
The University of Manchester Research

Multiple-Tasks on Multiple-Devices (MTMD): Exploiting
Concurrency in Heterogeneous Managed Runtimes

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Papadimitriou, M., Markou, E., Fumero Alfonso, J., Stratikopoulos, A., Blanaru, F.-G., & Kotselidis, C.-E. (in press).
Multiple-Tasks on Multiple-Devices (MTMD): Exploiting Concurrency in Heterogeneous Managed Runtimes. 125-
138. Paper presented at The 17th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE’21).
Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:13. Mar. 2024

https://research.manchester.ac.uk/en/publications/16ca5803-718c-48c4-a6ef-48d0f1d1df6f

Multiple-Tasks on Multiple-Devices (MTMD):
Exploiting Concurrency in Heterogeneous Managed

Runtimes
Michail Papadimitriou

The University of Manchester
United Kingdom

michail.papadimitriou@manchester.ac.uk

Eleni Markou
BEAT
Greece

e.markou@thebeat.co

Juan Fumero
The University of Manchester

United Kingdom
juan.fumero@manchester.ac.uk

Athanasios Stratikopoulos
The University of Manchester

United Kingdom
{fist}.{last}@manchester.ac.uk

Florin Blanaru
The University of Manchester

United Kingdom
florin.blanaru@manchester.ac.uk

Christos Kotselidis
The University of Manchester

United Kingdom
christos.kotselidis@manchester.ac.uk

Abstract
Modern commodity devices are nowadays equipped with a
plethora of heterogeneous devices serving different purposes.
Being able to exploit such heterogeneous hardware accel-
erators to their full potential is of paramount importance
in the pursuit of higher performance and energy efficiency.
Towards these objectives, the reduction of idle time of each
device as well as the concurrent program execution across
different accelerators can lead to better scalability within the
computing platform.

In this work, we propose a novel approach for enabling a
Java-based heterogeneousmanaged runtime to automatically
and efficiently deploy multiple tasks on multiple devices.
We extend TornadoVM with parallel execution of bytecode
interpreters to dynamically and concurrently manage and
execute arbitrary tasks across multiple OpenCL-compatible
devices. In addition, in order to achieve an efficient device-
task allocation, we employ a machine learning approach
with a multiple-classification architecture of Extra-Trees-
Classifiers. Our proposed solution has been evaluated over a
suite of 12 applications split into three different groups. Our
experimental results showcase performance improvements
up 83% compared to all tasks running on the single best
device, while reaching up to 91% of the oracle performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VEE ’21, April 16, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00
https://doi.org/10.1145/3453933.3454019

CCS Concepts: • Software and its engineering → Vir-
tual machines.

Keywords: JVM,HeterogeneousHardware, Bytecodes,Multi-
-threading

ACM Reference Format:
Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios
Stratikopoulos, Florin Blanaru, and Christos Kotselidis. 2021. Multi-
ple-Tasks on Multiple-Devices (MTMD): Exploiting Concurrency
in Heterogeneous Managed Runtimes. In Proceedings of the 17th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’21), April 16, 2021, Virtual, USA.ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3453933.3454019

1 Introduction
High demand for increased computational capabilities and
power efficiency has resulted in commodity devices to be
equipped with a diverse set of heterogeneous hardware.
Desktops, laptops, and smartphones have embraced hetero-
geneity throughmulti-core CPUs, energy-efficient integrated
GPUs, and powerful discrete GPUs. Consequently, the pres-
ence of such hardware has made parallel programming con-
structs, such as OpenCL [49], OneAPI [30], and CUDA [14]
the new norm. Such frameworks support asynchronous data-
driven programming models that enable both data parallel
and task parallel paradigms of computation for implement-
ing high performance parallel applications.
To ease the transition towards those programming para-

digms, a substantial amount of research has focused on mak-
ing high-level programming abstractions widely available.
For instance, TVM [10] is a flexible machine learning com-
piler framework for CPUs, GPUs and machine learning ac-
celerators, while Halide [1] is a programming language for
image processing pipelines on CPUs, GPUs, and FPGAs. In
addition, approaches like IBM’s J9 [29] with GPU support,
StreamIT [28, 50], Aparapi [4] and TornadoVM [17] allow
Java programs to execute on heterogeneous hardware. How-
ever, although the aforementioned solutions aim at closing

125

https://doi.org/10.1145/3453933.3454019
https://doi.org/10.1145/3453933.3454019

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

Kernel
Execution

Kernel
Execution

Ti
m

e

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host (CPU)

G
PU

Devices

In-order

G
PU

(a) OpenCL in-order execution

Kernel
Execution

Kernel
Execution

Ti
m

e

Out-of-order execution

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host

G
PU

Devices

Kernel
Execution

Kernel
Execution

G
PU

G
PU

G
PU

Copy-out
data

(CPU)

(b) OpenCL out-of-order execution

Ti
m

e

Kernel
Execution

Kernel
Execution

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host (CPU) (Multiple-OpenCL Devices) Devices
In-order execution

G
PU

C
PU

C
PU

IG
PU

IG
PU

G
PU

(c) OpenCL multi-devices execution

Active Host

Idle Host

Idle Device

Copy-in

 Execution

Copy-out

Idle device

Active device
Active device

Figure 1. Overview of OpenCL execution modes (Out-of-order on Single Device vs In-order on Multiple Devices)

the programmability gap, they tend to focus on single de-
vice execution and utilization. Since the availability of mul-
tiple devices within a computing platform has become the
new norm, heterogeneous managed runtimes [11, 36] and
high-level programming frameworks need to also be able to
schedule, orchestrate and scale-up the executed programs
on a large number of diverse hardware without depending
on the user’s expertise.
In this work, we introduce a Multiple-Tasks on Multiple-

Devices (MTMD) mechanism which allows seamless concur-
rent heterogeneous execution of Java programs. Our con-
tribution lies in the design, implementation, and evaluation
of a new scalable on multiple devices and modular system
that employs custom parallel bytecode interpreters that are
capable of orchestrating parallel execution on multiple de-
vices, while using intelligent task scheduling across mul-
tiple hardware accelerators. The framework is built upon
TornadoVM [12, 17] that allows Java programs to leverage
heterogeneity by dynamically compiling them to OpenCL
and orchestrating execution.
Our proposed system leverages and extends the virtual-

ization layer of TornadoVM by decomposing and executing
applications at the task-level granularity into blocks of in-
structions for scheduling (bytecodes for orchestrating the
execution). To perform this decomposition, our system au-
tomatically performs data dependency analysis and it gen-
erates a set of blocks of bytecodes for enabling concurrent
execution on heterogeneous devices. Each individual avail-
able device is assigned a system thread that runs an instance
of the interpreter that executes the generated bytecodes.
Since concurrency does not implicitly guarantee the efficient
allocation of tasks to devices, we employ a machine learning
(ML) based scheduling approach for dynamically selecting
which task will run on which device. To achieve that, pro-
gram features are extracted through the compiler graph and
passed onto a pre-trained multiple classifier system that se-
lects the target device among CPUs, integrated GPUs, and
discrete GPUs. The combination of parallel bytecode exe-
cution, concurrent deployment of execution contexts at the

task-level granularity, and intelligent mapping of tasks onto
the available devices, results in the seamless and concurrent
execution of multiple-tasks on multiple-devices.

In detail, this work makes the following contributions:

• It introduces a novel mechanism for enabling Multiple-
Tasks Multiple-Devices (MTMD) execution for Java
programs on heterogeneous devices.

• It presents a static code feature extractor from a com-
piler Intermediate Representation (IR) for training our
ML-based scheduling model.

• It introduces a multiple-classifier system to allocate
tasks onto a device selected among CPUs, integrated
GPUs, and discrete GPUs.

• It evaluates the proposed approach across twelve ap-
plications scheduled in three groups for concurrent
execution, with up to 83% performance improvement
against the best single device, and up to 91% of the
Oracle performance.

2 Background
2.1 OpenCL Execution Modes
OpenCL [49] is one of the first standards for programming
heterogeneous platforms by offering a uniform Application
Programming Interface (API) and device platform abstrac-
tion that allows all different types of devices to be pro-
grammed in the same portable way. Commodity devices,
like personal computers, can be equipped with a variety of
OpenCL-compatible devices, ranging from multi-core CPUs
to high-performing discrete GPUs, and FPGAs. By employing
OpenCL, developers can harness the computational capabili-
ties of such hardware accelerators to exploit the attributes
of their programs, such as task and instruction-level paral-
lelism.

Throughout the years, the OpenCL standard has been ex-
tended to better utilize the niche features of modern hetero-
geneous devices. Part of OpenCL’s optimization process was
the introduction of different execution modes both for single
and multiple device configurations. Figure 1 exemplifies the

126

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

three currently supported execution modes of OpenCL: a) in-
order single-device execution, b) out-of-order singe-device
execution, and c) in-order multiple-devices execution.

