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Minimizing the Spread of Misinformation in Online Social Networks:
A Survey

Ahmad Zareie and Rizos Sakellariou

Department of Computer Science, The University of Manchester, UK

Abstract

Online social networks provide an opportunity to spread messages and news fast and widely. One

may appreciate the quick spread of legitimate news and messages but misinformation can also be

spread quickly and may raise concerns, questioning reliability and trust in such networks. As a

result, detecting misinformation and containing its spread has become a hot topic in social network

analysis. When misinformation is detected, some actions may be necessary to reduce its propagation

and impact on the network. Such actions aim to minimize the number of users influenced by

misinformation. This paper reviews approaches for solving this problem of minimizing spread of

misinformation in social networks and proposes a taxonomy of different methods.

Keywords: Social Networks, Misinformation Spread Minimization, Influence Minimization,

Diffusion Models

Contents

1 Introduction 2

2 Preliminaries 4

2.1 Online Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Influence Detection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Problem of Minimizing the Spread of Misinformation 7

4 Blocking-Based Methods 10

4.1 Node Blocking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Preprint submitted to Journal of Network and Computer Applications May 11, 2021



4.1.1 Static Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110

4.1.2 Adaptive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Edge Blocking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Source-Ignorant Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Source-Aware Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Clarification-Based Methods 2015

5.1 Campaign-Oriented Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Structural Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Behaviour-Aware Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Protection-Oriented Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Evaluation Strategies and Datasets 2820

7 Conclusion and Future Directions 31

1. Introduction

The proliferation of internet technologies has led to an increasing number of online social net-

works and users. Several indicators suggest that the number of users keeps increasing and a large

number of people have accepted online social networks as a major source of news. The potential25

of social networks has led to significant research in trying to propagate news widely by identify-

ing so-called influential users [1, 2]. This problem, known as Influence Maximization [3, 4], has

attracted lots of attention recently. However, spreading news fast gives rise to an adverse effect:

misinformation can be spread fast too.

Users may spread misinformation inadvertently or with different financial and social motiva-30

tions [5]. Misinformation propagation has become a significant threat in social networks and re-

duces the reliability and confidence of the users towards news and messages. As quoted in [6], a

report published by the World Economic Forum regards spreading misinformation as one of the top

global economic risks. Spreading misinformation or unsubstantiated rumours may have widely neg-

ative impact and may lead to economic damages, significant disruption or even widespread panic;35

various examples have been mentioned in the literature [7, 8, 9, 10, 11, 12]. Misinformation may

take different forms. In this paper, the term misinformation is used as a general term to refer to
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any false or inaccurate information which may be spread in online social networks intentionally or

unintentionally.

Confronting misinformation in social networks has attracted lots of attention among researchers.40

To deal with it, there are several aspects that have to be addressed: (i) identification of misinfor-

mation among newly produced information, also known as misinformation detection, is important

as early detection of misinformation decreases the chances of wide propagation with potentially

adverse effects; (ii) detection of the sources of misinformation is important as it helps identify the

culprits and potentially malicious users who initiate the propagation of misinformation; (iii) track-45

ing subsequent (re)appearances of already detected misinformation, possibly in a slightly altered

form but still misinformation; (iv) minimization of the spread of misinformation is another impor-

tant aspect which aims to prevent the propagation of misinformation in the network. A plethora

of methods have been proposed for each of these aspects in the literature.

Methods to detect misinformation and identify sources are reviewed in [13, 5, 14] and [5, 15], re-50

spectively. Methods to detect misinformation are based on mapping a stream of social media posts

to a classification system that labels posts as misinformation or non-misinformation. Methods to

identify sources are based on the network structure and propagation graph from which users or

locations that initiate misinformation are identified. In [16], intervention methods for misinforma-

tion detection and mitigation are classified and reviewed. Approaches for the development of data55

mining tools for misinformation tracking and verification are reviewed in [17]. In [18], methods for

detection and controlling rumour in social networks are reviewed from a multidisciplinary (Psy-

chology, Sociology and Epidemiology) viewpoint; [18] also reviews the features that favour wide

propagation of misinformation. Yet, the literature lacks a comprehensive review and classification

of the methods explicitly proposed to minimize the spread of misinformation, which act as an im-60

portant deterrent when confronting misinformation. Although [5, 18, 16] shortly pay attention to

this topic, they do not focus on minimizing the spread of misinformation. This paper aims to fill

this gap by reviewing and classifying all existing methods in the literature for the minimization of

the spread of misinformation. In comparison with previous surveys, distinct differences of our work

are:65

• We focus on approaches that minimize the spread of misinformation in social networks, after

misinformation has been detected.
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• A new taxonomy and a comprehensive review of state-of-the-art methods is presented that

offers extensive coverage of the subject.

• Evaluation strategies that include real-world datasets and random models to generate syn-70

thetic datasets for evaluation purposes are also presented.

• Current challenges and potential future directions are thoroughly discussed.

The rest of the paper is organised as follows: Section 2 contains definitions and background in-

formation. A formal definition of the problem of Minimizing the Spread of Misinformation (MSM)

and key strategies to address it are presented in Section 3. A detailed discussion of the different75

methods to find solutions to the MSM problem is given in Sections 4 and 5. Section 6 covers eval-

uation strategies and datasets for the assessment of different methods. Finally, Section 7 concludes

the paper and discusses future research directions.

2. Preliminaries

2.1. Online Social Networks80

An online social network is an abstraction that captures the interactions between people relying

on some internet-based infrastructure. People join online social networks with different goals, such

as socializing, keeping in touch with friends, as well as reading and/or sharing news. The ability of

every user to spread news is an important benefit of online social networks but it has an adverse

effect too. Alongside legitimate information, spreading misinformation may have some disruptive85

impact, including distrust and unreliability towards news [19].

In the literature, an online social network is modelled as a graph. The nodes and edges indicate

users and relationships between them, respectively. In this paper, a social graph is denoted by

G = (V,E), where V = {v1, v2, . . . , v|V |} and E ⊆ V × V represent nodes and edges of the graph.

If eij ∈ E, it means there is a relationship between nodes vi and vj and these nodes are called90

neighbours. Γi denotes the set of neighbours of node vi; the cardinality of this set indicates the

degree of the node, i.e., di =| Γi |. A weight wij may be associated to each edge eij indicating the

influence (spreading) probability of node vi on vj , that is, how likely (weight values closer to 1) or

unlikely (weight values closer to 0) it is that node vi can influence node vj . In some research, the

network is considered as a directed graph. In a directed graph, eij ∈ E denotes vi is an in-neighbour95
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of vj and vj is an out-neighbour of vi, which assumes that influence is not bi-directional and if one

node influences another the opposite is not necessarily true.

In principle, whether the edges are considered as directed or undirected depends on the nature

of relationships in the network. For instance, friendship on Facebook is an undirected relationship

while the follow relationship on Twitter is a directed relationship. In addition, in some research the100

network is considered as unweighted graph, which means that all edges have the same influence.

If additional information is available, the influence between each pair of users can be determined;

then, distinct weights are assigned to the edges and the network is modelled as a weighted graph.

2.2. Diffusion Models

Different diffusion models have been proposed to simulate the process of spreading information105

and determine the influence of an initial set of spreader nodes. Modelling the behavior of users

in accepting and forwarding information in social networks is a challenging topic [20]. Diffusion

models aim to describe the propagation process based on some observations about the network.

Thus different diffusion models are applied to model the spreading process. In principle there are

three main classes for the commonly used diffusion models: threshold models [21, 22], cascading110

models [23, 24], and epidemic models [25, 26].

The Linear Threshold (LT) model [4] is the most popular threshold model. In this model,

each node vi has an activation threshold Θi and can be in either active or inactive state during

propagation. In timestamp t = 0, the initial spreader nodes are set to active and all other nodes

are set to inactive. In each timestamp t > 0, each inactive node vj changes its state to active if115 ∑
vi∈ANj

wij ≥ Θj , where ANj is the set of neighbours of node vj which are active in t − 1. The

propagation process continues until no node is activated in a timestamp. At the end, the number

of active nodes indicates the influence of the initial spreader set.

