On perfect powers that are sums of cubes of a seven term arithmetic progression

DOI: 10.1016/j.jnt.2020.04.020

Document Version
Accepted author manuscript

Citation for published version (APA):

Published in:
Journal of Number Theory

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
ON PERFECT POWERS THAT ARE SUMS OF CUBES OF A SEVEN TERM ARITHMETIC PROGRESSION

ALEJANDRO ARGÁEZ-GARCÍA AND VANDITA PATEL

Abstract. We prove that the equation $(x - 3r)^3 + (x - 2r)^3 + (x - r)^3 + x^3 + (x + r)^3 + (x + 2r)^3 + (x + 3r)^3 = y^p$ only has solutions which satisfy $xy = 0$ for $1 \leq r \leq 10^6$ and $p \geq 5$ prime. This article complements the work on the equations $(x - r)^3 + x^3 + (x + r)^3 = y^p$ in [2] and $(x - 2r)^3 + (x - r)^3 + x^3 + (x + r)^3 + (x + 2r)^3 = y^p$ in [1]. The methodology in this paper makes use of the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier for a complete resolution of the Diophantine equation.

1. Introduction

Finding perfect powers that are sums of terms in an arithmetic progression has received much interest lately; recent contributions can be found in [1], [2], [3], [4], [5], [6], [9], [10], [14], [15], [17], [18], [19], [21], [23], [24], [26], [27]. This paper aims to demonstrate an application of Theorem 1 in [16] to the problem of finding perfect powers in sums of like powers, thus adding to the diverse range of methodologies currently being used to tackle such problems.

In this paper, we prove the following:

Theorem 1.1. Let $p \geq 5$ be a prime. The equation

$$(x - 3r)^3 + (x - 2r)^3 + (x - r)^3 + x^3 + (x + r)^3 + (x + 2r)^3 + (x + 3r)^3 = y^p$$

with $x, r, y, p \in \mathbb{Z}$, $\gcd(x, r) = 1$ and $0 < r \leq 10^6$ only has solutions which satisfy $xy = 0$.

The restriction $\gcd(x, r) = 1$ is natural one, for otherwise it is easy to construct artificial solutions by scaling.

This paper follows ideas presented in [14], [5], [2] and [1], to find perfect powers that are sums of terms in an arithmetic progression, whereby the main techniques used to resolve such equations include a result of Mignotte based on linear form in logarithms [12], the method of Chabauty ([20, 22, 11]), the theorem due to Bilu, Hanrot and Voutier on primitive divisors ([7]), as well as various elementary techniques. The novel approach in this paper is that we are able to apply a computationally efficient technique using Lehmer pairs and sequences due to recent work by the second author [16], thus leading to a full resolution of (1) for $1 \leq r \leq 10^6$ and $p \geq 5$ a prime. We note here that the approaches taken in [2, 1] are not sufficient to resolve these cases, as the Thue equations have large coefficients and/or
large degree. Similarly, the approach taken in [16] is insufficient by itself. A full resolution of this problem requires a combination of techniques from [2, 1] and [16].

Acknowledgement. We would like to thank the referee for a careful reading of the paper and for suggesting several improvements.

2. Background

Here, we record some essential theorems and lemmas which are necessary to carry out the computations in section 4 in order to prove Theorem 1.1. We emphasise that there is nothing new in this section, and we briefly outline key results and techniques here. Full proofs can be found in [14, 5, 2].

We first apply a descent to equation (1) in Section 3. We are left with equations of the form:

\[ aw^p_2 - bw_1^{2p} = cr^2 \]

where \( p \) is an odd prime and \( a, b, c \) are positive integers satisfying \( \gcd(a, b, c) = 1 \).

Now, we state a theorem due to Mignotte [12], which is essential in providing an upper bound for our prime exponent \( p \), thus enabling us to perform a finite computation.