When utilizing in-order single-device execution, as shown
in Figure 1a, developers can offload parts of their programs
for acceleration on a single OpenCL-compatible device. In
addition, in this mode, data copying between the host and
the device never overlaps with the execution of the code (or
kernel) on the device. This results in a strictly sequential
in-order execution mode in which the device can remain
idle between the intervals of data copying and execution.
To mitigate the introduction of idle cycles, OpenCL intro-
duced the out-of-order execution mode (Figure 1b) in which
developers can overlap data copying and kernel execution.
In this mode, although a single-device is still utilized, the
idle cycles are greatly reduced by simultaneously copying
data between the host and device, while executing code on
the accelerator. Finally, the last execution mode of OpenCL
regards the multi-devices execution, as shown in Figure 1c.
In this mode, developers can build multiple-contexts (one per
device) and utilize more than one accelerator from within
their programs. This mode supports only in-order execution
that again results in idle cycles between the different devices.
To address the limitations and the idle-cycles introduced

by the multi-devices in-order execution mode of OpenCL,
a number of frameworks has been proposed. For instance,
VirtCL [53], SnuCL [34], PySchedCL [21], FluidiCL [42], Mul-
tiCL [2], EngineCL [39] and SOCL [26] focus on single or
multi-task level scheduling for standalone or partitioned
OpenCL applications. A common denominator of all afore-
mentioned frameworks is the fact that they solely focus on
non-managed applications, thereby leaving the area of man-
aged languages unexplored. Exploiting multi-device concur-
rency and scalability via managed programming languages
poses significant challenges due to the multi-level compi-
lation approach of current frameworks, while creating fur-
ther research opportunities due to the dynamic nature of
managed languages and platforms. In this work, we explore
multi-device concurrency and intelligent device selection
in the context of managed languages by prototyping our
proposed solution in the context of TornadoVM [12, 17].

2.2 TornadoVM
TornadoVM [12, 17] is a plug-in to OpenJDK and GraalVM
that allows programmers to automatically accelerate Java
programs on heterogeneous hardware. TornadoVM can tar-
get OpenCL-compatible devices and it runs on multi-core
CPUs, dedicated GPUs (NVIDIA, AMD), integrated GPUs
(Intel HD Graphics and ARMMali), and FPGAs (Intel and Xil-
inx) [43, 44]. TornadoVM currently allows users to compose
groups (called TaskSchedules) of multiple-tasks that can exe-
cute on hardware accelerators. However, these TaskSchedules

Listing 1. Example of the TornadoVM Task Parallel API for
TaskSchedule with multiple Tasks
1 TaskSchedule filter = new TaskSchedule("blur")

2 .task("red", BlurFilter::compute, redFilter, image)

3 .task("green", BlurFilter::compute, greenFilter, image)

4 .task("blue", BlurFilter::compute, blueFilter, image)

5 .streamOut(redFilter, greenFilter, blueFilter)

6 .execute()

can only target a single heterogeneous device, without al-
lowing different tasks within a task-schedule to execute con-
currently on various accelerators.

As an example, we implemented and evaluated a Blur filter
application on TornadoVM. Listing 1 shows that the work-
load consists of three kernels, each operating independently
on an RGB pixel of the input image. We evaluated the Blur
filter application on commodity hardware equipped with
three OpenCL-compatible devices: 1) a multi-core CPU (Intel
Core i7-9750H), 2) an integrated GPU (Intel UHD Graphics
630), and 3) a discrete GPU (NVIDIA GeForce GTX 1650).
Since TornadoVM can only schedule all tasks within a

TaskSchedule to execute on a single device, optimization
opportunity is missed due to the lack of concurrency and
under-utilization of the available devices in our experimental
setup. Figure 2 depicts the evaluation results from running
the Blur filter with two data sizes (1K and 4K images) across
the three different devices: 1) running all tasks on the CPU,
2) running all tasks on the integrated GPU, and 3) running
all tasks on the discrete GPU.

Figure 2. Achieved speedups against sequential Java for a
CPU, an integrated GPU and a discrete GPU.

As shown in Figure 2, running all tasks on the discrete GPU
yields the best performance for the Blur filter application
up to 3.15𝑥 . However, since the tasks are executed in-order,
both the integrated GPU and the CPU remain idle without
exploiting the potential performance through multi-device
execution. To enable concurrent execution by allowing tasks
within a TaskSchedule to execute on different devices simul-
taneously, we introduce the Multiple-Task Multiple-Device
(MTMD) concurrent interpreter and execution mode in Tor-
nadoVM as explained in the following section.

127

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

Merged
Tasks in 1
Bytecode

Graph

API Hardware

CPU

Runtime

Task
Dataflow
Analyzer

Graph
Optimizer

TornadoVM
Bytecode
Generator 1

Single-Context
Bytecode

Execution
Engine

Instance

iGPU

GPU1 GPU2

Exclusive
Execution

TaskSchedule
Parser &

Graph Builder

Single-Context
Dispatcher

Single
Thread

(a) Original TornadoVM Software Stack.

1
2

3
N

Thread Pool

Execution
Engine

Instance

Graph

API Runtime

TaskSchedule
Parser &

Graph Builder

Task
Dataflow
Analyzer

Graph
Optimizer

Multi-Context
Bytecode
Generator

Context
Allocator

Multi-Context
Dispatcher

1

...

Multi-Context
Groups of
Bytecodes

2

3

N

Context
Scheduler

Hardware

CPU iGPU

GPU1 GPU2

Inclusive
Execution

Groups of Bytecodes/Task

(b) Concurrent MTMD TornadoVM Software Stack.

Figure 3. High-level overview of the components added and modified to the original TornadoVM to enable MTMD execution.

3 Multiple-Tasks on Multiple-Devices
To enable the Multiple Tasks Multiple Devices(MTMD) ex-
ecution mode in TornadoVM, numerous key components
have been modified or introduced. Figure 3 outlines both the
original TornadoVM software stack (at the top), as well as
the proposed modifications for enabling MTMD (bottom). As
shown in Figure 3a, TornadoVM utilizes its own API to cre-
ate TaskSchedules which are consequently parsed to create
dataflow graphs that contain the various tasks. The graph is
then analyzed and optimized during runtime and, in turn, a
number of TornadoVM-specific bytecodes are generated. In
the original TornadoVM, all the bytecodes that correspond
to all the tasks of a particular TaskSchedule are enqueued
in a single-context buffer, and are consequently dispatched
for execution by a single instance of the execution engine.
Therefore, all bytecodes, and consequently, all tasks of a
TaskSchedule can only run on a single device at a time.

As shown in Figure 3b, to enable concurrent execution in
TornadoVM, several components has been modified (light
blue) or introduced (dark blue):

1. The Task Dataflow Analyzer and Graph Optimizer

components, which are responsible for analyzing the
dependencies between tasks and optimizing the graph,
before scheduling them onto the devices, have been
modified to enable concurrent execution.

2. The Context Allocator component that creates groups
of dependent tasks has been introduced.

3. The Context Scheduler component that schedules
dependent task groups onto devices has been also in-
troduced.

4. The Multi-Context Bytecode Generator, which is
an extension of the TornadoVMbytecode generator [17],

is responsible for generating bytecodes for multiple
target devices concurrently instead of a single one.

5. The Multi-Context Dispatcher has been introduced
to assign bytecodes that belong to a task group to a par-
ticular execution engine instance for execution. The ex-
ecution instances are implemented as a thread-pool
of execution engines that run the TornadoVM inter-
preter with each one being responsible for executing
a single context on a single device.

The following subsections describe in detail the aforemen-
tioned components.

3.1 Task Dataflow Analyzer and Graph Optimizer
As shown in the example of Listing 1, a TaskSchedule in
TornadoVM can be composed of multiple tasks that may
have data dependencies between them; i.e., the output of one
task can be the input to another. Since developers can com-
pose arbitrary TaskSchedules, the presence or the absence
of dependencies between tasks is not guaranteed. Due to this
fact, the original TornadoVM could only use a single device
to execute a complete TaskSchedule. In order to enable con-
current execution of arbitrary tasks on different devices, we
modified the Task Dataflow Analyzer and Graph Optimizer
to extract inter-task dependencies.