The Independent Cascade (IC) model [4] is a well-known cascading model. Same as with the LT

diffusion model, each node can be in either active or inactive state. Initial spreader nodes are set as120

active in t = 0. In each timestamp t > 0, each node vi activated in t− 1 has one chance to activate

each of its neighbour vj with probability α. Regardless of whether vi activates any of its neighbours

or not, it moves to inactive state. This process continues until no node is activated in a timestamp

t. The number of nodes activated during the process indicates the influence of the initial spreader

nodes. Sometimes, influence in the IC model can be determined using the live-edge technique [4].125
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In this technique some of the edges are set as live and some are set as blocked, randomly. If, after

this process, there is a path between two nodes, this implies influence.

The Susceptible-Infected-Recovered (SIR) model [27] is a widely used epidemic model in the

literature. In this model, each node can be in either susceptible (SU), infected (IN), or recovered

(RE) state. In timestamp t = 0, the initial spreader nodes are set to IN and all other nodes are set130

to SU . In each timestamp t > 0, each infected node vi moves to recovered state with probability

β after its attempt to infect each of its susceptible neighbours with probability α. The infection

process continues until no infected nodes remain in the graph. At the end of the process, the

number of recovered nodes represents the influence of the initial spreader set. The SIR model can

be regarded as a generalization of the IC model, as the latter appears to be a special case of SIR135

in which β = 1.

In practice, the diffusion process may be repeated many times and the mean of the obtained

results may be used to estimate the influence of initial spreader nodes.

2.3. Influence Detection Models

In this subsection different models to determine the influence of a set containing one or more140

nodes are described.

• Simulation-based model: This model applies a diffusion model by repeating the simulation

of spreading process a number of times and considering the mean of the obtained results as

the influence of the set. The time complexity of a simulation-based model to determine an

influential k-size set is O(kr|V |2|E|), where r is the number of times that diffusion process is145

repeated.

• Path-based model: Maximum Influence Arborescence (MIA) [28] is the most popular path-

based model that is based on the idea that the influence diffusion of a node is restricted to a

local region. Two trees, known as Maximum Influence In-Arborscence (MIIA) and Maximum

Influence On-Arborscence (MIOA), are generated to indicate influencers and influencees of a150

node, respectively. The size of these trees can be adjusted by a given parameter θ to meet a

trade-off between accuracy and time efficiency. The time complexity of the path-based model

to determine an influential k-size set is O(|V |tiθ + knoθniθ(niθ + log|V |)); where tiθ, noθ and

niθ are the time complexity of constructing MIIA for each node, maximum size of MIIA and

maximum size of MIOA, respectively.155
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• Sampling-based model: Reverse Influence Sampling (RIS) [29, 30] is the most popular sam-

pling model to approximate the influence of a set. The idea is to randomly generate θ samples

of the graph. In each sample a node is randomly selected and a set of nodes that can reach

this node are determined as the reverse reachable set of the node. The more the number of

samples that are covered by a set, the more influential the set is. The time complexity of160

the sampling-based model to determine an influential k-size set is O(k(|V |+|E|)log
2|V |

ε2 ); where

ε denotes the error of sampling.

• Centrality-based model: This model applies centrality measures [31] which use the graph

structure to determine influence and vitality of each node or edge. Some popular centrality

measures are betweenness, closeness, degree or weighted degree. This model is highly efficient165

with linear time complexity but suffers from low accuracy.

Depending on the influence detection model used, we can approximately determine the time

complexity of each method in the rest of paper. In general, in terms of time complexity, these

models can be ranked from high to low in the order: simulation-based, path-based, sampling-based

and centrality-based.170

3. The Problem of Minimizing the Spread of Misinformation

Different approaches have been utilized to detect misinformation [13]. Independent of these ap-

proaches, once misinformation is detected, a containment strategy should be adopted to minimize

the spread of misinformation. In brief, the problem of Minimizing the Spread of Misinformation

(MSM) can be defined as follows. A set of Malicious Nodes (MN) intends to propagate misinfor-175

mation in a social network. A solution to the MSM problem aims to minimize the number of nodes

that accept (or are influenced by) this misinformation.

The solution can be broadly based on one of two strategies [32, 33, 34]:

• A blocking strategy (network disruption): a set of nodes or edges are blocked (or removed)

to minimize the flow of misinformation in the network.180

• A clarification strategy (anti-rumour or counterbalance): true information is propagated in

order to increase users’ awareness and reduce acceptance or spread of misinformation.
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Formally, given a graph G = (V,E), a diffusion model µ, a set MN with size |MN | ≥ 1, solving

MSM aims to find and apply a strategy S to minimize the influence of misinformation. Influence

of misinformation is determined by the number of users who accept the misinformation during the

spreading process following diffusion model µ. This aim is generally defined using Eq. (1).

S∗ = arg min ϕSµ(G,MN)

s. t. some constraints
(1)

The MSM problem can be also defined as a maximization problem:

S∗ = arg max ϕµ(G,MN)− ϕSµ(G,MN)

s. t. some constraints,
(2)

where ϕµ(G,MN) and ϕSµ(G,MN) represent the influence of the set MN (essentially, this influence

is the total number of users accepting the misinformation initiated by the users in the set MN)

when no containment strategy is applied and when a strategy S is applied to contain spreading,185

respectively. That is to say, MSM aims to find a strategy S to maximize the number of users who

are protected from misinformation.

Selecting a set of nodes or edges to maximize S∗ is an NP-complete problem [4]. In some

occasions, the problem, as defined in Eqs. (1) and (2), may be monotone and submodular, in which

case greedy heuristics may find a solution within a factor of the optimal solution [4]. In function190

f(S) = ϕµ(G,MN) − ϕSµ(G,MN), monotonocity implies that, if an element is added to the set

by strategy S, it does not cause a decrease of the value of f . If f is a monotone and submodular

function, then for each element a, f(S ∪ a) ≥ f(S).

As mentioned, the strategies to solve the MSM problem can be divided into two main categories:

blocking-based and clarification-based. Blocking-based strategies degrade the topology of the graph195

and may be further subdivided into node blocking and edge blocking. Depending on the strategy,

the problem, as defined in Eq. (2), can be further elaborated as follows.

Node blocking strategies aim to find a set of nodes, i.e., NS ⊂ V , whose removal minimizes the

spread ability of MN in G(V ′, E′); V ′ = V −NS and E′ = E − {eij | vi ∈ NS or vj ∈ NS}. The

problem is then formally defined as in Eq. (3).

S∗ = arg max
NS⊂V

ϕµ(G(V,E),MN)− ϕµ(G(V ′, E′),MN)

s. t. some constraints

(3)
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If a node is blocked this implies that all edges connected to the node are removed. This may lead

to an excessive removal of edges, which may be undesirable. Blocking edges may be regarded as a

more delicate strategy than blocking nodes.200

Edge blocking strategies aim to find a set of edges, i.e., ES ⊂ E, whose removal minimizes the

spread of misinformation in G(V,E′), where E′ = E − ES. The problem is formally defined as in

Eq. (4).

S∗ = arg max
ES⊂E

ϕµ(G(V,E),MN)− ϕµ(G(V,E′),MN)

s. t. some constraints

(4)

In practice, blocking strategies may impact users’ experience, who may complain or quit a

network [35], while they may also be viewed as a violation of freedom expression [36]. This gives

more ground to clarification-based strategies where a set of nodes, TN , is selected to carry out a

truth campaign and propagate true (illustrative) information. In clarification-based strategies, the

MSM problem is formally defined as in Eq. (5).