**Theorem 2.1.** (Mignotte) Assume that the exponential Diophantine inequality

\[ |ax^n - by^n| \leq c, \quad \text{with } a, b, c \in \mathbb{Z}_{\geq 0} \text{ and } a \neq b \]

has a solution in strictly positive integers \( x \) and \( y \) with \( \max\{x, y\} > 1 \). Let \( A = \max\{a, b, 3\} \). Then

\[ n \leq \max\left\{3 \log(1.5 | c/b |), \frac{7400 \log A}{\log (1 + \log A/ | \log(a/b) |)} \right\}. \]

2.1. Criteria for eliminating equations of signature \((p, 2p, 2)\). Steps to rule out (2) having a nontrivial solution for a fixed prime \( p \geq 5 \) was previously presented in [14, 5, 2]. We start with the following simple yet effective lemma, inspired from the work of Sophie Germain (see [14] for more history and context around the work of Sophie Germain on Fermat’s Last Theorem) that provides a computationally efficient criteria to check in order to deduce the nonexistence of solutions. In the majority of cases, this lemma is highly successful in deducing the nonexistence of solutions.

**Lemma 2.2.** Let \( p \geq 3 \) be a prime. Let \( a, b \) and \( c \) be positive integers such that \( \gcd(a, b, c) = 1 \). Let \( q = 2kp + 1 \) be a prime that does not divide \( a \). Define

\[ \mu(p, q) = \{ \eta^{2p} : \eta \in \mathbb{F}_q \} = \{0\} \cup \{ \zeta \in \mathbb{F}_q^* : \zeta^k = 1 \} \]

and

\[ B(p, q) = \{ \zeta \in \mu(p, q) : ((b\zeta + c)/a)^{2k} \in \{0, 1\} \}. \]

If \( B(p, q) = \emptyset \), then equation (2) does not have integral solutions.
2.2. Local Solubility. In this section, we outline a classical local solubility method, which when applied, can conclude the nonexistence of solutions for a particular tuple \((a,b,c,p)\) in equation (2).

Recall the condition \(\gcd(a,b,c) = 1\) in (2). Let \(g = \operatorname{Rad}(\gcd(a,c))\) and suppose that \(g > 1\). Then \(g \mid w_1\), and we can write \(w_1 = gw'_1\). Thus
\[
aw'^{2p}_2 - bg^{2p}w'^{2p}_1 = c.
\]
Removing a factor of \(g\) from the coefficients, we obtain
\[
a'w'^{2p}_2 - b'w'^{2p}_1 = c',
\]
where \(a' = a/g\) and \(c' = c/g < c\). Similarly, if \(h = \gcd(b,c) > 1\), we obtain
\[
a'w'^{2p}_2 - b'w'^{2p}_1 = c',
\]
where \(c' = c/h < c\). Applying these operations repeatedly, we arrive at an equation of the form
\[
A\rho^{2p} - B\sigma^{2p} = C
\]
where \(A, B, C\) are now pairwise coprime. A necessary condition for the existence of solutions is that for any odd prime \(q\mid A\), the residue \(-BC\) modulo \(q\) is a square.

Besides this basic test, we also check for local solubility at the primes dividing \(A, B, C\), and all primes \(q \leq 19\).

