Amyloid-PET Positive Patient with bvFTD: Wrong Diagnosis, False Positive Scan, or Co-pathology?

DOI:
10.1212/CPJ.0000000000001049

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Neurology: Clinical Practice

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date:14. Oct. 2023
Amyloid-PET positive patient with bvFTD: wrong diagnosis, false positive scan, or co-pathology?

Tobias Langheinrich MD1,2, Christopher Kobylecki PhD2,3, Matthew Jones MD1,2, Jennifer C Thompson PhD1,2, Julie S Snowden PhD1,2, Rainer Hinz PhD2, Stuart Pickering-Brown PhD2, David Mann PhD2, Federico Roncaroli PhD2, Karl Herholz MD2, Alex Gerhard MD2,4

1Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
2Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford, UK.
3Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
4Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Germany

Submission Type: Clinical/Scientific Note

Title character count: 95
Number of Tables: 1
Number of Figures: 1
Word Count of Paper: 822
Number of references: 8

Corresponding Author:

Dr Tobias Langheinrich
Cerebral Function Unit
Manchester Centre for Clinical Neurosciences
Salford Royal NHS Foundation Trust
Salford M6 8HD
Email: tobias.langheinrich@manchester.ac.uk
Christopher Kobylecki Christopher.Kobylecki@manchester.nhs.uk
Matthew Jones Matthew.Jones@manchester.nhs.uk
Jennifer Thompson Jennifer.Thompson@manchester.ac.uk
Julie Snowden Julie.Snowden@manchester.ac.uk
Rainer Hinz Rainer.Hinz@manchester.ac.uk
Stuart Pickering-Brown SPB@manchester.ac.uk
David Mann davidmann1948@hotmail.com
Federico Roncaroli Federico.Roncaroli@manchester.ac.uk
Karl Herholz Karl.Herholz@manchester.ac.uk
Alex Gerhard Alex.Gerhard@manchester.ac.uk

Financial disclosures:
Dr Langheinrich reports no disclosures.
Dr Kobylecki reports no disclosures.
Dr Jones reports no disclosures.
Dr Thompson reports no disclosures.
Dr Snowden reports no disclosures.
Dr Hinz reports no disclosures.
Dr Pickering-Brown reports no disclosures.
Dr Mann reports no disclosures.
Dr Roncaroli reports no disclosures.
Dr Herholz reports no disclosures.
Dr Gerhard reports no disclosures.
Practical Implications

“Positive amyloid PET does not exclude FTD pathology in the diagnostic workup of dementia patients”
CASE REPORT

A 65-year-old man was referred to a local memory clinic with memory complaints but clinical assessment found no abnormalities. When he presented two years later to our clinic social disinhibition, reduced empathy, poor judgment and hoarding had become obvious. He showed no insight. He had ischemic heart disease and was on preventive treatment. His mother died aged 97 suffering from dementia. Neurological examination was normal. During neuropsychological examination he exhibited verbal and behavioral disinhibition, inattention, emotional blunting and unconcern. He had prominent difficulties in abstraction, set shifting and sequencing with significant impact on memory tests (table1). A clinical diagnosis of behavioral variant FTD (bvFTD) was made. MRI (figure A) showed right more than left-sided temporal atrophy, bilateral frontal and milder parietal atrophy. Fluorodeoxyglucose (FDG)-PET (figure B) demonstrated fronto-temporal hypometabolism. Metabolism in the posterior cingulate was normal. He was homozygous for the APOE ε4 allele and negative for the C9orf72 expansion and mutations in MAPT, GRN, PSEN1, and APP. [18F]-Florbetapir PET (figure C) revealed increased tracer binding in all cortical regions corresponding to a centiloid value of 74%.

Over the subsequent 3 years his behavior deteriorated (table1) and formal neuropsychological assessment was no longer possible. He became incontinent without concern, developed grasp reflexes, and parkinsonism. He died aged 74 years, 9 years after clinical onset.