S∗ = arg max
TN⊂V

ϕµ(G,MN)− ϕµ(G, {MN,TN})

s. t. some constraints,

(5)

where ϕµ(G, {MN,TN}) represents the spread ability of MN when both sets MN and TN spread

two opposite messages. Users receiving true information will not accept misinformation and will not

forward it further in the network, thereby reducing spread of misinformation. In other words, rising

the awareness of users prevents the adoption of misinformation in this strategy without degrading

the graph as it is the case with blocking strategies. Yet, clarification-based strategies may be205

less efficient in reducing misinformation spread, as also noted in [36]. In fact, an assessment of

the advantages and disadvantages of both blocking and clarification strategies in [32] has led to a

compound method that is trying to combine the best of the two worlds.

When some users become victims of misinformation, they may resist to change their beliefs even

if they later receive correct information. Because of this, blocking-based strategies may be superior210

to clarification-based strategies as they typically prevent the receipt of misinformation. On the

other hand, blocking edges or even nodes for a long period of time may have a negative impact

on user experience and may lead to the withdrawal of users from the network. In comparison to

edge blocking, node blocking strategies may lead to higher disruption as all edges connected to the

blocked nodes are removed.215
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Overall, the methods that have been developed to solve the problem of minimizing the spread

of misinformation, in line with the key strategies discussed, can be broadly classified according to

the hierarchy in Figure 1. This classification is used in the following sections to review all relevant

methods.

Figure 1: Classification of methods for MSM

4. Blocking-Based Methods220

This section covers methods relying on blocking nodes or edges. As discussed, in a blocking

strategy a set of nodes or edges are removed to minimize the spread of misinformation in the

network.

4.1. Node Blocking Methods

In these methods a set of critical nodes (NS) is identified and these nodes are removed from225

the social graph; all edges associated with these nodes are accordingly removed. Node blocking

methods are also known as node immunization methods in the literature [37, 38, 9]. In principle,

there are two different approaches for node blocking: (i) in a static approach, NS is selected and

nodes are blocked at the beginning of the propagation process; (ii) in an adaptive approach, NS

is selected and the nodes are blocked selectively during the process to take flow of misinformation230

into account, thus improving the performance of blocking.

The key properties of both static and adaptive node blocking methods are summarized in Table 1.

For each method, the table lists information about the type of graph used to represent the network
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and the diffusion model. When there is no indication of the diffusion model used this is because the

relevant work deviates from the three common choices. In order to approximately show the time235

complexity of each method, the model applied for influence detection in each method is also shown

in the table.

Table 1: Properties of node blocking methods including class, graph type, diffusion model for propagation (Linear

Threshold (LT), Independent Cascade (IC), Susceptible-Infected-Recovered (SIR)) and influence detection model

(Influence Model)

Paper (year) Class
Graph Diffusion Model

Influence Model
Directed Weighted LT IC SIR

[39] (2002) Static No No Centrality-based

[40] (2011) Static No No X Centrality-based

[41] (2017) Static No No Centrality-based

[42] (2013) Static Yes No X Simulation-based

[43] (2019) Static Yes Yes X Sampling-based

[44] (2015) Static Yes Yes X Centrality-based

[45] (2018) Static Yes Yes X Path-based

[9] (2017) Static No Yes X Simulation-based

[46] (2017) Static Yes Yes X Centrality-based

[47] (2018) Static Yes Yes X Simulation-based

[48] (2019) Static Yes Yes X X Sampling-based

[49] (2018) Static Yes Yes X Simulation-based

[37] (2018) Adaptive Yes Yes X Path-based

[50] (2019) Adaptive Yes Yes X Sampling-based

[51] (2015) Adaptive Yes Yes Simulation-based

[35] (2017) Adaptive Yes Yes X Centrality-based

[52] (2019) Adaptive No Yes X Centrality-based

4.1.1. Static Approach

In [39, 40, 41], the impact of removing nodes with high centrality is assessed to determine which

centrality measure is the most effective criterion to minimize the spread of misinformation. In [39],240

the goal is to identify a set of nodes whose removal increases the average distance between each pair

of nodes in the graph as this can delay the spread of information (and, consequently, misinformation

too). The effect of removing nodes with high-degree and high-betweenness is assessed. The authors

show that removal (or immunization) of the high betweenness nodes is a more efficient way to
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contain the spread of misinformation in the network. In [40], information spread is regarded as245

a function of the sum of the sizes of the largest connected clusters. A high-betweenness removal

strategy is used iteratively to identify nodes that are immunized. In [41], a random walk algorithm

is applied to measure the impact of blocking nodes with high centrality on the spread of information;

degree distribution, betweenness and closeness centrality are considered for high centrality. The

results show better performance when nodes with high closeness centrality are blocked. In all these250

methods, the source of misinformation (i.e., the MN set) is ignored, so they can be considered as

source-ignorant node blocking methods.

In other methods, selecting nodes for blocking is done by taking into account the MN set.

These methods can be regarded as source-aware node blocking methods. In some of these methods a

budget constraint, like the number of blocking nodes or the maximum cost of blocking is considered,255

while some methods aim to minimize the overall cost of blocking assuming that blocking each node

has a cost.

In [42, 43, 44], a set of k nodes, NS, is selected, using the constraints | NS | ≤ k and NS ⊆

V −MN (cf. Eq. (3)); removing these nodes (and their associated edges) the aim is to minimize

the influence of MN . In [42], NS is initially empty and its members are selected iteratively. In

each iteration, t, the node with the maximum marginal gain is added to NSt−1. The marginal gain

obtained from blocking node vi in iteration t is calculated using Eq. (6) as follows:

MG(vi) = ϕ(G′′,MN)− ϕ(G′,MN). (6)

In the equation, G′ is obtained by removing nodes NSt−1 and the edges connected to them; G′′ is

also obtained by removing NSt−1∪{vi} and the edges connected to them. The function ϕ(G,MN)

indicates the influence of MN in graph G. In [42], influence is calculated using an IC diffusion260

model. Stochastic bi-level programming, in the form of leader-follower game, and one Tabu-based

search meta-heuristic and one greedy heuristic are proposed to solve the problem in [43]. In [44], a

topic-aware method is suggested. In this method, a topic vector TP = {tp(1), . . . , tp(l)} is taken into

account to determine different topics in the social network. A weight vector Wij = {w(1)
ij , . . . , w

(l)
ij }

is also associated to each edge eij , where w
(z)
ij indicates the strength of influence of user vi on vj265

on topic tp(z). Misinformation, which is propagated in the network, is represented by a vector

Ψ = {ψ(1), . . . , ψ(l)}, where ψ(z) indicates the relevance of misinformation to topic tp(z). Given the

vectors Wij and Ψ, the probability of spreading misinformation on each edge is calculated. Then,
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the top-k central nodes in the neighbourhood of nodes in MN are selected for blocking. In order

to define the top-k central nodes, a topic-aware betweenness and a topic-aware degree centrality270

measure are proposed.

In [45], blocking each node vi has a cost ci. The goal is the identification of a set of nodes

so that the total cost of blocking the nodes does not exceed a given budget b. It is also assumed

that misinformation is not propagated farther than T ≥ 2 hops from the misinformation source.

The authors first consider the problem with only one node as misinformation source. A sub-tree275

of depth T whose root is the source of misinformation is constructed. The influence of each node

vi on its child nodes is calculated based on a depth-search-first algorithm. A near optimal solution

is then found using dynamic programming. To solve the problem in the general case, with more

than one node as misinformation source, a greedy algorithm is proposed. The inefficiency of the

greedy algorithm motivates the use of a speed-up approach [53] to improve its performance. In the280

improved algorithm, misinformation sources are merged into a super source node I and the MIA

method [28] is applied to determine the influence of each node. Nodes with a maximum ratio of

influence per cost are selected iteratively until the budget is exhausted or no node can be selected

with the remaining budget.