2.3. Descent. If local techniques previously presented fail to rule out solutions to equation (2) for particular coefficients and exponent \((a,b,c,p)\) then we may perform a further descent to rule out solutions. With \(A, B, C\) as in (4) we let
\[
B' = \prod_{\text{ord}_q(B) \text{ is odd}} q.
\]
Thus \(BB' = v^2\). Write \(AB' = u\) and \(CB' = mn^2\) with \(m\) squarefree. Rewrite (4) as
\[
(v\sigma^p + n\sqrt{m})(v\sigma^p - n\sqrt{m}) = u\rho^p.
\]
Let \(K = \mathbb{Q}(-\sqrt{m})\) and \(\mathcal{O}\) be its ring of integers. Let \(\mathfrak{S}\) contain the prime ideals of \(\mathcal{O}\) that divide \(u\) or \(2n\sqrt{m}\). Clearly \((v\sigma^p + n\sqrt{m})K^{*p}\) belongs to the “\(p\)-Selmer group”
\[
K(\mathfrak{S}, p) = \{\epsilon \in K^{*}/K^{*p} : \text{ord}_P(\epsilon) \equiv 0 \mod p\} \text{ for all } P \notin \mathfrak{S}.\]
This is an \(\mathbb{F}_p\)-vector space of finite dimension which can be computed by Magma using the command \texttt{pSelmerGroup}. Let
\[
\mathcal{E} = \{\epsilon \in K(\mathfrak{S}, p) : \text{Norm(}\epsilon)/u \in \mathbb{Q}^{*p}\}.\]
It follows that
\[
v\sigma^p + n\sqrt{m} = c\eta^p,
\]
where \(\eta \in K^{*}\) and \(\epsilon \in \mathcal{E}\).

Lemma 2.3. Let \(\mathfrak{q}\) be a prime ideal of \(K\). Suppose one of the following holds:

(i) \(\text{ord}_q(v), \text{ord}_q(n\sqrt{m}), \text{ord}_q(\epsilon)\) are pairwise distinct modulo \(p\);
(ii) \(\text{ord}_q(2v), \text{ord}_q(\epsilon), \text{ord}_q(\overline{\epsilon})\) are pairwise distinct modulo \(p\);
(iii) \(\text{ord}_q(2n\sqrt{m}), \text{ord}_q(\epsilon), \text{ord}_q(\overline{\epsilon})\) are pairwise distinct modulo \(p\).

Then there is no \(\sigma \in \mathbb{Z}\) and \(\eta \in K\) satisfying (5).
Lemma 2.4. Let \( q = 2kp + 1 \) be a prime. Suppose \( q\mathcal{O} = q_1q_2 \) where \( q_1, q_2 \) are distinct, and such that \( \text{ord}_{q_j}(e) = 0 \) for \( j = 1, 2 \). Let
\[
\chi(p, q) = \{ \eta^p : \eta \in \mathbb{F}_q \}.
\]
Let
\[
C(p, q) = \{ \zeta \in \chi(p, q) : ((v\zeta + n\sqrt{-m})/e)^{2k} \equiv 0 \text{ or } 1 \mod q_j \text{ for } j = 1, 2 \}.
\]
Suppose \( C(p, q) = \emptyset \). Then there is no \( \sigma \in \mathbb{Z} \) and \( \eta \in K \) satisfying (5).

2.4. Thue equations. For the handful of remaining equations where we are unable to deduce nonexistence of solutions, we let \( \sigma = w_2 \) and \( \tau = w_1^2 \) in (2) to get:
\[
a\sigma^p - b\tau^p = cr^2
\]
For a fixed value of \( r \), we note that this is a Thue equation. We use Magma’s Thue solver [8] and PARI/GP’s \textit{thueinit}, \textit{thue} commands [13, 25], as the final test to determine whether the equation has solutions. It is important to remark that when we specifically used \textit{thueinit} and \textit{thue} the result may depend on GRH.

3. The initial descent and twelve cases

We rewrite equation (1) as \( 7x(x^2 + 12r^2) = y^p \). Since \( 7 \mid y \), we let \( y = 7w \) to obtain:
\[
x(x^2 + 12r^2) = 7^{p-1}w^p.
\]
We note that \( \gcd(x, x^2 + 12r^2) \in \{1, 2, 3, 4, 6, 12\} \) depending on whether 2, 3, 4, 6 and 12 divides \( x \) or not. This leads us to consider twelve cases. We apply a simple descent argument in each case and the results are summarised in the following table.