The brain showed considerable atrophy, neuronal loss and gliosis in the temporal neocortex and amygdala with sparing of the hippocampus. Features were less prominent in the frontal cortex. The basal ganglia showed severe compromise of perforating arteries with calcification. The globus pallidus showed a lacunar infarct. All neocortical regions and subcortical grey matter contained diffuse subpial and perivascular amyloid plaques but fewer neuritic and cored plaques. The occipital cortex showed a few cored plaques and severe amyloid angiopathy which was mild elsewhere, affecting mostly leptomeningeal vessels. Tau-related pathology was severe in CA1 and CA2 sectors and entorhinal cortex; the neocortex only showed few pre-tangles and tangles, scattered threads and deposits in a few neuritic plaques with more prominent changes in the temporal and parietal lobes. A few tau deposits in neurons and subpial astrocytes were seen in the basal ganglia. Abnormal TDP-43 deposits consisted of neuronal cytoplasmic inclusions and dystrophic neurites (DN), which showed similar density in the hippocampus (dentate gyrus) and amygdala while DN were more prominent in the temporal neocortex. TDP-43 related pathology was noticeable but milder in the frontal neocortex (figures 1D-H).
Pathological features were in keeping with FTLD-TDP type A, Braak neurofibrillary tangle stage 2, (0-6) [1], CERAD neuritic plaque score B (sparse) [1], Thal phase 5 (Aβ plaque score 0-5) [1], Braak synuclein stage 0 and severe small vessel disease in the basal ganglia. LATE-NC stage 3 was considered in the differential diagnosis but felt to be unlikely given, the extent of TDP-43 in the temporal and frontal neocortex, mild AD changes, absence of hippocampal sclerosis and lacunar infarcts being uncommon.

DISCUSSION
As we previously reported [2], this patient presented with a clinical and neuropsychological syndrome of bvFTD, but further investigations revealed conflicting results (MRI brain and FDG-PET in support, Florbetapir-PET against). We now report autopsy findings showing co-existent TDP-43 type A and AD pathologies and cerebrovascular disease in the context of APOE ε4 homozygosity.
Amyloid-PET imaging is becoming a standard clinical investigation. Recent studies [3] document a frequent change of the clinical diagnosis when PET findings and clinical diagnosis appear to be incongruent. A diagnosis of bvFTD may be changed to AD when amyloid-PET is positive, a decision supported by cases diagnosed with bvFTD but found to have AD at post-mortem [4]. There may, however, be coexistent-pathology or the scan report could be wrong (e.g. incorrect interpretation of off-target binding [5]). Patients with genetic or autopsy proven FTD are often “amyloid-positive” in CSF or PET or show amyloid pathology at post-mortem [6]. In patients with a clinical diagnosis of FTD who are APOE ε4 carriers, amyloid-PET scan is positive in 19% at age 60 and 43% at age 80 [7].
Using an evidence-based approach [4] our patient’s probability of having AD given a positive amyloid-PET, low pre-PET clinical probability of AD, his age and APOE ε4 positivity is only 0.2. Our patient’s load of AD neuropathological change was associated in 60% of patients in the National Alzheimer’s Coordinating Center Data Set with a CDR sum of boxes score=0 but 12% had a CDR sum of boxes score>12 [1] demonstrating the variable clinico-pathological relationships. According to the Vascular cognitive impairment neuropathology guidelines [8] there was <45% predictive probability that vascular pathology contributed to his cognitive impairment given his age. Whilst the finding of TDP-43 type A pathology raises the question of LATE-NC, his clinical phenotype, age, MRI brain, FTD-PET and distribution and severity of TDP-43 pathology were in keeping with FTLD.
This case emphasizes the importance of integrating clinical evaluation, patterns of brain atrophy and FDG-PET hypometabolism, potential genetic etiologies, pre-test probability of amyloid positivity and variability of clinico-pathological relationships before final diagnosis.
Appendix 1 – Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobias Langheinrich, MD</td>
<td>Cerebral Function Unit, Manchester</td>
<td>Consultant neurologist</td>
<td>Design and conceptualization of case report, data collection and analysis, drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Dr Kobylecki, PhD</td>
<td>Manchester Centre for Clinical Neurosciences</td>
<td>Consultant neurologist</td>
<td>Acquisition and interpretation of data; drafting and revision of manuscript</td>
</tr>
<tr>
<td>Dr Jones, MD</td>
<td>Cerebral Function Unit, Manchester</td>
<td>Consultant neurologist</td>
<td>Interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Dr Thompson, PhD</td>
<td>Cerebral Function Unit, Manchester</td>
<td>Consultant neuropsychologist</td>
<td>Interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Dr Snowden, PhD</td>
<td>Cerebral Function Unit, Manchester</td>
<td>Professor of neuropsychology</td>
<td>Acquisition and interpretation of data; drafting and revision of manuscript</td>
</tr>
<tr>
<td>Dr Hinz, PhD</td>
<td>University of Manchester</td>
<td>Senior lecturer in functional imaging</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Dr Pickering-Brown, PhD</td>
<td>University of Manchester</td>
<td>Professor of neurogenetics</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
Dr Mann, PhD
University of Manchester
Professor of neuropathology
Acquisition and interpretation of data; drafting and revision of manuscript

Dr Roncaroli, PhD
University of Manchester
Clinical chair in neuropathology
Acquisition and interpretation of data; drafting and revision of manuscript

Dr Herholz, MD
University of Manchester
Professor in clinical neuroscience
Acquisition and interpretation of data; drafting and revision of manuscript

Dr Gerhard, MD
University of Duisburg- Essen, Germany
Consultant neurologist
Acquisition and interpretation of data; drafting and revision of manuscript

Acknowledgements: This case is held by The Manchester Brain Bank, which is part of the Brains for Dementia Research program, jointly funded by Alzheimer’s Research UK and Alzheimer’s Society.

