.

[17] M. Sundermeyer, R. Schl, and H. Ney. “LSTM Neural
Networks for Language Modeling”. In: Interspeech.
2012.

[18] T. Mikolov. “Recurrent Neural Network based Lan-
guage Model”. In: Interspeech. 2010.

[19] A. Graves and J. Schmidhuber. “Framewise Phoneme
Classification with Bidirectional LSTM and Other
Neural Network Architectures”. In: Neural Networks
5.5 (18), pp. 602–610.

[20] W. M. McKeeman. “Differential Testing for Software”.
In: DTJ 10.1 (1998), pp. 100–107.

[21] A. Betts, N. Chong, and A. Donaldson. “GPUVerify: A
Verifier for GPU Kernels”. In: OOPSLA. 2012, pp. 113–
131.

[22] J. Price and S. Mcintosh-Smith. “Oclgrind: An Exten-
sible OpenCL Device Simulator”. In: IWOCL. ACM,
2015.

[23] T. Sorensen and A. Donaldson. “Exposing Errors Re-
lated to Weak Memory in GPU Applications”. In: PLDI.
2016.

[24] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and
W. Xu. “Are You Talking to a Machine? Dataset and
Methods for Multilingual Image Question Answering”.
In: arXiv:1505.05612 (2015).

[25] R. Zhang, P. Isola, and A. A. Efros. “Colorful Image
Colorization”. In: arXiv:1603.08511 (2016).

[26] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. “Show
and Tell: A Neural Image Caption Generator”. In:
CVPR (2015).

[27] C. Lidbury, A. Lascu, N. Chong, and A. Donald-
son. “Many-Core Compiler Fuzzing”. In: PLDI. 2015,
pp. 65–76.

[28] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R.
Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Frederick-
son, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. “The NAS Parallel Bench-
marks”. In: IJHPCA 5.3 (1991), pp. 63–73.

[29] S. Seo, G. Jo, and J. Lee. “Performance Characteriza-
tion of the NAS Parallel Benchmarks in OpenCL”. In:
IISWC. IEEE, 2011.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S. H. Lee, and K. Skadron. “Rodinia: A Benchmark
Suite for Heterogeneous Computing”. In: IISWC. IEEE,
Oct. 2009.

[31] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L.
Chang, N. Anssari, G. D. Liu, and W. W. Hwu. “Par-
boil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing”. In: Center for
Reliable and High-Performance Computing (2012).

[32] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula,
and J. Cavazos. “Auto-tuning a High-Level Language
Targeted to GPU Codes”. In: InPar. 2012.

[33] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. “The
Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite”. In: GPGPU. ACM, 2010.

96

[34] A. Chiu, J. Garvey, and T. S. Abdelrahman. “Genesis: A
Language for Generating Synthetic Training Programs
for Machine Learning”. In: CF. ACM, 2015, p. 8.

[35] J. D. Garvey and T. S. Abdelrahman. “Automatic Per-
formance Tuning of Stencil Computations on GPUs”.
In: ICPP (2015).

[36] C. Cummins, P. Petoumenos, M. Steuwer, and H.
Leather. “Autotuning OpenCL Workgroup Size for
Stencil Patterns”. In: ADAPT. 2016.

[37] X. Yang, Y. Chen, E. Eide, and J. Regehr. “Finding and
Understanding Bugs in C Compilers”. In: PLDI. 2011.

[38] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. “Coverage-
Directed Differential Testing of JVM Implementations”.
In: PLDI. 2016.

[39] Y. Voronenko, F. De Mesmay, and M. Püschel. “Com-
puter Generation of General Size Linear Transform
Libraries”. In: CGO. IEEE, 2009, pp. 102–113.

[40] C. Smith. “MapReduce Program Synthesis”. In: PLDI.
2016.

[41] C. Loncaric, T. Emina, and M. D. Ernst. “Fast Synthesis
of Fast Collections”. In: PLDI. 2016.

[42] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus.
“Learning Simple Algorithms from Examples”. In:
ICML. 2016.

[43] S. Gulwani. “Automating string processing in spread-
sheets using input-output examples”. In: POPL. 2011.

[44] S. Gulwani, V. A. Korthikanti, and A. Tiwari. “Synthe-
sizing geometry constructions”. In: PLDI. 2011.

[45] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton.
“Learning Natural Coding Conventions”. In: FSE. 2014,
pp. 281–293.

[46] Veselin Raychev, Martin Vechev, and Andreas Krause.
“Predicting Program Properties from “Big Code””. In:
POPL. 2015.

[47] M. White, C. Vendome, M. Linares-Vasquez, and D.
Poshyvanyk. “Toward Deep Learning Software Reposi-
tories”. In: MSR. 2015.

[48] E. Kalliamvakou, L. Singer, G. Gousios, D. M. German,
K. Blincoe, and D. Damian. “The Promises and Perils
of Mining GitHub”. In: MSR. 2009.

[49] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Car-
roll. “Exploring the Ecosystem of Software Develop-
ers on GitHub and Other Platforms”. In: CSCW. 2014,
pp. 265–268.

[50] E. Guzman, D. Azócar, and Y. Li. “Sentiment Analysis
of Commit Comments in GitHub: an Empirical Study”.
In: MSR. 2014, pp. 352–355.

[51] R. Baishakhi, D. Posnett, V. Filkov, and P. Devanbu.
“A Large Scale Study of Programming Languages and
Code Quality in Github”. In: FSE. 2014.