<table>
<thead>
<tr>
<th>Case</th>
<th>Conditions on ( x )</th>
<th>Descent equations</th>
<th>Ternary Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>( 7 \mid x ) and ( 12 \mid x )</td>
<td>( x = 7w_1^2 ) ( x^2 + 12r^2 = 7^{p-1}w_1^p )</td>
<td>( 7^{p-1}w_1^p - w_1^{2p} = 12^2 )</td>
</tr>
<tr>
<td>2</td>
<td>( 7 \mid x ) and ( 2 \mid x, 3 \mid x )</td>
<td>( x = 3w_1^2 ) ( x^2 + 12r^2 = 3 \cdot 7w_1^2 )</td>
<td>( 7^{p-1}w_2^p - 3^{2p-3}w_1^{2p} = 4^2 )</td>
</tr>
<tr>
<td>3</td>
<td>( 7 \mid x ) and ( 4 \mid x, 3 \mid x )</td>
<td>( x = 2w_1^2 ) ( x^2 + 12r^2 = 4 \cdot 7w_1^2 )</td>
<td>( 7^{p-1}w_2^p - 2^{2p-6}w_1^{2p} = 3^2 )</td>
</tr>
<tr>
<td>4</td>
<td>( 7 \mid x ) and ( 12 \mid x )</td>
<td>( x = 2w_1^2 \cdot 3w_1^2 ) ( x^2 + 12r^2 = 12 \cdot 7w_1^2 )</td>
<td>( 7^{p-1}w_2^p - 2^{2p-6} \cdot 3^{2p-3}w_1^{2p} = r^2 )</td>
</tr>
<tr>
<td>5</td>
<td>( 7 \mid x ) and ( 2 \mid x, 3, 4 \mid x )</td>
<td>( x = 2w_1^2 ) ( x^2 + 12r^2 = 2 \cdot 7w_1^2 )</td>
<td>( 7^{p-1}w_2^p - 2^{2p-3}w_1^{2p} = 6^2 )</td>
</tr>
<tr>
<td>6</td>
<td>( 7 \mid x ) and ( 6 \mid x, 4 \mid x )</td>
<td>( x = 6w_1^2 ) ( x^2 + 12r^2 = 6 \cdot 7w_1^2 )</td>
<td>( 7^{p-1}w_2^p - 6^{2p-3}w_1^{2p} = 2^2 )</td>
</tr>
<tr>
<td>7</td>
<td>( 7 \mid x ) and ( 12 \mid x )</td>
<td>( x = 7w_1^2 ) ( x^2 + 12r^2 = w_1^2 )</td>
<td>( w_2^p - 7^{p-2}w_1^{2p} = 12^2 )</td>
</tr>
<tr>
<td>8</td>
<td>( 7 \mid x ) and ( 2 \mid x, 3 \mid x )</td>
<td>( x = 3w_1^2 ) ( x^2 + 12r^2 = 3w_1^2 )</td>
<td>( w_2^p - 3^{2p-3} \cdot 7^{p-2}w_1^{2p} = 4^2 )</td>
</tr>
<tr>
<td>9</td>
<td>( 7 \mid x ) and ( 4 \mid x, 3 \mid x )</td>
<td>( x = 2w_1^2 \cdot 7w_1^2 ) ( x^2 + 12r^2 = 4w_1^2 )</td>
<td>( w_2^p - 2^{2p-6} \cdot 7^{p-2}w_1^{2p} = 3^2 )</td>
</tr>
<tr>
<td>10</td>
<td>( 7 \mid x ) and ( 12 \mid x )</td>
<td>( x = 2w_1^2 \cdot 3w_1^2 ) ( x^2 + 12r^2 = 12w_1^2 )</td>
<td>( w_2^p - 2^{2p-6} \cdot 3^{2p-3} \cdot 7^{p-2}w_1^{2p} = r^2 )</td>
</tr>
<tr>
<td>11</td>
<td>( 7 \mid x ) and ( 2 \mid x, 3, 4 \mid x )</td>
<td>( x = 2w_1^2 ) ( x^2 + 12r^2 = 2w_1^2 )</td>
<td>( w_2^p - 2^{2p-3} \cdot 7^{p-2}w_1^{2p} = 6^2 )</td>
</tr>
<tr>
<td>12</td>
<td>( 7 \mid x ) and ( 6 \mid x, 4 \mid x )</td>
<td>( x = 6w_1^2 ) ( x^2 + 12r^2 = 6w_1^2 )</td>
<td>( w_2^p - 6^{2p-3} \cdot 7^{p-2}w_1^{2p} = 2^2 )</td>
</tr>
</tbody>
</table>
We note that cases 5, 6, 11 and 12 all lead to an immediate contradiction; by checking the valuation of 2 on both sides of the ternary equation and noting the fact that \( p \geq 5 \), we contradict our assumption of \( \gcd(x, r) = 1 \).