We are grateful to the family for the decision to donate the patient’s brain.
References

Figure
MRI brain, FDG-PET brain, Florbetapir PET, and histological slides with amyloid, tau and TDP pathology
A: MR and PET scans were obtained 3 years after clinical diagnosis. Coronal T1 MRI (in radiological orientation) showing right more than left temporal, bilateral frontal and milder parietal atrophy. B: color coded 3-dimensional stereotactic surface projection (3D-SSP) maps of FDG-PET demonstrating fronto-temporal hypometabolism and preservation of posterior cingulate/precuneus (color bar indicating z-values of hypometabolism, top: medial projection, bottom: lateral projection; R: right hemisphere, L: left hemisphere). C: standardized uptake value ratios (SUVR) compared to cerebellum of Florbetapir PET revealing increased tracer binding in all cortical regions. D: the fusiform gyrus shows severe atrophy (haematoxylin-eosin, x20); E: Aβ peptide positive diffuse and neuritic plaques are shown in the occipital grey matter (immunoperoxidase, x20). F: neurofibrillary tangles and neuropil threads in the entorhinal cortex (immunoperoxidase, phosphorylated tau, x20). G: TDP43 inclusions are documented in the dentate gyrus of hippocampus (immunoperoxidase, x40) and H: frontal lobe (immunoperoxidase, x40).

Table
Time points in months and age of patient when neuropsychological tests were performed; raw scores and z-scores of forward and reverse digit span, MMSE, animal and FAS fluency; note decline in fluency, MMSE and reverse digit span with maintained forward digit span; ¹https://doi.org/10.4306/pi.2014.11.1.39; ²https://doi.org/10.1186/1471-2318-5-7; ³https://doi.org/10.1093/arclin/14.2.167; ⁴locally developed visual episodic memory test: mean (SD): Immediate recall: 10(0.8); Immediate recognition: 18(1); Delayed recall: 9(1.6); Delayed recognition: 18(0.7); note superior but not normal recognition performance; ⁵locally developed delayed face recall and recognition test; superior but not normal recognition; of note patient was distracted by ‘choice’ figures and made frequent references to his personal relationship to them; also patient had difficulty recognizing faces on the face identification part of the test; ⁶locally developed verbal episodic memory test; striking features of patient’s recall included misconception errors, intrusion errors, interference between the stories and a tendency to relate the story to his personal experience; note better cued than free recall; following a delay cued recall was similar; of note during the delayed performance the patient was distracted by his mobile phone, making comments about his mobile phone throughout.
<table>
<thead>
<tr>
<th>Test</th>
<th>Time point (age)</th>
<th>0 months (67)</th>
<th>14 months (68)</th>
<th>19 months (68)</th>
<th>27 months (69)</th>
<th>39 months (70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit span forward (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (z-score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f 7 (-0.23)</td>
<td>f 7 (-0.23)</td>
<td>f 6 (-0.63)</td>
<td>f 6 (-0.63)</td>
<td>f 6 (-0.63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit span reverse (r)¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (z-score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r 3 (-1.56)</td>
<td>r 4 (-0.92)</td>
<td>r 4 (-0.92)</td>
<td>r unable</td>
<td>r unable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMSE²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (z-score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/30 (-1.3)</td>
<td>27/30 (-0.8)</td>
<td>20/30 (-4.3)</td>
<td>14/30 (-7.3)</td>
<td>17/30 (-5.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category (animals) fluency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (z-score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals 14 (-0.6)</td>
<td>Animals 11 (-1.3)</td>
<td>Animals 3 (-3.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAS 21 (-1.2)</td>
<td>FAS 20 (-1.3)</td>
<td>FAS 7 (-2.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual object memory³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (z-score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate recall 7/20 (-3.8)</td>
<td>Immediate recognition 16/20 (-2)</td>
<td>Delayed recall 2/20 (-4.4)</td>
<td>Delayed recognition 15/20 (-4.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory for faces⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (median/range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed recall 1/10 (7/5-9)</td>
<td>Delayed recognition 6/10 (9/9-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Story memory⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw score (median/range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate free recall 1/10 (9/9-10)</td>
<td>Immediate cued recall 5/10 (10/9-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed free recall</td>
<td>3/10 (9/6-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed cued recall</td>
<td>4/10 (10/8-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>