[52] B. Vasilescu, V. Filkov, and A. Serebrenik. “Percep-
tions of Diversity on GitHub: A User Survey”. In:
Chase (2015).

[53] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API
Learning”. In: arXiv:1605.08535 (2016).

[54] M. Allamanis, H. Peng, and C. Sutton. “A Convolu-
tional Attention Network for Extreme Summarization
of Source Code”. In: arXiv:1602.03001 (2016).

[55] E. Wong, J. Yang, and L. Tan. “AutoComment: Mining
Question and Answer Sites for Automatic Comment
Generation”. In: ASE. IEEE, 2013, pp. 562–567.

[56] V. Raychev, M. Vechev, and E. Yahav. “Code Com-
pletion with Statistical Language Models”. In: PLDI.
2014.

97

A. Artifact description
A.1 Abstract
Our research artifact consists of interactive Jupyter notebooks.
For your convenience, we provide two methods of validating
our results: an ‘AE’ notebook which validates the main exper-
iments of the paper, and a comprehensive ‘Paper’ notebook
which replicates every experiment of the paper, including
additional analysis. The most convenient method to evaluate
our results is to access our pre-configured live server:

http://[redacted]:8888/notebooks/AE.ipynb

using the password [redacted], and to follow the instruc-
tions contained within.

A.2 Description

A.2.1 Check-list (Artifact Meta Information)
• Run-time environment: A web browser.

• Output: OpenCL code, runtimes, figures and tables from the
paper.

• Experiment workflow: Run (or install locally) Jupyter note-
books; interact with and observe results.

• Experiment customization: Edit code in Jupyter notebook; full
API and CLI for CLgen.

• Publicly available?: Yes, code and data. See:
http://chriscummins.cc/cgo17/

A.2.2 How Delivered
Jupyter notebooks which contain an annotated version of this
paper, interleaved with the code necessary to replicate results.
We provide three options to run the Jupyter notebooks:

1. Remote access to the notebook running on our pre-
configured experimental platform.

2. Download our pre-packaged VirtualBox image with
Jupyter notebook installed.

3. Install the project locally on your own machine.

A.3 Installation
Access the Jupyter notebooks using one of the three methods
we provide. Once accessed, proceed to Section A.4.

A.3.1 Remote Access
The Jupyter notebooks are available at:

http://[redacted]:8888, password [redacted].

A dashboard showing server load is available at:
http://[redacted]:19999

High system load may lead to inconsistent performance
results; this may occur if multiple reviewers are accessing the
server simultaneously.

A.3.2 Virtual Machine
Copy our pre-configured 5.21 GB VirtualBox image using:

$ scp cgo@[redacted]:vm.ova ~
Password: [redacted]

Install the virtual machine using VirtualBox’s “Import Appli-
ance” command:

The image was prepared using VirtualBox 5.1.8. It has the
following configuration: Ubuntu 16.04, 4 GB RAM, 10 GB
hard drive, bridged network adapter with DHCP, US keyboard
layout, GMT timezone.

Start the machine and log in using username and password
cgo. Once at the shell, run launch. This will start the Jupyter
notebook server and print its address. You can access the
notebooks at this address using the browser of the host device.
Please note that the VirtualBox image does not have OpenCL,
so new runtimes cannot be generated.

A.3.3 Local Install
See http://chriscummins.cc/cgo17/ for instructions.
Note that we only support Ubuntu 16.04 or OS X, and sudo
privileges are required to install the necessary requirements.
Other Linux distributions may work but will require extra
steps to install the correct package versions.

98

A.4 Experiment Workflow
1. Access the Jupyter notebook server using one of the three

options described in Section A.3.

2. From the Jupyter server page, tick the checkbox next to
one of the two notebooks: AE.ipynb for minimal arti-
fact reproduction or Paper.ipynb for a comprehensive
interactive paper.

3. Click the button “Duplicate”.

4. Click on the name of the newly created copy, e.g.
Paper-Copy1.ipynb or AE-Copy3.ipynb.

5. Repeatedly press the play button (tooltip is “run cell, select
below”) to step through each cell of the notebook.
OR select “Kernel” > “Restart & Run All” from the menu
to run all of the cells in order.

A.5 Evaluation and Expected Result
Each code cell within the Jupyter notebook generates an
output. Expected results are described in text cells.

We include both the code necessary to evaluate the data
used in the paper, and the code necessary to generate and
evaluate new data. For example, we include the large neural
network trained on all of the OpenCL on GitHub (which took
3 weeks to train), along with a small dataset to train a new
one.

A.6 Experiment Customization
The experiments are fully customizable. The Jupyter note-
book can be edited “on the fly”. Simply type your changes
into the cells and re-run them. For example, in Table 1 of the
Paper.ipyn notebook we cross-validate the performance of
predictive models on an AMD GPU:

To replicate this experiment using the NVIDIA GPU, change
the first line of the appropriate code cell to read data =
nvidia_benchmarks and re-run the cell:

Note that some of the cells depend on the values of prior cells
and must be executed in sequence.

CLgen has a documented API and command line interface.
You can create new corpuses, train new networks, sample
kernels, etc.

A.7 Notes
For more information about CLgen, visit:

http://chriscummins.cc/clgen
For more information about Artifact Evaluation, visit:
http://ctuning.org/ae/submission-20161020.html

99