4. Solving cases 1–4

In this section, we apply the Theorems and Lemmas of Section 2 which fully resolve the descent cases 1–4 of equation (1) in order to prove Theorem 1.1.

4.1. Case 1. For \( p = 5 \) we have \( 7^4w_2^5 - w_1^{10} = 3(2r)^2 \). Letting \( X = w_2/w_1^2 \) and \( Y = 6r/w_1^3 \), we obtain the hyperelliptic curve

\[
Y^2 = 3 \cdot 7^4X^5 - 3
\]

whose Jacobian has rank 1. The Chabauty implementation give us \( C(\mathbb{Q}) = \{\infty\} \).

By Theorem 2.1, for \( |r| \leq 4.9 \times 10^{1502} \), we can bound \( p \leq 20775 \). Thus, for \( 7 \leq p \leq 20775 \) and \( 1 \leq r \leq 10^6 \) we have the following table.

<table>
<thead>
<tr>
<th>Exponent p</th>
<th>Number of eqns surviving Lemma 2.2</th>
<th>Number of eqns surviving local solubility tests</th>
<th>Number of eqns surviving further descent</th>
<th>Thue eqns not solved by Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>37679</td>
<td>4077</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9930</td>
<td>5375</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>3298</td>
<td>1405</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>461</td>
<td>253</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1507</td>
<td>936</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>29</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37 ≤ p ≤ 20775</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2. Case 2. For \( p = 5 \) we have \( 7^4w_2^5 - 3^7w_1^{10} = (2r)^2 \). Letting \( X = w_2/w_1^2 \) and \( Y = 2r/w_1^3 \) we obtain the hyperelliptic curve

\[
Y^2 = 7^4X^5 - 3^7
\]

whose Jacobian has rank 2, and we are unable to use Chabauty techniques.

By Theorem 2.1, for \( |r| \leq 1.9 \times 10^{1427} \), we can bound \( p \leq 19734 \). Thus, for \( 5 \leq p \leq 19734 \) and \( 1 \leq r \leq 10^6 \) we have the following table.

<table>
<thead>
<tr>
<th>Exponent p</th>
<th>Number of eqns surviving Lemma 2.2</th>
<th>Number of eqns surviving local solubility tests</th>
<th>Number of eqns surviving further descent</th>
<th>Thue eqns not solved by Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>102681</td>
<td>38771</td>
<td>819</td>
<td>819</td>
</tr>
<tr>
<td>7</td>
<td>24526</td>
<td>2400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9159</td>
<td>4629</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>3439</td>
<td>1804</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>3136</td>
<td>1012</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37 ≤ p ≤ 19734</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Using PARI/GP, we resolved the 819 equations using the commands `thueinit` and `thue`. No integer solutions were found.

### 4.3. Case 3.

For \( p = 5 \) we have \( 7^6 w_2^6 - 2^4 w_1^{10} = 3 r^2 \). Letting \( X = w_2/w_1^2 \) and \( Y = 3r/w_1^5 \) we obtain the hyperelliptic curve
\[
Y^2 = 3 \cdot 7^6 X^5 - 2^4 \cdot 3
\]
whose Jacobian has rank 0. Applying Chabauty gives \( C(\mathbb{Q}) = \{\infty\} \).