While analyzing the tasks of a TaskSchedule, TornadoVM
generates Java bytecodes for each task which are then trans-
formed into a compiler graph based on the Intermediate Rep-
resentation (IR) of the TornadoVM compiler. The dataflow
analysis phase has been implemented as a compiler phase
in the JIT Compiler. This phase detects the input and out-
put arguments of the original tasks (Java methods). After
the dependencies are identified, the task dependency graph

128

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

Listing 2. Example of TaskSchedule with multiple indepen-
dent tasks.
1 TaskSchedule graph = new TaskSchedule("workload")

2 .task("t0",DFT::dft, inReal,inImag,outReal,outImag)

3 .task("t1",Blackscholes::bs,input,callPrice,putPrice)

4 .task("t2",MM::mm, matrixA, matrixB, matrixC, mmSize)

5 .streamOut(outReal,outImag,callPrice,putPrice,matrixC)

6 .execute();

is traversed in order to create a map of their accessibility
within the different tasks of a TaskSchedule. Then, each in-
put/output argument of each task is marked as READ, WRITE
or READ_WRITE and stored as task meta-data information.
This process is completed when the last task of the input
TaskSchedule has been analyzed and evaluated correctly.

At the end of the dataflow analysis phase, the captured
meta-data are used to create a Direct Acyclic Graph (DAG)
of the intra-TaskSchedule dependencies. This information
is used at a later stage for scheduling dependent tasks on the
same device in order to avoid costly data copying of interim
variables between devices. In contrast, independent tasks
are grouped and scheduled independently for concurrent
execution across numerous hardware accelerators.

In order to avoid tasks that are sharing read-only parame-
ters to be grouped together, we implemented an optimization
at the Graph Optimizer phase. The proposed optimization
tackles READ-only dependencies between tasks by duplicat-
ing the READ-only parameters between tasks. In this way,
tasks become independent and can be executed concurrently.

3.2 Context Allocator and Scheduler
Based on the task meta-data derived from the dataflow anal-
ysis and optimization phases, tasks can be grouped together
or stay independent. Each group of a single task or multiple
tasks will then be assigned to a device for execution via a
device context. The notion of the context is to define an
independent computational entity (a single task or a depen-
dent task-group) that can target a device. As soon as contexts
are defined, they also lock the allocated devices.

At this point, the scheduling of tasks on devices happens
statically without taking into account specific task charac-
teristics, such as memory accesses, parallel dimensions and
single or double precision operations. Tasks are assigned
onto the available devices in a First Come First Served

order and they are inferred in the order they are attached
on the Taskschedule. In addition, devices are ordered based
on their characteristics and computational capabilities. In
Section 4.4, we discuss in depth how we augment this sched-
uling approach by introducing predictive modeling based on
the method features.

3.3 Multi-Context Bytecode Generator
Previous steps helped to reduce the computational granu-
larity of a TaskSchedule to multiple contexts consisting of

single or multiple inter-dependent tasks. At this point of
execution, TornadoVM creates internal TornadoVM-specific
bytecodes [17] that orchestrate the execution, the synchro-
nization, and the data exchanges between the host and de-
vices. The purpose of this extra virtualization layer is to
abstract away from developers all the mechanics and details
of hardware acceleration and kernel offloading. In the origi-
nal TornadoVM, since tasks within a TaskSchedule could all
execute on a single device, the bytecode generator creates
single-context bytecodes destined to execute in-order on a
particular device.

To exploit concurrent execution on devices, we augmented
the existing virtualization layer to embed device selection
control at the task-level (rather than in the original TaskSch-
edule level).

Listing 2 showcases three applications using the Tornado-
VM API, and grouped as independent tasks of the same
TaskSchedule. These tasks are DFT, BlackScholes and Ma-
trix Multiplication (MM). Initially, the dependency analysis
marked them as independent and during context allocation
with FCFS scheduling, all tasks have been assigned to the
available devices.
As tasks are independent, the introduced multi-context

bytecode generator generates three independent sets of byte-
codes. Listings 3, 4 and 5 correspond to the generated multi-
context bytecodes for tasks t0, t1, and t2, respectively.
The bytecodes of each context are assigned to a separate

device (if three are present) awaiting interpretation and exe-
cution by TornadoVM.

3.4 Thread-Pool of Execution Engines
In order to execute themulti-context bytecodes introduced in
this work in parallel, we introduce a scalable thread-pool of
execution engines. Each of the execution engines is responsi-
ble for interpreting the bytecodes corresponding to a context
assigned to a specific device, as shown in Figure 3b. These
bytecodes can contain up to several tasks with or without
dependencies among them.

Each of the execution engines deploys an isolated instance
of the interpreter per device that executes the multi-context
bytecodes assigned to it. At this stage, following the orig-
inal TornadoVM execution flow, tasks can be dynamically
compiled to OpenCL and the execution engines can access bi-
naries from a global code cache. The interpreter itself can be
JIT compiled by the underlying JVM (e.g., Oracle HotSpot) to
improve performance. Note that the TornadoVM bytecodes
only orchestrate the execution between the accelerators and
the host machine and do not perform the actual computation.
The latter is achieved by executing the generated OpenCL
code via the device driver.

Another benefit of reducing the granularity of the execu-
tion from a TaskSchedule to smaller groups of tasks compos-
ing a context, is the ability to increase the resiliency of the

129

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

Listing 3. Bytecodes for t0 (DFT)
1 BEGIN <0> / / New con t e x t [d e v i c e 0]
2 COPY_IN <0 , b i1 , in > / / Cop ies < in >
3 COPY_IN <0 , b i2 , in > / / Cop ies < in >
4 COPY_IN <0 , b i3 , in > / / Cop ies < in >
5 COPY_IN <0 , b i4 , in > / / Cop ies < in >
6 LAUNCH <0 , b i5 , @dft , in , temp>
7 COPY_OUT_BLOCK <0 , b i6 , out > / / C−out
8 COPY_OUT_BLOCK <0 , b i7 , out > / / C−out
9 END <0> / / Ends c on t e x t

Listing 4. Bytecodes for t1 (BlackScholes)
1 BEGIN <1> / / New con t e x t [d e v i c e 1]
2 COPY_IN <1 , b i1 , in > / / Cop ies < in >
3 ALLOC <1 , b i2 , out > / / A l l o c a t e s <out >
4 ALLOC <1 , b i3 , out > / / A l l o c a t e s <out >
5 LAUNCH <1 , b i4 , @bs , temp , out >
6 COPY_OUT_BLOCK <1 , b i5 , out > / / C−out
7 COPY_OUT_BLOCK <1 , b i6 , out > / / C−out
8 END <1> / / Ends c on t e x t
9 −−−

Listing 5. Bytecodes for t2 (MM)
1 BEGIN <2> / / New con t e x t [d e v i c e 2]
2 COPY_IN <2 , b i1 , in > / / Cop ies < in >
3 COPY_IN <2 , b i2 , in > / / Cop ies < in >
4 COPY_IN <2 , b i3 , in > / / Cop ies < in >
5 LAUNCH <2 , b i4 , @mm, in , temp>
6 COPY_OUT_BLOCK <2 , b i5 , out > / / C−out
7 END <2> / / Ends c on t e x t
8 −−−
9 −−−

Figure 4. Concurrency limits

execution by enabling fault tolerance which in turn reduces
the cost of re-execution.

3.5 Discussion
In order to assess the performance benefits of enabling scal-
able execution across devices within the same compute sys-
tem, we revisited the Blur filter application of Listing 1. In
our revised experiments, we enabled the concurrent execu-
tion of the independent tasks of the Blur filter application
using the First-Come-First-Serve (FCFS) scheduling scheme.
Figure 4 adds three additional data points to Figure 2 which
correspond to three additional execution scenarios: a) In or-
der execution of all tasks on the CPU, integrated GPU (IGPU),
and discrete GPU (grey bar), b) Concurrent execution of all
tasks across all devices (first running on the CPU, second on
the IGPU, and third on the discrete GPU - orange bar), and
c) Concurrent execution of all tasks across two devices (first
two on the discrete GPU, and third on the IGPU - red bar).
As shown in Figure 4, the additional execution scenarios

can influence dramatically the performance which can be up
to 2x higher compared to running the whole TaskSchedule
on the same device. However, the problem of statically de-
ciding which policy to employ for scheduling fine-grained
tasks across the available accelerators is very challenging,
due to the diverse characteristics and performance of each
task. To enable efficient scheduling that takes into consid-
eration both device availability, the potential of concurrent
execution, and code characteristics, we employ a ML-based
scheduling technique described in the next section.