In [9], it is supposed that there is just one node as the source of misinformation, i.e., | MN |=285

1, and misinformation is propagated up to T hops from the source. The goal is to block the

nodes with the highest contagious probability, that is nodes that are most likely to get infected

by misinformation. To do so, the contagious probability of each node is calculated based on the

SIR diffusion model. Nodes whose probability is greater than a given threshold are considered as

candidate nodes for blocking. By removing nodes with low spreading ability from the candidate290

set, the set NS is finally identified. In [46], the LT diffusion model is extended to propose a

time-constraint deterministic LT model. A simulation-based greedy algorithm is then proposed to

select a set of nodes whose removal minimizes the spread of misinformation. Due to the high time

complexity of the simulation-based method, an efficient heuristic algorithm is also proposed.

Finally, in some research, the goal is to select the smallest set of nodes whose blocking causes a295

reduction to the spread of misinformation greater than a given threshold. The authors in [47, 48]

apply a sampling approach to find the smallest set of nodes whose removal ensures that no more

than λ users are influenced by misinformation. In [47], nodes with the maximum marginal gain

are added to NS with a greedy approach. In order to calculate the marginal gain of nodes the
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authors try different mechanisms such as the live-edge method [4], a speed-up approach [53] and300

a lazy-forward method [54]. The authors in [48] emulate the spreading process using the LT and

IC diffusion models. They show that the problem of the reduction of the spread of misinformation

greater than a given threshold is not submodular in the IC model. They apply the speed-up

approach [53] to merge MN nodes into a super source node and construct an instance Ĝ of graph

G; the live-edge method is then used to obtain different sample graphs. For each sample, a Directed305

Acyclic Graph (DAG), rooted in super source node, is built using depth-first traversal to calculate

the gain from blocking each node. Nodes with maximum gain are iteratively added to NS with the

gain of remaining nodes updated in each iteration.

The community structure of the network is taken into account in [49]. It is assumed that

misinformation originates from a set of users in community Cr. In addition to reducing the influence310

of MN to less than a given threshold, the authors try to prevent influencing so-called bridge nodes

(nodes which connect Cr to other communities). This prevents spreading of misinformation to the

entire network. Based on minimum vertex cover set, a two-step greedy algorithm is proposed to

select NS. In the first step, bridge and reachable nodes are identified using breadth-first traversal

originating from nodes in MN ; then, the minimum number of nodes needed to protect the bridges315

are blocked. In the second step, while the influence of MN is greater than the threshold, nodes

with the maximum marginal gain are iteratively added to NS; the set of reachable nodes is updated

in each iteration.

4.1.2. Adaptive Approach

Instead of selecting and blocking nodes at the beginning of the propagation process, critical320

nodes can be identified and blocked during the propagation process. Take the schematic graph in

Figure 2, for example. Suppose that node M is a malicious node, a source of misinformation, and

we have the option of blocking two nodes. Using a static approach it is sensible to block nodes

A and B (due to the greater number of out-neighbours compared to C) at the beginning of the

propagation process (i.e., t = 0) as this shields a large part of the graph (see Figure 2(a)). However,325

suppose that at t = 1 propagation from node M flows as indicated by the red edges in Figure 2(b).

In this situation, node B appears to be unaffected and, hence, keeping node B blocked brings

no benefit. Instead, blocking node D at t = 2 can be more important to stop further spread of

misinformation from node C. This example highlights that adaptive actions, depending on the flow
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of misinformation, may be more efficient in containing the propagation of misinformation. The goal330

of methods relying on an adaptive approach is to block nodes based on the flow of misinformation

during the propagation process.

Figure 2: Adaptive approach for node blocking

The connection between the static and the adaptive approach is considered in [38]. To do so, the

SIR diffusion model is extended to model their relationship and then applied to assess the impact

of the adaptive approach on the propagation process. The effect of the size of MN and propagation335

probability on these approaches is also studied. The findings suggest that, in essence, the static

and the adaptive approach may overall perform similarly, yet an adaptive approach may achieve

this result with fewer nodes blocked.

In [37, 50, 51], at each timestamp t during the propagation process, some nodes are dynamically

identified and blocked. The goal is to minimize the number of nodes influenced by misinformation340

at the end of the propagation process. In [37], a heuristic is proposed to calculate the gain from

blocking each node based on the propagation probability between a node and all other nodes in

the network. At each timestamp t, the node with the maximum gain, BGtmax, is determined and

blocked if the expectation of maximum gain at t+1 is less than BGtmax. This algorithm is repeated

at each timestamp t until k nodes are blocked. The authors in [50] propose two different policies for345

blocking nodes during the propagation process. In the k-R policy, nodes are blocked in T rounds
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and in each round an equal number of nodes, i.e., k/T , with maximum marginal gain, are selected

and blocked; a live-edge technique is applied to determine the marginal gain of nodes. In the α-T

policy, in each round, a decision on blocking some nodes is made based on the the number of nodes

that are reachable from infected nodes. The Reverse Influence Sampling method [29, 30] is also350

applied to propose a scalable implementation of these policies. In [51], it is supposed that apart

from being influenced by neighbours in online social networks, users may be influenced by external

sources during the propagation process. In this situation, the importance of using an adaptive

approach to block nodes during the propagation process increases. A simulation-based method is

proposed to estimate the number of nodes blocked in each timestamp t, say kt. A heuristic is then355

proposed to compute the immunization ability (equivalent to gain from blocking) of each node. In

each timestamp t, kt nodes with the highest immunization ability are determined and blocked; the

immunization ability of remained nodes is then updated.

A dynamic node blocking method based on user experience is considered in [35]. Rumour

popularity (indicating the interest of users to the topic of rumour) and the degree of tolerance360

to the period of time that users can be blocked are taken into account. Global popularity and

individual tendency are integrated using the Ising model [55] to model rumour popularity over

the time of propagation. User experience is employed to determine the threshold of tolerance to

blocking time for users. The goal is to minimize the influence of a rumour by blocking k critical

nodes under the constraint of the users’ tolerance threshold. A node blocking approach to minimize365

the spread of misinformation in temporal networks is studied in [52]. It is supposed that nodes

and edges are dynamic during the propagation process and nodes are blocked dynamically over this

process. The minimum vertex cover is applied to find critical nodes at each timestamp. Due to its

time complexity, graph embedding techniques are used to construct a feature-based representation

of each node and an approximate solution is determined with the help of refinement learning.370

Each of the approaches for node blocking has advantages and disadvantages. Static approaches

for node blocking are simple and cheap but may suffer from inaccuracy as they do not deal directly

with the propagation pattern. On the other hand, adaptive approaches can improve the effects of

blocking by taking into account the pattern of propagation in the network but at the expense of

higher computational cost due to the need of monitoring and tracking the propagation pattern.375
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4.2. Edge Blocking Methods

In node blocking methods the objective is to remove nodes. Edges are blocked when the nodes

connecting these edges are blocked. However, as each node may be connected to other nodes

through a number of edges, this may remove a large number of edges to such an extent that it may

drastically change the network structure. Edge blocking methods aim to address this by identifying380

a set of critical edges to block, thereby minimizing the spread of misinformation. There are two

approaches for edge blocking: (i) a source-ignorant approach ignores the source of misinformation

and aims to identify a set of edges whose removal minimizes the flow of information in the network;

(ii) a source-aware approach considers the source(s) of misinformation to identify a set of edges for

blocking. In both approaches, the goal is always to minimize the spread of misinformation in the385

network.

The key properties of the edge blocking methods are summarized in Table 2.