By Theorem 2.1, for \( |r| \leq 1.5 \times 10^{2105} \), we can bound \( p \leq 29101 \). Thus, for \( 7 \leq p \leq 29101 \) and \( 1 \leq r \leq 10^6 \) we have the following table.

<table>
<thead>
<tr>
<th>Exponent p</th>
<th>Number of eqns surviving Lemma 2.2</th>
<th>Number of eqns surviving local solubility tests</th>
<th>Number of eqns surviving further descent</th>
<th>Thue eqns not solved by Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>29213</td>
<td>2969</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>6484</td>
<td>2332</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1715</td>
<td>786</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>369</td>
<td>206</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>538</td>
<td>262</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( 37 \leq p \leq 29101 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### 4.4. Case 4.

For \( p = 5 \) we have \( 7^6 w_2^6 - 2^4 \cdot 3^7 w_1^{10} = r^2 \). Letting \( X = w_2/w_1^2 \) and \( Y = r/w_1^5 \) we obtain the hyperelliptic curve
\[
Y^2 = 7^6 X^5 - 2^4 \cdot 3^7
\]
whose Jacobian has rank 1. The Chabauty implementation gives \( C(\mathbb{Q}) = \{\infty\} \).

By Theorem 2.1, for \( |r| \leq 1.37 \times 10^{4664} \), we can bound \( p \leq 64461 \). Hence, for \( 7 \leq p \leq 64461 \) and \( 1 \leq r \leq 10^6 \) we have the following table.

<table>
<thead>
<tr>
<th>Exponent p</th>
<th>Number of eqns surviving Lemma 2.2</th>
<th>Number of eqns surviving local solubility tests</th>
<th>Number of eqns surviving further descent</th>
<th>Thue eqns not solved by Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>18908</td>
<td>1940</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1384</td>
<td>434</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>479</td>
<td>177</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>366</td>
<td>173</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>365</td>
<td>184</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>14</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( 41 \leq p \leq 64461 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### 5. Solving cases 7–10

For cases 7–10, we rely on techniques developed in [16]. Using theorems and lemmas of Section 2 lead to resolving Thue equations with extremely large coefficients.
and/or high degree. In order to make computations tractable, we now outline an alternative approach to deal with cases 7–10.

5.1. **Primitive prime divisors of Lehmer sequences.**

**Theorem 5.1.** Let $C_1 \geq 1$ be a squarefree integer and $C_2$ a positive integer. Write $C_1 C_2 = cd^2$ where $c$ is squarefree. We assume that $C_1 C_2 \not\equiv 7 \pmod{8}$. Let $p$ be a prime for which

\[ C_1 x^2 + C_2 = y^p, \quad x, \ y \in \mathbb{Z}^+, \quad \gcd(C_1 x^2, C_2, y^p) = 1, \]

has a solution $(x, y)$. Then either,

(i) $p \leq 13$, or

(ii) $p$ divides the class number of $\mathbb{Q}(\sqrt{-c})$, or

(iii) $p | \left( q - \left( \frac{-c}{q} \right) \right)$, where $q$ is some prime $q \mid d$ and $q \not\equiv 2c$.

We follow Case I in Section 6 of [16] which outlines effective methods to solve equation (6) for fixed values of $C_1, C_2, p$. Theorem 5.1 is crucial to gain good bounds for $p$. For the convenience of the reader, we shall reproduce the key computational steps used to prove Theorem 1.1 here. For the full exposition and intricate details of computations, see [16].

Let $C_1, C_2$ be positive integers, with $C_1$ squarefree. Let $\gcd(C_1, C_2) = 1$ and suppose that $C_1 C_2 \not\equiv 7 \pmod{8}$. We write $C_1 C_2 = cd^2$ where $c, d$ are positive integers and $c$ is squarefree. Theorem 5.1 gives a list of possible odd prime exponents $p$ for which (6) might have solutions.