4 Prediction Based Scheduling for MTMD
Section 3 outlined the required runtime support for a het-
erogeneous managed runtime to efficiently handle the or-
chestration of dispatching multiple tasks on multiple devices
concurrently. However, to fully utilize the capabilities of

such a system and be able to perform an efficient task/de-
vice allocation, in terms of performance, a fast and accurate
scheduling policy is required. To that end, we integrated a
ML model, trained to perform device-task allocation, that
governs our scheduling policy.
A decisive factor in our scheduling strategy is the detec-

tion of the best computing device for a given task in terms
of performance. Our study focuses on commodity personal
computers, due to the wide set of heterogeneous hardware
available. This includes a CPU, an Integrated GPU and Dis-
crete GPUs. To train the ML-model, we extract a set of fea-
tures describing an application from the compiler IR (Graal
IR [15]) before generating the OpenCL kernel for a given task.
Graal IR is in a graph form, and represents Sea of Nodes [13]
(control flow and data flow). Consequently, we use aMultiple-
Classifier-System (MCS) to determine the optimal mapping.
Each component of this system is a tree-based two-class clas-
sifier, trained to compute the probability at which a specific
task will exhibit speed-up when executed on one device over
another. The final decision is made through the conjugation
of the output probabilities of the aforementioned learners.
The following subsections describe in detail the components
of the proposed ML-based scheduling policy for MTMD.

4.1 Feature Extraction
Being able to extract meaningful application characteristics
is a crucial factor for effectively predicting which task will
perform better across different devices. Prior work, discussed
in detail in Section 6, proposed methodologies for extract-
ing code features directly from OpenCL kernels. Such an
approach is not suitable for our work due to the two-stage
compilation that TornadoVM employs (from Java to OpenCL
C, and from OpenCL C to binary code). Hence, we perform
feature extraction from the compiler IR graph during JIT
compilation, ensuring that sufficient information is captured
for characterizing the behavior of both the Java and the
auto-generated OpenCL programs.
When a task is assigned to a TaskSchedule, Java byte-

codes are transformed to the compiler’s IR and that stage
we extract the code features. This is achieved by adding
a Feature extraction phase in the TornadoVM JIT com-
piler to obtain the number and type of operations based on
individual nodes. The design choice of obtaining features
directly from the IR, and before code generation, adds modu-
larity to our system since it can cater other backend or pure

130

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

Sketch Compilation

GPU vs CPU

IGPU vs CPU

GPU vs IGPU ExtraTreesClassifier

ExtraTreesClassifier

ExtraTreesClassifier

M
L-

Ar
ch

ite
ct

ur
e

OpenCL Devices

TornadoVM
TornadoVM

Nodes
Graal IR

Profilling Execution

IR Static Features

Model Artifact

Profiling Data

Bytecodes
Java

(a) Offline training process of Java programs supported by Tor-
nadoVM

Sketch Compilation

P(IGPUvsCPU)

OpenCL Devices

TornadoVM TornadoVM
Nodes

Graal IR

Execution

IR Static Features

Model Artifact

Bytecodes
Java

Sc
he

du
le

r

P(GPUvsCPU)

P(GPUvsIGPU)

(b) Online scheduling based on task-features, available devices and trained
model.

Figure 5. Offline training process and Online device allocation based on pre-trained model.

x86 execution through Java. The extracted code features are
later combined with runtime information regarding the in-
put/output data sizes, number of threads to be deployed, and
inter-task dependencies.

4.2 Feature Selection
The initial feature set consists of 26 distinct features which
are pre-processed and combined in order to construct new
features that have greater predictive ability than the initial
ones. During this process the feature set is further expanded
to also include interaction features, i.e., features that are
computed as the pairwise product of the existing ones. Fur-
thermore, features that are the most relevant to each other
(e.g., float_math_function, integer_math_function) are
grouped together.
Upon completion of the feature engineering process, the

dimensionality of the data is increased considerably. In such
cases, it is beneficial to select only those features that are con-
sidered to be the key attributes for the model. This enables
the learning algorithm (discussed in Section 4.4) to focus
only on the most important variables. Also, this allows us to
avoid modelling any underlying noise in the data induced by
irrelevant features. The criterion that was used to compute
the features’ importance is the Gini importance [16]. Based
on this criterion, the ten features that influence more the fi-
nal outcome per classifier are depicted in the Hinton diagram
of Figure 6. The sizes of the squares represent the magnitude
of the value; i.e., the corresponding Gini importance of each
feature.

4.3 Training Dataset
The dataset consists of static code features of various kernels,
as well as their execution times on the three available devices,
i.e, CPU, IGPU, GPU. Based on these timings the following
ratios are computed: 𝐼𝐺𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

𝐶𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒
, 𝐺𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒
𝐶𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

and
𝐺𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒
𝐼𝐺𝑃𝑈𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

.
The time ratios are then turned into binary target variables

indicating whether the specific task has speedup on a given

Figure 6. Feature importance for classifiers: 1) IGPU vs GPU,
2) GPU vs CPU and 3) GPU vs IGPU. Squares are representing
the impact of the feature in the final decision (large squares
have the most influence).

device. More specifically, ratios lower than 1.0 indicate slow-
down and so they are mapped to 0, while ratios above the
same threshold correspond to speed up, and consequently
are mapped to 1. Each of these binary variables will serve as
the target for a classifier in our multiple-classifier-system.

Regarding the specific program selection, we used kernels
from the benchmark suite and examples that already exist
in the TornadoVM repository. Figure 5a showcases the of-
fline process for collecting the data and training our model.
As we opt-in for feature extraction through the IR (gener-
ated from the original Java methods), we trained our model
purely with Java benchmarks compatible with TornadoVM.
Hand-tuned OpenCL programs will result in a different per-
formance pattern compared to the OpenCL automatically
generated from Java. Thus, extending the training set with
benchmark suites purely written in OpenCL will negatively
influence or bias the accuracy of our predictor. We execute
these programs for various input configurations, depend-
ing on their computational intensity, on an Intel CPU, an
Intel HD Graphics and an Nvidia GTX 1650. For each indi-
vidual data point (i.e., application’s features, input size and
achieved speedup) we use the existing profiling infrastruc-
ture to extract all profiling-events at the OpenCL side, as
well as runtime dynamic information and overheads present

131

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

Table 1. Scheduling device selection truth table.
Classifier Target

DeviceIGPU vs CPU GPU vs CPU GPU vs IGPU
0 0 0/1 CPU
1 0 0/1 IGPU
0 1 0/1 GPU
1 1 0 IGPU
1 1 1 GPU

in the Java side. Overall, we train our ML model with more
than 200 data points.

4.4 Machine Learning Architecture
Our ML architecture consists of the training model and three
different classifiers running in parallel.

TrainingModel:Our trainingmodel uses three Extremely
Randomized Trees (ExtraTrees) [20] classifiers. Each classi-
fier produces a speedup probability for each task between
the following pairs: IGPU\CPU (1st classifier), GPU\CPU
(2nd classifier) and GPU\IGPU (3d classifier). Among the
available tree-based algorithms, such as Decision Trees, Ran-
dom Forest and Extremely Randomized Trees, the latter was
selected due to its ability to better handle overfitting. The
hyper-parameters of the model (i.e., estimators, maximum
depth) were optimized by searching over a grid of trials and
the combination that yielded the best cross validation score
(10-fold) was retained. Moreover, by investigating the train-
ing dataset for each classifier, it was found that the datasets
of the first and the second classifiers, were highly imbal-
anced, i.e., the target classes were unequally represented and
thus the models would ignore, and in turn, underperform
on the minority class. To tackle this issue, the SMOTE algo-
rithm [9] was used which upsamples the minority class by
synthesizing new examples.

1st Classifier: The chosen ExtraTrees classifier, i.e., the
one that yielded the best cross-validation score, fits 100 es-
timators with maximum depth set to 50. The first level of
prediction considers only the IGPU and the CPU and at-
tempts to determine the most suitable device between them
for a given task. The output of the model is the probability
at which the given task will have speedup when executed
on the IGPU instead of the CPU. By selecting an appropriate
threshold, the probabilistic output can then be interpreted
as class labels, i.e., IGPU or CPU.

For this selection, the Receiver Operating Curve (ROC)[7]
and the Precision-Recall Curve[6] were plotted for various
candidate thresholds in order to better understand the trade-
off in performance at the various levels. Given the imbal-
anced nature of our dataset, we optimized for F1-score, i.e.,
the harmonic mean of precision and recall, instead of ac-
curacy, since the former serves as a better measure of the
incorrectly classified cases. For the first classifier, the optimal
threshold was determined to be around 0.2 resulting in 0.95
F1-score on the held-out dataset.