Table 2: Properties of edge blocking methods including source (ignorant or aware), graph type, diffusion model for

propagation (Linear Threshold (LT), Independent Cascade (IC), Susceptible-Infected-Recovered (SIR)) and influence

detection model (Influence Model)

Paper (year) Source
Graph Diffusion Model

Influence Model
Directed Weighted LT IC SIR

[56] (2008) Ignorant Yes Yes X Simulation-based

[57] (2008) Ignorant Yes No X Simulation-based

[58] (2009) Ignorant Yes No X Simulation-based

[59] (2013) Ignorant Yes Yes X Simulation-based

[60] (2012) Ignorant Yes No Centrality-based

[40] (2011) Ignorant No No X Centrality-based

[41] (2017) Ignorant No No Centrality-based

[61] (2014) Aware Yes Yes X Simulation-based

[62] (2014) Aware Yes Yes X Simulation-based

[33] (2019) Aware Yes Yes X Path-based

[63] (2013) Aware Yes Yes X Centrality-based

[64] (2018) Aware Yes Yes X Sampling-based

[20] (2014) Aware Yes No Centrality-based
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4.2.1. Source-Ignorant Approach

The problem of minimizing the spread of misinformation is expressed as a contamination degree

minimization problem in [56, 57, 58]. The contamination degree of the network is calculated based390

on the influence of all nodes in the network. In [56], the problem is defined as the identification

of a set of k edges, whose removal minimizes the average contamination of all nodes under the

LT diffusion model. An iterative greedy algorithm is then proposed to solve the problem; in each

iteration an edge whose removal minimizes the average contamination degree of nodes is selected

for blocking. Due to the time complexity of the LT diffusion model, a method based on Bond395

Percolation [65] is proposed to approximate the solution. The contamination degree minimization

problem is defined under the IC diffusion model in [57]. A greedy and a bond percolation based

method are then proposed to solve the problem. The contamination degree minimization problem

is extended in [58] to define the worst contamination degree of nodes in the network. The worst

contamination degree refers to the maximum influence of nodes in the graph, while average con-400

tamination degree refers to the expected influence of nodes. A greedy algorithm is then proposed

to find a set of k edges whose removal minimizes the worst contamination degree of nodes in the

graph. Due to the time inefficiency of the greedy algorithm, a bond percolation based method is

also proposed to approximately solve the problem.

The authors in [59] aim to block a set of k edges to minimize the spread susceptibility of the405

network. The spread susceptibility of the network is defined as the summation of influence of all

nodes. They prove that the problem is submodular and monotone under the LT diffusion model. A

greedy algorithm using the live-edge method is then proposed, which guarantees a solution within

1 − 1
ε of the optimal solution. In [60], the eigenvalue of the network matrix is considered as a

measure for spread susceptibility in the network; the goal is to identify a set of edges whose removal410

minimizes the eigenvalue of the matrix. Based on eigenvalues a score for each edge is computed.

Then, the k edges with the highest score are considered as a solution of the problem. The sum

of the sizes of the largest connected clusters of the graph is defined as the spread susceptibility of

network in [40]; betweenness centrality of the edges is considered as a measure to select edges whose

removal minimizes the spread susceptibility. The problem is defined under a random walk model415

in [41] and betweenness centrality of the edges is again used to select edges.
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4.2.2. Source-Aware Approach

In this approach, it is assumed that a known set of malicious nodes, MN , is the source of the

misinformation in the network. The goal is to identify a set of edges whose blocking (removal)

minimizes the spread of misinformation that is initiated by nodes MN .420

In [61, 62], the aim is to find a set of edges ES, with size k, to minimize the spread of mis-

information. An iterative greedy algorithm, under the IC diffusion model, is proposed in [61]; in

each iteration, the edge with the maximum marginal gain is added to ES. Due to the high com-

putational time of calculating the influence of a set using diffusion models, the live-edge method is

applied to propose an efficient iterative greedy method in [62]. In addition, a descendant-counting425

tree structure is proposed to update the marginal gain of edges in each iteration of the greedy

algorithm efficiently. In [33], the goal is to block k edges of a candidate set to minimize the sum

of the activation probability of nodes in the network. The activation probability of a node denotes

the probability that the node is influenced by the nodes in MN , in other words, how vulnerable the

node is to the misinformation spread by the nodes in MN . Then, a greedy algorithm is proposed430

that iteratively selects an edge with maximum marginal gain and updates the activation probabil-

ity of nodes. In [63], it is assumed that blocking each edge has a cost. Problems under a budget

constraint are defined and several greedy algorithms are then proposed.

In [64, 20], the problem is considered as a target-based problem. In this problem, the goal is

to minimize the spread of misinformation towards a given target set TS. In [64], the problem is435

solved under two scenarios: (i) unconstrained, where an unlimited number of edges may be blocked

to protect TS; (ii) constrained, where at most k edges are blocked to protect TS to the best extent

possible. The unconstrained scenario is solved using the minimum cut problem [66]. A sampling-

based solution is proposed to select k critical edges in a greedy (and iterative) manner to solve

the constrained scenario. The target-based problem is defined under an extension of a cascading440

diffusion model in [20]; a mathematical programming method is then proposed to identify a set of

critical edges.

Compared to source-ignorant edge blocking strategies, source-aware edge blocking strategies

may be more effective in terms of blocking misinformation. However, trying to determine the

sources accurately and fast is a challenging issue and the effort to achieve this may come at the445

expense of focusing on actual edge blocking.
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5. Clarification-Based Methods

In these methods, once again, the assumption is that misinformation originates from a set of

certain malicious nodes, MN . However, the aim is to identify a set of nodes, TN , to initiate

a truth campaign, that is, to spread a clarification message that will counter the misinformation450

originating from MN . The ultimate goal is to minimize the number of users accepting (or influenced

by) the misinformation. It is noted that this problem, first modelled by He et al. in [67], is different

from the related problem of competitive influence maximization [68], where multiple campaigns are

trying to maximize their influence at the same time minimizing the influence of all other competing

campaigns. To illustrate this, consider the directed graph shown in Figure 3. Assume that node455

M is the originator of a misinformation campaign. When the aim is to minimize the spread of

misinformation through a clarification message, selecting node B is the best choice as it stops node

M from spreading misinformation further. However, in competitive influence maximization where

the aim is to maximize the spread of an initiator’s own message, selecting node A would look the

best choice.460

Figure 3: Clarification-based misinformation minimization versus competitive influence maximization.

Clarification-based methods are broadly divided into two categories: (i) campaign-oriented meth-

ods, where, given a limit for the size of the truth campaign, the aim is to identify appropriate nodes

to initiate the truth campaign so that the spread of misinformation is minimized; (ii) protection-

oriented methods, where the aim is to identify a minimum number of nodes to initiate the truth

campaign so that a given proportion of users in the network are protected from misinformation.465
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The key properties of the clarification-based methods are summarized in Table 3. As noted,

in these methods misinformation and truth are spread simultaneously. Thus, besides the type of

graph and diffusion model, it is useful to annotate each method with additional information. The

column SP (standing for spread probability) shows whether some research assumes that the spread

probability of misinformation and truth on each edge is the same or it can differ (same or diff in the470

table). The column bias shows what happens when a node is activated by both misinformation and

truth campaigns at the same time: negative means that the former wins, positive means that the

latter wins, whereas unbiased means that some other criterion is used to decide (such as message

popularity, users’ interest in message, etc).

5.1. Campaign-Oriented Methods475

In these methods there is a budget k, which is typically equivalent to the number of nodes that

can be used for a truth campaign. The goal is to identify a set TN containing at most k nodes

to initiate a truth campaign to minimize the influence of MN , that is, to minimize the number of

nodes activated (i.e., users influenced) by misinformation. According to the information considered

to select TN , campaign-oriented methods can be divided into two categories: (i) structural methods480

that select TN simply on the basis of structural information of graph; (ii) behaviour-aware methods

where, in addition to graph structure, individual behaviour of users such as preferences, interests,

personal profit or location may also be taken into account to select TN .

5.1.1. Structural Methods

In these methods, a set of nodes is selected to initiate a truth campaign. The selection is485

based on structural properties of the network graph, something that makes these methods widely

applicable as structural information is supposed to be readily available.