Let $K = \mathbb{Q}(\sqrt{-3})$ be a number field with $\mathcal{O}_K$ its ring of integers. We note here that $c = 3$ in the notation of Theorem 5.1. Furthermore, we note that the class number of $K$ is 1. Let $p \geq 5$ be a prime. Let $\gamma \in \mathcal{O}_K$ such that $\gamma = a + b\sqrt{-3}$ for some integers $a, b$, and let $\bar{\gamma}$ be its conjugate.

Fix a value of $b$ dividing $d$. To determine the solutions we merely have to determine the possible values of $a$ corresponding to each $b \mid d$. We write an explicit polynomial $g_b \in \mathbb{Z}[X]$ whose integer roots contain all the possible values of $a$ corresponding to $b$.

Fix $s \mid d$. Since $-3 \not\equiv 1 \pmod{4}$, we let

\[ g_b(X) = \frac{(X + b\sqrt{-3})^p - (X - b\sqrt{-3})^p}{2b\sqrt{3}} - \frac{d \cdot C_1^{(p-1)/2}}{b}. \]

Clearly $g_b \in \mathbb{Z}[X]$. Moreover,

\[ g_b(a) = \frac{\gamma^p - \sigma p}{\gamma - \bar{\gamma}} - \frac{d \cdot C_1^{(p-1)/2}}{b} = 0. \]

Finding the integer roots $g_b(X)$ gives associated values of $a$ to the specified $b$, hence $\gamma$ is known. Since $y = \gamma \bar{\gamma}/C_1$, hence $y = (a^2 + 3b^2)/C_1$, the possible values for $y$ are now easily known. Using equation (6), we finally determine possible values of $x$, hence all possible solutions to equation (6).

5.2. **Case 7.** One of the descent equations is:

\[ x^2 + 12r^2 = w_2^p \]

We let $C_1 = 1, C_2 = 12r^2$ and we see that $C_1 C_2 \equiv 0, 3, 4 \pmod{8} \not\equiv 7 \pmod{8}$. Thus if (8) has a solution, then we have $5 \leq p \leq 13$ or $p \mid \left( q - \left( \frac{-3}{q} \right) \right)$, where $q$ is
some prime $q \mid r$ and $q \nmid 6$. For fixed values of $1 \leq r \leq 10^6$ (hence fixed $C_1$, $C_2$, $p$), finding the roots of the polynomial (7), leads to solutions $(x, w_2, p)$. Thus to obtain solutions $(x, y, p)$ to the original equation, we simply note that $y = 7w_1w_2$ where $w_1$ is easily deduced from the descent equation $x = 7^{p−1}w_1^p$ in Section 3. The computation yielded no such solutions.

5.3. **Case 8.** One of the descent equations is:

$$x^2 + 12r^2 = 3w_2^p.$$ 

We let $x = 3X$ and obtain

$$3X^2 + 4r^2 = w_2^p.$$ 

We let $C_1 = 3$, $C_2 = 4r^2$ and we see that $C_1C_2 \equiv 0, 3, 4 \pmod{8} \neq 7 \pmod{8}$. Thus if (9) has a solution, then we have $5 \leq p \leq 13$ or $p \mid \left(q - \left(\frac{-3}{q}\right)\right)$, where $q$ is some prime $q \mid r$ and $q \nmid 6$. For fixed values of $1 \leq r \leq 10^6$ (hence fixed $C_1$, $C_2$, $p$), finding the roots of the polynomial (7), leads to solutions $(X, w_2, p)$. Thus to obtain solutions $(x, y, p)$ to the original equation, we simply note that $x = 3X$ and $y = 7w_1w_2$ where $w_1$ is easily deduced from the descent equation $x = 3^{p−1}7^{p−1}w_1^p$ in Section 3. The computation yielded no such solutions.