Table 2. Experimental Testbed.
Hardware

Processor Intel Core i7-9750H CPU @ 2.60GHz
Cores 6 (12 HyperThreads)
RAM 32GB
Integrated-GPU Intel UHD Graphics 630
Discrete GPU NVIDIA GeForce GTX 1650 (Turing)

4GB GDDR5, 896 CUDA Cores

Software

Operating System Ubuntu 20.04 (Kernel 5.4.0-52-generic)
OpenCL (CPU) 2.1 Device Version
OpenCL (IGPU) 2.1 Device Version
OpenCL (GPU) 1.2 Device Version
CUDA Driver 450.80.02
TornadoVM v0.7
JVM OpenJDK 1.8.0_262 with JVMCI
Java Heap -Xmx22G -Xms22G

2nd Classifier: For the second classifier, the optimal per-
formance was achieved by fitting 500 estimators with maxi-
mum depth set to 10. In a similar way, the second classifier
is trained to distinguish between tasks based on their rel-
ative performance on either the discrete GPU or the CPU.
Again, the probabilistic output is turned into a class label,
i.e., GPU or CPU. The optimal threshold is determined to be
approximately 0.6 with 0.96 F1-score on the held-out dataset.

3rd Classifier: Lastly, the third ExtraTrees classifier fits
50 estimators while the maximum depth is set to 50. The
third classifier aims to select between IGPU and GPU. With
the same process, the best threshold is defined around 0.6
resulting to 0.91 F1-score on the held-out dataset.

4.5 On-Line Scheduling
Figure 5b outlines the on-line scheduling process that per-
forms the inference using the trained model. During run-
time, the trained ML model is invoked along with a JSON
file that contains the features of a task eligible to run on
the system. Note that the time for the model inference does
not exceed 60 ms. These features consist of inputs to the
multiple-classifier-system which outputs the three afore-
mentioned probabilities. By setting the thresholds discussed
in Section 5.3, we convert the probabilities into class labels,
i.e., 0 for slowdown and 1 for speedup. The final decision was
taken by using the truth table presented in Table 1. Specifi-
cally, the following scenarios are considered for each task:

• Schedule on CPU: If predicted to have slowdown on
both IGPU and GPU compared to CPU.

• Schedule on IGPU: a) If predicted to have slowdown
on GPU and speedup on IGPU compared to CPU, or
b) if predicted to have speedup on IGPU and GPU
compared to CPU and on IGPU compared to GPU.

• Schedule on GPU: a) If predicted to have slowdown
on IGPU and speedup on GPU compared to CPU, or
b) if predicted to have speedup on IGPU and GPU
compared to CPU and on GPU compared to IGPU.

132

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

Table 3. The Applications.
Group Application Description

DFT [22] Hierarchical mixed radix FFT algorithms for both power-of-two and non-power-of-two sizes.
1 Black-Scholes [23] Option pricing using the Black-Scholes merton process.

Matrix Multiplication [51] Matrix multiplication on square matrices.
NBody [46] Particle simulations.

MonteCarlo [47] Monte Carlo simulation for option pricing models.
2 RenderTrack [38] Parallel kernel for image decomposition that contains multiple control flow operations.

Mandelbrot [27] Iterative function applied in a large set of points.
Hilbert Matrix [41] Dense matrix computation on a square matrix.

Matrix Transpose [51] Matrix transpose operation on a square matrix.
B&W Filter [31] A filter that converts an RGB image to Grayscale.

3 Convolution [3] A two dimensional process of adding each element of an image to its local neighbors.
Euler Method [18] A first-order numerical procedure for solving ordinary differential equations (ODEs).

Table 4. The input data sizes for each application (task) in three different ranges: small, medium and large.
DFT BS MM NBody MC RT Mandelbrot Hilbert MT B&W Conv Euler

Low 1024 65536 65536 1024 65536 262144 262144 65536 65536 1K img 16384 512
Medium 16384 524288 262144 2048 524288 1048576 1048576 262144 262144 2K img 262144 1024
Large 65536 1048576 1048576 8192 1048576 16777216 4194304 1048576 1048576 4K img 1048576 4096

5 Evaluation
This section presents the experimental evaluation of the
proposed MTMD mechanism that enables the seamless and
concurrent execution of multiple tasks on multiple hardware
accelerators. We first describe the experimental setup and
the methodology, as well as the applications used to assess
the performance. Finally, we present and discuss the results
on concurrent device execution and scheduling.

5.1 Experimental Setup and Methodology
To assess the performance, we used an experimental setup
equipped with an Intel CPU, an Intel integrated GPU and
a discrete Nvidia GPU. Essentially, this configuration cor-
responds to a commodity machine with a high compute
capacity, which can be seamlessly utilized by a Java appli-
cation via the MTMD execution mode. Table 2 outlines the
hardware and software characteristics of our testbed.
Regarding the experimental methodology, we follow the

approach outline in [19]. Initially, we perform a warm-up
phase for every application to stabilize the performance of
the JVM. The warm-up phase ensures that the Java code
of each application is JIT-compiled, and in our case 100 it-
erations was a sufficient number to achieve this. Once the
warm-up phase is complete, we run each application for 10
consequent times and we report the mean of the obtained
total execution times, including the time spent for the model
inference.

5.1.1 Applications and Input sizes. To evaluate the pro-
posed MTMD mechanism we use twelve applications that
can be classified as compute intensive, memory intensive and
control-flow intensive. Our goal has been to assess MTMD
by running all the applications concurrently. However, the

inability of TornadoVM to support data transfers, from the
host to the various devices, of sizes over 1 GB, led us to
split our total workload of twelve applications into three
groups (Groups 1 to 3), as shown in Table 3. Each group
has a randomly assigned number of applications that can be
concurrently executed for different input data sizes (small,
medium and large). Table 4 presents the input data sizes for
each application.

5.1.2 Scheduling Strategies. For a full coverage of the
evaluation of the MTMD mechanism, we employ the follow-
ing scheduling policies:

1. Dynamic Reconfiguration (DynRec) [17]: This is
the official scheduling policy supported by TornadoVM,
in which it examines all the viable configurations ex-
haustively. Thus, tasks have to be executed serially on
all devices to select the highest performing one After
the exhaustive execution is performed, TornadoVM
stores the winning device and uses it again for further
invocations of the same code. However, slight changes
to the executed code or input data sizes will trigger
again the exhaustive execution.

2. First-Come-First-Served (FCFS): Tasks are scheduled
to run on devices following the order that the Tornado-
VM system discovers the device drivers. Tasks will be
allocated to devices in the order that they arrive with
respect in the order that OpenCL device drivers are
discovered by the system.

3. GPU-Priority (gpuprio): Tasks are scheduled to run
on devices following a score that ranks the devices
based on their compute capabilities, in our system
the discrete GPU is the one with the highest compute
capabilities.

133

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

(a) Small Sizes. (b) Medium Sizes. (c) Large Sizes.

Figure 7. Achieved speedups for each group of applications and size configurations against the baseline Dynamic Re-
configuration (DynRec) for consecutive execution. Each bar presents the following policies: ML-based MTMD (mtmd-ml),
First-Come-First-Served fcfs, GPU Priority (gpuprio), and CPU Exclusion (cpuex).

4. CPU-Exclusion (cpuex): Tasks are scheduled to run
on devices (except CPUs) following the order that the
TornadoVM system discovers the OpenCL device dri-
vers.

5. ML-based MTMD (mtmd-ml): Tasks are scheduled
and dispatched to run on devices with respect to our
proposed ML-based scheduler (discussed in Section 4).

6. Oracle: This scheduling strategy presents the device-
task allocation that offers the best performance. This
strategy is obtained by offline exhaustive exploration
of the complete optimization space.

The Dynamic Reconfiguration policy is the only policy that
requires all the tasks within a TaskSchedule to be executed
on a single device due to the Single-context Dispatcher in
the original TornadoVM system (Figure 3a). On the contrary,
the remaining scheduling policies exploit the MTMD mech-
anism and can operate concurrently on multiple devices.
Additionally, note that the Dynamic Reconfiguration and the
Oracle scheduling policies are used mainly to set the peak
performance for the consecutive (single-context) and the
concurrent (multi-context) executions of the experimental
benchmarks, as they introduce a significant cost that makes
them unsuitable for real-time execution.

5.2 Performance Evaluation of MTMD
This section is split into two parts. Section 5.2.1 discusses
the performance of all scheduling policies that operate with
the MTMD execution mode against the best consecutive
execution policy which is Dynamic Reconfiguration. On the
other hand, Section 5.2.2 compares the MTMD scheduling
policies against Oracle, the best concurrent execution policy.