Some structural methods consider this problem using an LT diffusion model. In fact, this is the

approach considered by the first paper in the topic [67], where a competitive LT diffusion model

is proposed to simulate the spreading process of the two opposite campaigns by MN and TN . In490

this model, each node has two thresholds Θ− and Θ+, corresponding to an acceptance threshold for

misinformation and truth, respectively. Each edge has two weights w−ij and w+
ij , corresponding to the

spread probability for misinformation and truth, respectively. Each node can be in either inactive,

+ active or − active state during the process. At timestamp t = 0, nodes in MN and TN are set

to − active and + active, respectively; all other nodes are set to inactive. At each timestamp t > 0,495
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Table 3: Properties of clarification-based methods including: class (Str standing for structural, Beh standing for

behaviour-aware, Pro standing for protection-oriented), graph type, diffusion model (Linear Threshold (LT), Inde-

pendent Cascade (IC), Susceptible-Infected-Recovered (SIR)), influence detection model (Influence Model), spread

probability (SP) and Bias

Paper

(year)
class

Graph Diffusion Model
Influence Model SP Bias

Directed Weighted LT IC SIR

[67] (2012) Str Yes Yes X Path-based Diff Negative

[69] (2015) Str Yes Yes X Simulation-based Diff Unbiased

[70] (2016) Str Yes Yes X Centrality-based Same Unbiased

[71] (2019) Str Yes Yes X Centrality/Simulation-based Same Unbiased

[34] (2020) Str Yes Yes X Centrality/Simulation-based Same Unbiased

[72] (2011) Str Yes Yes X Centrality/Simulation-based Diff Positive

[73] (2017) Str Yes Yes X Path-based Diff Positive

[74] (2019) Str No No X Centrality-based Same Negative

[75] (2019) Str Yes Yes X Centrality/Path-based Same Positive

[11] (2017) Str Yes Yes X Sampling-based Same Negative

[76] (2019) Str Yes Yes X Sampling-based Same Negative

[77] (2013) Str Yes Yes X X Centrality-based Same Positive

[78] (2018) Str Yes Yes X Sampling-based Same Negative

[79] (2017) Beh Yes Yes X Sampling-based Same Positive

[10] (2014) Beh Yes Yes X X Simulation-based Same Negative

[12] (2020) Beh Yes Yes X Sampling-based Same Unbiased

[80] (2017) Beh Yes Yes X Simulation-based Same Unbiased

[81] (2020) Beh Yes Yes Centrality-based Same Unbiased

[82] (2019) Beh Yes Yes X Sampling-based Same Negative

[6] (2018) Beh Yes No X Simulation Same Unbiased

[83] (2018) Beh Yes Yes X Path-based Diff Unbiased

[84] (2019) Beh Yes Yes X Path-based Diff Negative

[85] (2018) Beh Yes Yes X Centrality-based Same Unbiased

[86] (2012) Pro Yes Yes X X Sampling-based Same Positive

[87] (2013) Pro Yes Yes X X Sampling-based Same Positive

[8] (2013) Pro Yes No X Simulation-based Same Positive

[88] (2018) Pro Yes No X Simulation-based Same Negative
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positive (truth) and negative (misinformation) influence propagate independently following the LT

diffusion model. Each newly activated node changes its state to − active or + active based on the

campaign that activates the node and no longer changes its state in subsequent timestamps. If at a

timestamp t > 0 a node is activated by two campaigns, negative influence wins. In order to identify

influential users to add to TN , the MIA method [28] is utilized to construct a local directed acyclic500

graph and determine the influence of each node in containing misinformation spread. Nodes in TN

are identified in k iterations; in each iteration, the node with the maximum marginal containment

influence is added to TN .

In [69, 70], it is supposed that when a campaign initiates the propagation of some information

(regardless of whether the message is true or not), the propagation is limited within T hops and505

fades after this time. In [69], each node has two different thresholds for accepting misinformation

and truth; each edge has two different weights indicating spread probability of misinformation and

truth. The LT diffusion model is then extended to simulate the spreading process by misinformation

and truth campaigns at the same time. In this model, if a node is activated by two campaigns at

the same timestamp, the node decides what message to adopt based on its own preferences. An510

algorithm is then proposed to find a set of nodes to include in the truth campaign. For this purpose,

a set of nodes which may potentially be influenced by the misinformation campaign and have high

spread ability (hence, they are influential) are detected as gateway nodes. The nodes for the truth

campaign are then selected using a simulation based strategy whose aim is to get the truth campaign

to influence gateway nodes before they are influenced by misinformation. An extension of the LT515

diffusion model is also proposed in [70] to calculate the activation probability of each node by the

misinformation campaign. An iterative method is then proposed to select the nodes of the truth

campaign; in each iteration the node that minimizes the activation probability of all other nodes

by misinformation is added to truth campaign.

In [71, 34], it is assumed that the opinion of users, who are influenced by misinformation, may520

change after receiving information from the truth campaign. The LT diffusion model is extended

to simulate the propagation process under this assumption. Two aspects of the problem are then

considered: either every node in the network can be selected as a member of truth campaign, or

only a subset of predefined nodes. A greedy simulation based method and a page rank centrality

based method are then proposed to solve the problem.525

In other structural methods, the problem is defined using the IC diffusion model. A Campaign-
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Oblivious IC (COICM) model is proposed in [72]. In this model, each node can be in one of three

states: C-state (activated by misinformation), L-state (activated by truth) or inactive state. A

misinformation campaign and a truth campaign start spreading at the same time, t = 0. At each

timestamp t, each node vi activated in t−1 has a chance to activate each of its inactive neighbours.530

If vj is activated by vi, the state of vj changes to vi’s state and cannot change in subsequent

timestamps. This process continues until no more node is activated. If a node is concurrently

activated by two campaigns, the truth campaign wins. Applying the COICM model, a greedy

algorithm is proposed to identify a near-optimal truth campaign. Due to the time complexity

of the greedy algorithm, three heuristic methods based on high degree nodes, early infectees and535

likeliest infectees are also proposed.

The COICM model is also adopted in [73, 74, 75] to simulate the propagation process. In [73],

the problem is considered under two scenarios: (i) CMIA-H, where the spread probability of edges

for truth is 1; (ii) CMIA-O, where the spread probability of edges for truth is a value between [0, 1].

Applying the MIA method [28], an iterative greedy method is proposed where the node with the540

maximum containment influence is added to the truth campaign in each iteration. In [74], utilizing

degree, betweenness and closeness centrality measures, a centrality-based method is proposed to

select nodes for the truth campaign. A community-based method using the COICM model is

proposed in [75]. In this method, the COCIM model is first applied to determine the communities

and the number of malicious nodes (nodes in misinformation campaign) in each community. Based545

on the number of malicious nodes in each community, a proportion of nodes for the truth campaign

is selected from the community. In [11, 76], two sampling-based methods are proposed using the IC

diffusion model. A set of reverse tuples are determined using graph sampling in [11], based on which

an approximation algorithm is proposed to select TN . Applying the RIS method [29, 30], a hybrid

sampling method is proposed in [76] to inform a greedy method to identify the truth campaign.550

The authors in [77] argue that some nodes may get contaminated by misinformation and may

spread it (inadvertently becoming members of the misinformation campaign) because they are

unaware of the truth. Such nodes would change their mind if they are faced with the truth. In

these circumstances, the problem is then to select λ × k ∈ MN and (1 − λ) × k ∈ {V −MN}

nodes to spread the truth and contain misinformation. Applying the LT and IC diffusion models, a555

greedy simulation-based method is proposed to select nodes with maximum marginal containment

influence iteratively. In [78], it is assumed that more than one truth campaign may attempt to
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contain the spread of misinformation. To deal with this multi-campaign spreading problem, an

extended multi-cascade IC diffusion model is proposed; then, applying game theory, a method is

described to select nodes.560

5.1.2. Behaviour-Aware Methods

In addition to network structure, user characteristics and behaviour are taken into account

by behaviour-aware methods. The motivation is that individual user behaviour may allow more

elaborate differentiation of nodes than purely structural methods.

In [79, 10], a time delay is introduced to capture the time that two users may need to exchange565

information between them; the goal is to minimize the spread of misinformation by a deadline T .