5.4. **Case 9.** One of the descent equations is:

$$x^2 + 12r^2 = 4w_2^p.$$ 

We let $x = 2X$ and obtain

$$X^2 + 3r^2 = w_2^p.$$ 

We let $C_1 = 1$, $C_2 = 3r^2$ and we see that $C_1C_2 \equiv 0, 3, 4 \pmod{8} \neq 7 \pmod{8}$. Thus if (10) has a solution, then we have $5 \leq p \leq 13$ or $p \mid \left(q - \left(\frac{-3}{q}\right)\right)$, where $q$ is some prime $q \mid r$ and $q \nmid 6$. For fixed values of $1 \leq r \leq 10^6$ (hence fixed $C_1$, $C_2$, $p$), finding the roots of the polynomial (7), leads to solutions $(X, w_2, p)$. Thus to obtain solutions $(x, y, p)$ to the original equation, we simply note that $x = 2X$ and $y = 7w_1w_2$ where $w_1$ is easily deduced from the descent equation $x = 2^{p−2}7^{p−1}w_1^p$ in Section 3. The computation yielded no such solutions.

5.5. **Case 10.** One of the descent equations is:

$$x^2 + 12r^2 = 12w_2^p.$$ 

We let $x = 6X$ and obtain

$$3X^2 + r^2 = w_2^p.$$ 

We let $C_1 = 3$, $C_2 = r^2$ and we see that $C_1C_2 \equiv 0, 3, 4 \pmod{8} \neq 7 \pmod{8}$. Thus if (11) has a solution, then we have $5 \leq p \leq 13$ or $p \mid \left(q - \left(\frac{-3}{q}\right)\right)$, where $q$ is some prime $q \mid r$ and $q \nmid 6$. For fixed values of $1 \leq r \leq 10^6$ (hence fixed $C_1$, $C_2$, $p$), finding the roots of the polynomial (7), leads to solutions $(X, w_2, p)$. Thus to obtain solutions $(x, y, p)$ to the original equation, we simply note that $x = 6X$ and $y = 7w_1w_2$ where $w_1$ is easily deduced from the descent equation $x = 2^{p−2}3^{p−1}7^{p−1}w_1^p$ in Section 3. The computation yielded no such solutions.
References

[1] A. Argáez-García, On perfect powers that are sums of cubes of a five term arithmetic progression, J. Number Theory, 201 (2019), 460–472. (document), 1, 1
[2] A. Argáez-García and V. Patel, Perfect powers that are sums of cubes of a three term arithmetic progression, J. Combinatorics and Number Theory, 10(3) (2019), 147–160. (document), 1, 1, 2, 2.1
[3] M. A. Bennett, K. Györy and Á. Pintér, On the Diophantine equation $1^k + 2^k + \cdots + x^k = y^n$, Compos. Math. 140 (2004), no. 6, 1417–1431. 1
[5] M. A. Bennett, V. Patel and S. Siksek, Perfect powers that are sums of consecutive cubes, Mathematika, 63 (2017), no. 1, 230–249. 1, 1, 2, 2.1
[6] A. Bérczes, I. Pink, G. Savaş, G. Soydan, On the Diophantine equation $(x + 1)^k + (x + 2)^k + \cdots + (2x)^k = y^n$, J. Number Theory 183(2018), 326–351. 1
[9] A. Koutsianas, Perfect powers that are sums of squares in a three term arithmetic progression, J. Number Theory 142(2014), 93–100. 2.4
[14] V. Patel and S. Siksek, On powers that are sums of consecutive like powers, Research in Number Theory 3 (2017), 27. 1
[17] V. Patel, Perfect powers that are sums of consecutive like powers, Doctoral thesis (2017). 1, 1, 2, 2.1
[20] Z. Zhang, On the Diophantine equation $(x + 1)^k + (x + 2)^k + \cdots + (x + d)^k = y^n$, Publ. Math. Debrecen 91 (2017), 369-382. 1
[22] Z. Zhang, On the Diophantine equation $(x - d)^4 + x^4 + (x + d)^4 = y^n$, Int. J. Number Theory published online (2017.), 93–100. 1
[23] Z. Zhang, On the Diophantine equation $(x + 1)^2 + (x + 2)^2 + \cdots + (x + d)^2 = y^n$, Publ. Math. Debrecen 85 (2014), 93–100. 2.4