5.2.1 Relative Performance vs Best Consecutive. Fig-
ure 7 compares the performance of the fcfs, gpuprio, cpuex
andmtmd-ml policies against DynRec for different data sizes
(small, medium, large). We use the DynRec policy as base-
line as it results in the best execution plan for consecutive
execution. The highest performance increase for each data

size is observed for the mtmd-ml policy at 1.83𝑥 (Figure 7a -
Group-3), 1.27𝑥 (Figure 7b - Group-2), and 1.37𝑥 (Figure 7c -
Group-3) for small, medium and large sizes, respectively.
As shown in Figure 7, the mtmd-ml policy exhibits the

higher performance across all data sizes and all groups of
applications. The reason is that this policy leverages the ML
trained model to capture a large space of factors that can
influence performance. In addition, there are cases that the
consecutive execution on a single device (DynRec - baseline)
results in higher performance than the concurrent execution
on multiple devices with fcfs, gpuprio, or cpuex. For instance,
Figure 7a shows that the applications in Group-1 can run sig-
nificantly faster when they are executed consecutively on the
Nvidia GPU rather than being concurrently executed across
all available devices. The reason is that each application in
Group-1 (i.e., DFT, BlackScholes and Matrix Multiplication)
is compute intensive and performs an order of magnitude
faster on the Nvidia GPU than the other devices. Thus, the
fcfs, gpuprio, or cpuex concurrent scheduling policies fail to
outperform the baseline for these cases. On the contrary,
mtmd-ml can achieve the performance of the baseline, as it
accounts the single-context scenario during the training of
the ML model. The only case that the mtmd-ml policy per-
forms lower than the baseline is the medium size for Group-3
(Figure 7b). In this case, the trained ML model mispredicts
and schedules the execution of the most compute intensive
task (i.e., NBody) in the small GPU (Intel UHD Graphics 630).
Section 5.3 discusses the performance and precision analysis
of our trained model in more detail.
Additionally, the remaining policies (gpuprio, fcfs and

cpuex) show a diverse performance behavior for the three
groups of applications when running on the same data sizes.
This indicates that the diversity across the applications that
belong in the same group is high, and therefore, some of
them can perform better in a GPU, while others can perform
better in a CPU. For instance, Group-1 shows that the base-
line outperforms all the remaining policies (i.e., gpuprio, fcfs
and cpuex). The reason is that the applications in this group

134

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

Figure 8. Comparison of the MTMD scheduling policies
against the Oracle (peak performance).

are all compute intensive and achieve high speedups when
they are executed on the discrete GPU.
Group-2 exhibits higher performance than the baseline

when the applications in this group are executed exclusively
on the same GPUs (cpuex - orange bars), reaching up to
1.13𝑥 for medium size (Figure 7b). On the other hand, the
performance of the gpuprio, fcfs and cpuex policies when
running Group-3 is at the same range. In particular, a 0.08𝑥
performance difference is noted between gpuprio and cpuex
for small size (Figure 7a), while a 0.17𝑥 difference is observed
between fcfs and gpuprio/cpuex for large sizes (Figure 7c).
However, for medium sizes, fcfs achieves the highest perfor-
mance among the MTMD policies, indicating that the GPUs
are not the most suitable devices to execute for this range.

Finally, it is shown that the MTMD concurrent execution
in conjunction with the ML-based scheduling policy (mtmd-
ml) can increase the performance up to 83% compared to the
consecutive execution (DynRec).

5.2.2 Relative Performance vsBestConcurrent. To as-
sess the performance of theMTMD scheduling policies against
the maximum performance that can be achieved, we decided
to expand our experiments with an Oracle implementation.
Therefore, we evaluate the mtmd-ml, fcfs, gpuprio and cpuex
policies against the Oracle policy. Oracle represents the peak
performance that can be achieved, as it is derived from the
exhaustive exploration of all possible concurrent execution
plans of each group of benchmarks on the available hard-
ware devices. Note that the diversity across the applications,
along with the various data sizes, increases the exploration
space significantly, and therefore, the decision of the Oracle
policy may not be pragmatic for real applications. In fact,
the execution of the applications in Group-2 for the large
sizes takes 4.5 hours. Nonetheless, Oracle is the best baseline
to compare the performance of the MTMD policies in terms
of the concurrent execution.

The left side of Figure 8 presents the comparative evalua-
tion of the MTMD policies against Oracle for small, medium
and large data sizes, while the right side depicts their geomet-
ric mean. As Figure 8 shows,mtmd-ml is the best performing
policy reaching up to 91% of the Oracle’s performance in

average, followed by cpuex (39%) and fcfs (36%). The lowest
average performance is observed for the gpuprio policy, due
to the low performance of GPUs when running for small and
medium data sizes.

5.3 Analysis of the MTMD ML Model
This section presents an analysis of the performance and
successful task-device allocation of the trained MTMD ma-
chine learning model. In particular, we use the area under the
ROC curve (AUC) and the F1-score as metrics for performance
evaluation. The AUC is calculated as the integral of the ROC
with respect to the false positive rate over [0, 1]. In essence,
high AUC indicates better prediction of the model.

Figure 9 presents the obtainedAUC for the three classifiers
that we used in our model, as introduced in Section 4.4. In
particular, the micro-average ROC that classifies the execu-
tion between two different types of devices is 0.94 (Figure 9a),
0.97 (Figure 9b) and 0.82 (Figure 9c) for the first, second and
third classifier, respectively. Based on this metric, the second
classifier (GPU-CPU) has the best performance, followed by
the first (IGPU-CPU) and the third (GPU-IGPU) classifiers.
This behavior is also verified by closely investigating the
confusion matrices in Table 5, which shows that the third
classifier mispredicted the IGPU over the GPU in four out of
31 times. In fact, this is the cause of the misprediction that
resulted in the low performance of Group-3 when mtmd-ml
was used (Figure 7b), as the model decided to use the Intel
Integrated GPU instead of the Nvidia GPU.

However, the overall decision of the model is not severely
influenced as the final outcome on which device to exe-
cute is taken based on the combination of all classifiers.
Finally, based on the confusion matrices (Table 5), the F1-
score (i.e., the harmonic mean of precision and recall), was
computed for each classifier using the following formula:
𝑔(𝑥) = 𝑇𝑃

𝑇𝑃+ 1
2 (𝐹𝑃+𝐹𝑁) . The final F1-scores are 0.95, 0.96 and

0.91 for the first, second and third classifier, respectively.

6 Related Work
We have classified the related work in the following groups.
The first group discusses works that apply non-predictive
task scheduling, while the second discusses predictive task
scheduling. The final group elaborates on works that allow
single tasks on multiple devices.

Non-MLMulti-Task Scheduling:Manyworks focusing
on single or multi-task scheduling for standalone or parti-
tioned OpenCL applications, such as VirtCL [53], SnuCL [34],
PySchedCL [21], FluidiCL [42], MultiCL [2], EngineCL [39]
and SOCL [26]. Our prime difference is that we exploit this
opportunity of concurrent execution on heterogeneous hard-
ware for Java, seamlessly.

Parravicini et al. [45] use the GrCUDA polyglot API and
employ a custom scheduling approach to allow multiple
polyglot tasks to be scheduled on a single GPU at runtime.

135

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

(a) Classifier One (b) Classifier Two (c) Classifier Three

Figure 9. Offline training process and Online device allocation based on pre-trained model.

Table 5. The confusion matrix of each classifier.
Classifier One

Actual Actual
IGPU (1) CPU (0)

Predicted IGPU (1) 28 1
Predicted CPU (0) 1 6

Classifier Two
Actual Actual
GPU (1) CPU (0)

Predicted GPU (1) 31 0
Predicted CPU (0) 2 3

Classifier Three
Actual Actual
GPU (1) IGPU (0)

Predicted GPU (1) 27 1
Predicted IGPU (0) 4 4

This work exploits pace-sharing and overlaps the time spent
in transferring data with the execution, if possible. Our work
focuses on scheduling multiple tasks into multiple devices
from different vendors, although it can be used to schedule
concurrently on a single device.

ML-based Multi-Task Scheduling: Troodon [33] is a
load-balancing scheduling heuristic that classifies OpenCL
applications as suitable for CPU or GPU execution, based
on a speedup predictor. The Qilin [37] compiler uses offline
profiling to create a regression model for predicting the exe-
cution time of input applications. Ogilvie et al. [40] introduce
a low-cost predictive model for the automatic construction of
heuristics that reduce the training overhead for execution on
CPU-GPU equipped platform. Furthermore, Grewe et al. [25]
leverages predictive modelling to influence the OpenCL code
generation from OpenMP programs when speedups are pre-
dicted. Additionally, Chen et al. [10] combine generic search
with learning and benchmarking to find good scheduling
methods for execution on heterogeneous hardware, includ-
ing CPUs, server GPUs, mobile GPUs, and FPGA-based ac-
celerators. However, the supported scheduling mechanism
is semi-automated, as the search space must be manually
defined by a programmer for each algorithm similar to a
template. Wen et al. [52] show that the concurrent execu-
tion of OpenCL kernels can increase the GPU utilization and
improve performance. This is achieved by applying a deci-
sion tree based prediction model to determine whether an
application kernel should be scheduled individually or along
with other kernels. Baldini et al. [5] use existing OpenMP
applications and supervised learning to predict the potential
GPU execution speedup among different vendors. Brown
et al. [8] present a model that allows to get accurate predic-
tions of speedups using a small set of features, while also

being portable portability across Nvidia GPUs with different
capabilities. Adams et al. [1] propose a novel scheduling al-
gorithm for the Halide programming language that targets
image processing pipelines. Their model combines symbolic
analysis with machine learning to predict performance.