In [79], each edge is associated with a login probability to denote how quickly information may

be received. Depth-first traversal is first applied to determine the threat level of each node in

the graph by MN and build a DAG. Breadth-first traversal is then utilized to construct weighted

reverse reachable trees. Then, for each node, a score is calculated based on the threat level and the570

influence of the node. The node with maximum score is selected for the truth campaign. Then,

the score of remaining nodes is updated and the process is repeated iteratively until all required

nodes are selected. In [10], in addition to login probability, personal interest in misinformation and

truth is taken into account for each user. The problem is then considered under the LT and IC

diffusion models. Reachable nodes in t ≤ T timestamps are selected as candidate nodes. Utilizing575

a Monte Carlo method, the nodes of the truth campaign are iteratively selected; a candidate node

with maximum containment influence is added to the truth campaign in each iteration.

In [12], personal interest in the information related to the misinformation is also taken into

account following a source-ignorant approach. The RIS method [29, 30] is utilized to generate a

collection of random reverse sets. A greedy method is then described for maximizing weighted580

coverage to identify TN that considerably covers the reverse random sets.

In [80], it is considered that when a user accepts an opinion, they may change it after receiving

other opinions. A credibility score and a renouncement threshold are considered for each node vi

in [80]; the former represents the trustworthiness of vi and the latter expresses the how easy (or

difficult) it is for vi to renounce an opinion they had. An extension of the LT diffusion model585

is proposed to simulate propagation with these features. The nodes of the truth campaign are

determined using a simulating annealing algorithm. Users’ background knowledge, a hesitating
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mechanism and a forgetting-remembering factor are taken into account in [81, 89] to model how a

user is influenced by misinformation. A ‘Human Individual and Social Behaviors’ diffusion model is

then proposed to model acceptance and spread of misinformation by users. The truth campaign is590

identified using a greedy algorithm in k iterations, with a node with maximum marginal containment

influence added to the truth campaign in each iteration.

In [82], an activity profit is assigned to each edge. The goal is to identify a set of nodes for

the truth campaign so that high profit edges become more protected and less likely to be used to

spread misinformation. The authors prove that the problem is not submodular nor monotone, and595

an approximation algorithm is then proposed. In [6], it is supposed that a misinformation campaign

and several truth campaigns happen at the same time. The goal is to identify a truth campaign

to minimize the spread of misinformation. A multi-cascade diffusion model is proposed to simulate

the propagation process. In this model, each user has a priority for each of the cascades and how a

message from each cascade may be perceived. This priority is determined based on the reputation600

of the source, personal opinion and reliability of message. A greedy algorithm is then proposed to

determine upper and lower approximations and obtain a solution.

The location of users is taken into account in [83, 84]. In [83], the goal is to minimize the

number of users who are located in a region R and are activated (influenced) by a misinformation

campaign. A quadtree is constructed based on the location of nodes; traversing this tree determines605

the nodes in R. Dynamic programming is then proposed to determine the influence of different

nodes on the nodes in R using the MIA method [28]. Most influential nodes are greedily identified

to contain the spread of misinformation in R. In order to increase the efficiency of the proposed

method, pruning nodes with small influence is suggested. In [84], this problem is more constrained

as nodes for the truth campaign are selected from the nodes of a specific region; the solution comes610

through the extension of methods in [83]. User mobility is taken into account in [85] and the SIR

diffusion model is extended to simulate rumour propagation in vehicular social networks. In order

to contain the spread of misinformation, a set of vehicular nodes are then chosen to spread the

truth among other nodes.

In comparison to structural methods, behaviour-aware methods can more effectively minimize615

the spread of misinformation as they consider user behaviour and preferences. However, such

information is not always available in real-world applications, which means that structural methods

may be more widely applicable.
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5.2. Protection-Oriented Methods

In protection-oriented methods, the problem is the identification of a set TN of minimum size620

so that a given percentage of users or part of the network are protected from misinformation; these

users are not affected by the misinformation campaign.

The problem is modelled as βIT -node protector in [86, 87]. In this model, it is assumed that the

spread of misinformation is triggered by a set I (source of misinformation), and can be propagated

at most T hops from a source. The goal is to identify a set TN of minimum size to protect a fraction625

of nodes, β, 0 < β < 1. The set I can be known or unknown; T can be unconstrained (T =∞) or

constrained by an integer value. Therefore, the problem has four variations. When I is unknown

(source-ignorant), the problem changes to influence maximization and it is about the selection of

a set TN that influences a fraction of nodes β. An iterative greedy algorithm is proposed to solve

the problem with both unconstrained and constrained T ; a node with maximum marginal influence630

is iteratively added to TN for as long as the influence of TN is less than β× | V |. Both the LT

and the IC diffusion models can be used by this algorithm to calculate the influence of TN . When

I is known (source-aware), with both unconstrained and constrained T , if the number of reachable

nodes by I is greater than (1−β)× | V |, an iterative greedy algorithm is applied to protect some of

these nodes and achieve the required β protection. Influential nodes are selected and added to TN635

until the set protects β× | V |. Due to the time complexity of determining the influence of nodes

in each iteration, a community-based algorithm is also proposed to protect a fraction of nodes β in

each community.

The community structure properties of a network are considered in [8]. It is supposed that the

spread of misinformation is triggered by some users in community Cr, i.e., MN ⊂ Cr. The goal is640

to contain misinformation within the community and prevent its propagation to other communities.

For this purpose, so-called bridge nodes, which are nodes located out of Cr and have at least one

neighbour in Cr, are first determined. A smallest set of influential nodes is identified to protect a

fraction β of the bridge nodes. This problem is solved using greedy algorithms under two different

scenarios: (i) opportunistic One-Activate-One where each active node attempts to influence one645

of its neighbours in the spreading process; (ii) deterministic One-Activate-Many where each active

node attempts to influence all of its neighbours. In [88], misinformation spread minimization in

multiplex networks is considered; a multiplex network is composed by several social networks which

are connected through overlapping users. Overlapping users can spread true information in several
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social networks; the goal is to identify the smallest set of nodes that have influence on the overlapping650

nodes as a way to reduce the influence of misinformation. To solve the problem, a greedy algorithm

is proposed that iteratively selects a node with maximum marginal influence using the IC diffusion

model.

6. Evaluation Strategies and Datasets

All methods proposed to solve the problem need to be evaluated regarding their performance.655

In principle, evaluation aims to assess the impact of a method on minimizing the number of nodes

of a graph that will be influenced by misinformation. Different graphs are used, which include both

synthetic graphs and graphs based on datasets from real-world networks.

In order to evaluate node or edge blocking methods, some nodes are randomly determined as

malicious nodes and their spreading ability (that is, how many nodes are influenced by misinforma-660

tion) is determined. Then, a blocking method is used to block a set of nodes (or, respectively, a set

of edges) and the spreading ability of the malicious nodes is re-assessed. The decrease in spreading

misinformation indicates the impact of the method.

In clarification-based methods, once again, some nodes are randomly determined as malicious

nodes and their spreading ability is determined. Then, a method is used to identify a set of nodes,665

which will initiate a truth campaign. Both malicious nodes and truth campaign nodes will spread

their messages. The number of nodes influenced by misinformation is calculated.

In addition to assessing the impact on minimizing the spread of misinformation, every method

is usually assessed with respect to its running time. Typically, a method is ran multiple times and

the average running time is reported.670

Regarding datasets, random models are used to generate synthetic graphs based on a desired

number of nodes, degree distribution, clustering coefficient, etc. A short description of the com-

monly used models along with the papers that use each of them is given in Table 4.

Table 5 lists some widely used real-world datasets along with a short description and references

to papers that use them. Repositories of real-world datasets include: http://snap.stanford.edu,675

http://konect.cc and http://networkrepository.com.

http://snap.stanford.edu
http://konect.cc
http://networkrepository.com


Table 4: Random models used to generate synthetic graphs

Model Description Used by

Barabasi-Albert

model [90]

Generates scale free networks which follow a power law distribution degree [39, 40,

49, 20, 71,

88, 59]

Watts-Strogatz

model [91]

Generates small world networks which have a high clustering coefficient and a

small average shortest path between pairs of nodes

[39, 43,

20, 71, 88]

Erdos-Reyni model [92] Generates networks with a small clustering coefficient and a small average short-

est path between pairs of nodes

[39, 40,

49, 20]

Dynamic attributed

networks with com-

munity structure

generation model [93]

Generates dynamic networks with a community structure by using micro-

operations and macro-operations

[52]

Kronecker model [94] Generates real life networks with static (power law of degree and eigenvalue distri-

bution, diameter) and temporal (densification of power law, shrinking diameter)

properties

[62]



Table 5: Graphs based on real-world datasets

Dataset Description Used by

Wikipedia Vote Network [95] Voting data from the Wikipedia community where directed edges indicate users who voted for other users [71, 75, 11, 76, 77, 82, 49,

46, 37, 33, 64]

High Energy Physics collabo-

ration network [96]

Scientific collaboration between authors of papers from arXiv [39, 43, 50, 67, 73, 77, 78,

12, 80, 82, 86, 8, 20]

High-energy physics theory

citation network [97]

Citation network from arXiv where a directed edge indicates a paper that cited another paper [47, 48, 37, 50, 33, 62, 67,

73, 76, 6]

Gnutella peer-to-peer net-

work [96]

Snapshots of the Gnutella peer-to-peer network where directed edges represent connections between hosts [45, 48, 49, 46, 37, 69, 82]

Epinion Social Network [98] Consumer reviews from Epinions.com where directed edges indicate a trust relationship [75, 11, 76, 62, 64, 49]

Slashdot social network [99] Slashdot user community where edges indicate directed friend/foe links between users [33, 77, 81]

Youtube social network [100] Friendships between Youtube users [11, 76, 81, 88]

Twitter [101, 102, 103] Relationships between Twitter users [41, 51, 35, 64, 79, 81, 6, 88]

Meme Tracker [104] Networks of hyperlinks between news sites where directed edges point to the source [59, 62, 51]

Oregon Autonomous Sys-

tems [97]

A communication network where nodes and edges may be added or deleted over time [45, 47, 48, 60, 51]

Facebook [101, 103] Friendships between Facebook users [44, 9, 35, 61, 63, 69, 74, 78,

81, 83, 84, 86, 88]



7. Conclusion and Future Directions

In this paper, proposed methods for misinformation spread minimization were classified into

two categories. In blocking-based methods the idea is to change the network structure; some nodes

and/or edges are removed from the network to minimize the spread of misinformation. Blocking680

nodes and/or edges comes with a cost and may lead to a discredit of the network if it takes a

long time to restore connectivity of nodes and edges. In clarification-based methods, the goal is to

increase the awareness of users by spreading truth information. This approach does not have the

challenges and costs of blocking, but it may be less efficient than a blocking approach.

There are various issues that may drive further research on this topic.685

First, the methods proposed have been developed predominantly in the last decade and still

need extensive evaluation using different types of networks, diffusion models, and so on. However,

as already observed, time complexity is often a key limitation, which may become even more of

an issue as there is a need to deal with increasingly larger networks and sophisticated models.

This suggests that increased attention on efficiency and scalability of the proposed methods will690

be necessary to be successful when minimizing the spread of misinformation. In practical terms,

it will not be viable for a method to take longer to find a solution that minimizes the spread of

misinformation than the time needed for misinformation to propagate, as there is a risk that by

the time a solution has been found the situation may have changed completely.

Second, all methods assume that the required data is readily available and correct. However,695

data availability cannot be always taken for granted. For example, access to complete data about

a network and its features or data related to users’ behaviour may not be always feasible. Leaving

aside issues related to privacy of some of this data, it appears that some methods may have to make

decisions under some sort of uncertainty.

Third, most of the proposed methods are designed and evaluated through diffusion models.700

These models are approximations primarily based on structural information that may fail to gen-

erate an accurate diffusion pattern. This means that the performance of different methods may

significantly change due to small changes in the diffusion pattern. As reported in [105] the actual

propagation pattern of information is likely affected by factors such as human behaviour, common

preferences or beliefs and social reinforcement. Diffusion models that take these factors into account705

can more realistically model the spread of misinformation and help with the evaluation of methods

to spread misinformation.
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Fourth, as highlighted by this review, the bulk of the methods for minimizing the spread of

misinformation are source-aware. When misinformation is detected, one has to pause and detect

the sources of misinformation first. Clearly, the success of these methods depends on good methods710

to detect the sources of misinformation. Proposing methods that can minimize the spread of

misinformation even if there is some uncertainty in source detection may also help.

Finally, a key element of the problem is the network structure. Existing research essentially

assumes that the network structure is fixed and does not change over time. This may help find

solutions but one may easily realize that more dynamic elements in the network structure may make715

it more realistic to capture the actual interactions in real-world social networks. In fact, multiplex

networks (composed of multiple social networks with overlapping users) have already been discussed

in some related research in the previous sections. One may think that temporal, dynamic (where

the network structure changes over time) as well as multiplex networks may be viewed as a more

relevant abstraction of social interactions than fixed networks. Algorithms to minimize the spread720

of misinformation will need to be developed for such networks.
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[31] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, T. Zhou, Vital nodes identification in

complex networks, Physics Reports 650 (2016) 1–63.800

[32] S. Wen, J. J. Jiang, Y. Xiang, S. Yu, W. Zhou, W. Jia, To shut them up or to clarify:

Restraining the spread of rumors in online social networks, IEEE Transactions on Parallel

and Distributed Systems 25 (12) (2014) 3306–3316.

[33] R. Yan, Y. Li, W. Wu, D. Li, Y. Wang, Rumor blocking through online link deletion on social

networks, ACM Transactions on Knowledge Discovery from Data 13 (2) (2019) 1–26.805

[34] L. Yang, Z. Li, A. Giua, Containment of rumor spread in complex social networks, Information

Sciences 506 (2020) 113–130.

[35] B. Wang, G. Chen, L. Fu, L. Song, X. Wang, Drimux: Dynamic rumor influence minimiza-

tion with user experience in social networks, IEEE Transactions on Knowledge and Data

Engineering 29 (10) (2017) 2168–2181.810

[36] A. I. E. Hosni, K. Li, S. Ahmad, Darim: Dynamic approach for rumor influence minimization

in online social networks, in: International Conference on Neural Information Processing,

Springer, 2019, pp. 619–630.

35



[37] D. Yang, X. Liao, H. Shen, X. Cheng, G. Chen, Dynamic node immunization for restraint

of harmful information diffusion in social networks, Physica A: Statistical Mechanics and its815

Applications 503 (2018) 640–649.

[38] Q. Wu, X. Fu, Z. Jin, M. Small, Influence of dynamic immunization on epidemic spreading

in networks, Physica A: Statistical Mechanics and its Applications 419 (2015) 566–574.

[39] P. Holme, B. J. Kim, C. N. Yoon, S. K. Han, Attack vulnerability of complex networks,

Physical Review E 65 (5) (2002) 056109.820

[40] C. M. Schneider, T. Mihaljev, S. Havlin, H. J. Herrmann, Suppressing epidemics with a

limited amount of immunization units, Physical Review E 84 (6) (2011) 061911.

[41] P. Dey, S. Roy, Centrality based information blocking and influence minimization in online

social network, in: 2017 International Conference on Advanced Networks and Telecommuni-

cations Systems, IEEE, 2017, pp. 1–6.825

[42] S. Wang, X. Zhao, Y. Chen, Z. Li, K. Zhang, J. Xia, Negative influence minimizing by

blocking nodes in social networks, in: Proceedings of the 17th Conference on Late-Breaking

Developments in the Field of Artificial Intelligence, AAAI Press, 2013, pp. 134–136.
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