Single Task Scheduling on Multiple-Devices: Other
studies have combined predictive modelling and scheduling
for single task/application partitioning onto multiple devices.
Kofler et al. [35] use an Artificial Neural Network to dynami-
cally partition a given task in two parts, one that operates on
a CPU and a second that operates on a GPU. This partition is
done through the Insieme [32] that transforms the code from
single kernel into multiple kernels. Grewe et al. [24] present
a system that combines a two-level predictor with supervised
learning models (i.e., Support Vector Machines) to partition
tasks for hybrid CPU-GPU execution based on their static
code features. Also, Singh et al. [48] present a runtime system
that performs energy efficient mapping and repartitioning
of threads of each application between CPU and GPU of an
MPSoC, while taking into account the execution time.
The main differentiation point of our work with prior

is that we enable the seamless and intelligent mapping of
multiple tasks onto multiple devices from Java. Therefore,
programmers can remain oblivious of the actual hardware
device that their programs will run, while leveraging a pre-
dictive machine learning model that can effectively schedule
the execution on the most suitable device based on knowl-
edge extracted from the Graal IR.

7 Conclusions
In this work, we presented a Multiple-Tasks on Multiple-
Devices (MTMD)mechanism capable of performing seamless
concurrent heterogeneous execution of Java programs. We

136

Multiple-Tasks on Multiple-Devices (MTMD) VEE ’21, April 16, 2021, Virtual, USA

implemented this mechanism by extending the virtualization
layer of TornadoVM along with additional components for
task dependency extraction. Besides, we used code features
extracted directly from the compiler’s IR as well as a custom
ML-architecture to predict the device allocation with the
highest projected speedup. To the best of our knowledge,
this is the first paper that allows concurrent heterogeneous
execution for programs purely written in Java.

Besides, we have presented a scalable and modular system
that employs custom parallel bytecode interpreters that can
utilize multiple devices, while using intelligent resource allo-
cation. Also, we introduced an online scheduling approach
based on a ML-architecture of multiple classifiers, while us-
ing code features collected at compile and at run time.
We evaluated our mechanism with ML-based schedul-

ing against the best single device and various concurrent
scheduling policies. Our approach exhibits performance im-
provements of up to 83% compared to the best single device
while reaching up to 91% of the oracle performance.

For future work, we plan to extend our ML-architecture to
be able to make decisions among different compiler backends
(e.g., PTX, SPIR-V, x86) to ensure optimal device and architec-
ture allocation for each application. Therefore, in the future
we expect our system to be able to seamlessly offload work-
loads concurrently on multiple devices, while leveraging the
optimal programming construct for each architecture.

Acknowledgments
Thework presented in this paper is partially funded by grants
from Intel Corporation and the European Union’s Horizon
2020 E2Data 780245 and ELEGANT 957286 projects.

References
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-

Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fata-
halian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learning to
Optimize Halide with Tree Search and Random Programs. ACM Trans.
Graph. 38, 4 (2019). https://doi.org/10.1145/3306346.3322967

[2] AshwinM. Aji, Antonio J. Pe na, Pavan Balaji, andWu–chun Feng. 2016.
MultiCL: Enabling automatic scheduling for task-parallel workloads
in OpenCL. Parallel Comput. 58 (2016), 37 – 55. https://doi.org/10.
1016/j.parco.2016.05.006

[3] Shams A. H. Al Umairy, Alexander S. van Amesfoort, Irwan D. Setija,
Martijn C. van Beurden, and Henk J. Sips. 2012. On the Use of Small
2D Convolutions on GPUs. In Computer Architecture (ISCA). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-24322-6_6

[4] AMD. Accessed in 2020. Aparapi project. https://aparapi.github.io/
[5] Ioana Baldini, Stephen J. Fink, and Erik Altman. 2014. Predicting GPU

Performance from CPU Runs Using Machine Learning. In Proceedings
of the IEEE 26th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). https://doi.org/10.1109/
SBAC-PAD.2014.30

[6] Kendrick Boyd, Kevin H. Eng, and C. David Page. 2013. Area under
the Precision-Recall Curve: Point Estimates and Confidence Intervals.
In Proceedings of the 2013th European Conference on Machine Learning
and Knowledge Discovery in Databases (ECMLPKDD) - Volume Part III.
Springer-Verlag. https://doi.org/10.1007/978-3-642-40994-3_29

[7] Andrew P. Bradley. 1997. The Use of the Area under the ROC Curve
in the Evaluation of Machine Learning Algorithms. Pattern Recogn.
30, 7 (1997). https://doi.org/10.1016/S0031-3203(96)00142-2

[8] Lorenz Braun, Sotirios Nikas, Chen Song, Vincent Heuveline, and
Holger Fröning. 2021. A Simple Model for Portable and Fast Prediction
of Execution Time and Power Consumption of GPU Kernels. ACM
Transactions on Architecture and Code Optimization (TACO) 18, 1 (2021).
https://doi.org/10.1145/3431731

[9] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. 2002. SMOTE: Synthetic Minority over-Sampling Tech-
nique. J. Artif. Int. Res. 16, 1 (2002).

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Au-
tomated End-to-End Optimizing Compiler for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[11] James Clarkson, Juan Fumero, Michail Papadimitriou, Maria Xekalaki,
and Christos Kotselidis. 2018. Towards Practical Heterogeneous Virtual
Machines. In Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming. https://doi.org/10.
1145/3191697.3191730

[12] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,
Maria Xekalaki, Christos Kotselidis, and Mikel Lujan. 2018. Exploiting
High-Performance Heterogeneous Hardware for Java Programs Using
Graal. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes (ManLang). https://doi.org/10.1145/3237009.
3237016

[13] Click, Cliff and Paleczny, Michael. 1995. A Simple Graph-Based In-
termediate Representation. In Papers from the 1995 ACM SIGPLAN
Workshop on Intermediate Representations (IR). https://doi.org/10.1145/
202529.202534

[14] Shane Cook. 2012. CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs (1st ed.). Morgan Kaufmann Publishers Inc.

[15] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Compiler.
In Proceedings of the 7th ACM Workshop on Virtual Machines and Inter-
mediate Languages (VMIL). https://doi.org/10.1145/2542142.2542143

[16] Frank A. Farris. 2010. The Gini Index and Measures of Inequality. The
American Mathematical Monthly 117, 10 (2010), 851–864.

[17] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki,
James Clarkson, and Christos Kotselidis. 2019. Dynamic Application
Reconfiguration on Heterogeneous Hardware. In Proceedings of the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE). https://doi.org/10.1145/3313808.3313819

[18] V. M. Garcia, A. Liberos, A. M. Climent, A. Vidal, J. Millet, and A.
González. 2011. An adaptive step size GPU ODE solver for simulating
the electric cardiac activity. In Computing in Cardiology. 233–236.

[19] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
Rigorous Java Performance Evaluation. SIGPLAN Not. 42, 10 (2007).
https://doi.org/10.1145/1297105.1297033

[20] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely
Randomized Trees. Mach. Learn. 63, 1 (2006). https://doi.org/10.1007/
s10994-006-6226-1

[21] Anirban Ghose, Siddharth Singh, Vivek Kulaharia, Lokesh Dokara,
Srijeeta Maity, and Soumyajit Dey. 2020. PySchedCL: Lever-
aging Concurrency in Heterogeneous Data-Parallel Systems.
arXiv:2009.07482 [cs.DC]

[22] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli.
2008. High performance discrete Fourier transforms on graphics pro-
cessors. In Proceedings of the ACM/IEEE Conference on Supercomputing
(SC). 1–12. https://doi.org/10.1109/SC.2008.5213922

137

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1016/j.parco.2016.05.006
https://doi.org/10.1016/j.parco.2016.05.006
https://doi.org/10.1007/978-3-642-24322-6_6
https://aparapi.github.io/
https://doi.org/10.1109/SBAC-PAD.2014.30
https://doi.org/10.1109/SBAC-PAD.2014.30
https://doi.org/10.1007/978-3-642-40994-3_29
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1145/3431731
https://doi.org/10.1145/3191697.3191730
https://doi.org/10.1145/3191697.3191730
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://arxiv.org/abs/2009.07482
https://doi.org/10.1109/SC.2008.5213922

VEE ’21, April 16, 2021, Virtual, USA Papadimitriou, Markou, Fumero, Stratikopoulos, Blanaru, Kotselidis

[23] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos.
2013. Accelerating Financial Applications on the GPU. In Proceed-
ings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units (GPGPU-6). https://doi.org/10.1145/2458523.2458536

[24] Dominik Grewe and Michael F. P. O’Boyle. 2011. A Static Task Par-
titioning Approach for Heterogeneous Systems Using OpenCL. In
Compiler Construction, Jens Knoop (Ed.). Springer Berlin Heidelberg.

[25] D. Grewe, Z. Wang, and M. F. P. O’Boyle. 2013. Portable mapping of
data parallel programs to OpenCL for heterogeneous systems. In Pro-
ceedings of the IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). https://doi.org/10.1109/CGO.2013.6494993

[26] Sylvain Henry, Denis Barthou, Alexandre Denis, Raymond Namyst,
and Marie-Christine Counilh. 2013. SOCL: An OpenCL Implementation
with Automatic Multi-Device Adaptation Support. Research Report
RR-8346. INRIA. 18 pages. https://hal.inria.fr/hal-00853423

[27] A. Huseinović and S. Ribić. 2015. Benchmark comparison of computing
the Mandelbrot set in OpenCL. In 23rd Telecommunications Forum
Telfor (TELFOR). https://doi.org/10.1109/TELFOR.2015.7377632

[28] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick
Siow Mong Goh. 2012. Scalable Framework for Mapping Streaming
Applications onto Multi-GPU Systems. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). https://doi.org/10.1145/2145816.2145818

[29] IBM. [n.d.]. https://www.ibm.com/support/knowledgecenter/en/
SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html

[30] Intel. [n.d.]. oneAPI Specification. https://spec.oneapi.com/versions/
latest/index.html

[31] V. M. Ionescu. 2017. CPU and GPU gray scale image conversion
on mobile platforms. In 9th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI). https://doi.org/10.1109/
ECAI.2017.8166501

[32] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and
Thomas Fahringer. 2013. INSPIRE: The Insieme Parallel Intermediate
Representation. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques (PACT). https:
//doi.org/10.1109/PACT.2013.6618799

[33] Yasir Noman Khalid, Muhammad Aleem, Usman Ahmed, Muham-
mad Arshad Islam, and Muhammad Azhar Iqbal. 2019. Troodon: A
machine-learning based load-balancing application scheduler for CPU-
GPU system. J. Parallel and Distrib. Comput. 132 (2019), 79 – 94.
https://doi.org/10.1016/j.jpdc.2019.05.015

[34] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and
Jaejin Lee. 2012. SnuCL: An OpenCL Framework for Heterogeneous
CPU/GPUClusters. In Proceedings of the 26th ACM International Confer-
ence on Supercomputing (ICS). https://doi.org/10.1145/2304576.2304623

[35] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer.
2013. An Automatic Input-Sensitive Approach for Heterogeneous Task
Partitioning. In Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing (ICS). https://doi.org/
10.1145/2464996.2465007

[36] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime
Systems: A Computer Vision Case Study. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE). https://doi.org/10.1145/3050748.3050764

[37] C. Luk, S. Hong, and H. Kim. 2009. Qilin: Exploiting parallelism on
heterogeneousmultiprocessors with adaptivemapping. In 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[38] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet,
Paul H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle,
Graham Riley, Nigel Topham, and Steve Furber. 2015. Introducing
SLAMBench, a performance and accuracy benchmarking methodology

for SLAM. In IEEE International Conference on Robotics and Automation
(ICRA). arXiv:1410.2167.

[39] Raul Nozal, Jose Luis Bosque, and Ramon Beivide. 2019. Towards
Co-execution on Commodity Heterogeneous Systems: Optimizations
for Time-Constrained Scenarios. International Conference on High
Performance Computing & Simulation (HPCS) (2019). https://doi.org/
10.1109/hpcs48598.2019.9188188

[40] William F. Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh
Leather. 2015. Fast Automatic Heuristic Construction Using Active
Learning. In Languages and Compilers for Parallel Computing, James
Brodman and Peng Tu (Eds.).

[41] Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, and Rio Yokota.
2018. Optimization of Hierarchical Matrix Computation on GPU. In
Supercomputing Frontiers. Springer International Publishing.

[42] Prasanna Pandit and R. Govindarajan. 2014. Fluidic Kernels: Coop-
erative Execution of OpenCL Programs on Multiple Heterogeneous
Devices. In Proceedings of the IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). https://doi.org/10.1145/
2581122.2544163

[43] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis.
2019. Towards Prototyping and Acceleration of Java Programs onto
Intel FPGAs. In IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). https://doi.org/
10.1109/FCCM.2019.00051

[44] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,
Foivos S. Zakkak, and Christos Kotselidis. 2020. Transparent Compiler
and Runtime Specializations for Accelerating Managed Languages on
FPGAs. The Art, Science, and Engineering of Programming 5, 2 (2020).
https://doi.org/10.22152/programming-journal.org/2021/5/8

[45] Alberto Parravicini, Arnaud Delamare, Marco Arnaboldi, and
Marco D. Santambrogio. 2020. DAG-based Scheduling with Re-
source Sharing for Multi-task Applications in a Polyglot GPU Runtime.
arXiv:2012.09646 [cs.DC]

[46] DP Playne, MGB Johnson, and KA Hawick. 2009. Benchmarking GPU
Devices with N-Body Simulations. In Proceedings of the International
Conference on Computer Design (CDES).

[47] Reuven Y. Rubinstein and Dirk P. Kroese. 2016. Simulation and the
Monte Carlo Method (3rd ed.). Wiley Publishing.

[48] Amit Kumar Singh, Alok Prakash, Karunakar Reddy Basireddy, Geoff V.
Merrett, and Bashir M. Al-Hashimi. 2017. Energy-Efficient Run-Time
Mapping and Thread Partitioning of Concurrent OpenCL Applications
on CPU-GPU MPSoCs. ACM Transactions on Embedded Computing
Systems (TECS) 16, 5s (2017). https://doi.org/10.1145/3126548

[49] J. E. Stone, D. Gohara, and G. Shi. 2010. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. Computing in
Science Engineering 12, 3 (2010), 66–73. https://doi.org/10.1109/MCSE.
2010.69

[50] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. 2009. Software
Pipelined Execution of Stream Programs on GPUs. In Proceedings
of the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). https://doi.org/10.1109/CGO.2009.20

[51] V. Volkov and J. W. Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC). https://doi.org/10.1109/SC.2008.5214359

[52] Y. Wen, Z. Wang, and M. F. P. O’Boyle. 2014. Smart multi-task schedul-
ing for OpenCL programs on CPU/GPU heterogeneous platforms. In
21st International Conference on High Performance Computing (HiPC).
https://doi.org/10.1109/HiPC.2014.7116910

[53] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. 2015.
VirtCL: A Framework for OpenCL Device Abstraction and Manage-
ment. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP). https://doi.org/10.1145/
2688500.2688505

138

https://doi.org/10.1145/2458523.2458536
https://doi.org/10.1109/CGO.2013.6494993
https://hal.inria.fr/hal-00853423
https://doi.org/10.1109/TELFOR.2015.7377632
https://doi.org/10.1145/2145816.2145818
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html
https://spec.oneapi.com/versions/latest/index.html
https://spec.oneapi.com/versions/latest/index.html
https://doi.org/10.1109/ECAI.2017.8166501
https://doi.org/10.1109/ECAI.2017.8166501
https://doi.org/10.1109/PACT.2013.6618799
https://doi.org/10.1109/PACT.2013.6618799
https://doi.org/10.1016/j.jpdc.2019.05.015
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2464996.2465007
https://doi.org/10.1145/2464996.2465007
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1109/hpcs48598.2019.9188188
https://doi.org/10.1109/hpcs48598.2019.9188188
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://arxiv.org/abs/2012.09646
https://doi.org/10.1145/3126548
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/CGO.2009.20
https://doi.org/10.1109/SC.2008.5214359
https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1145/2688500.2688505
https://doi.org/10.1145/2688500.2688505

	Abstract
	1 Introduction
	2 Background
	2.1 OpenCL Execution Modes
	2.2 TornadoVM

	3 Multiple-Tasks on Multiple-Devices
	3.1 Task Dataflow Analyzer and Graph Optimizer
	3.2 Context Allocator and Scheduler
	3.3 Multi-Context Bytecode Generator
	3.4 Thread-Pool of Execution Engines
	3.5 Discussion

	4 Prediction Based Scheduling for MTMD
	4.1 Feature Extraction
	4.2 Feature Selection
	4.3 Training Dataset
	4.4 Machine Learning Architecture
	4.5 On-Line Scheduling

	5 Evaluation
	5.1 Experimental Setup and Methodology
	5.2 Performance Evaluation of MTMD
	5.3 Analysis of the MTMD ML Model

	6 Related Work
	7 Conclusions
	References

