
BEYOND ATOPY: MULTIPLE PATTERNS OF SENSITIZATION IN RELATION TO 

ASTHMA IN A BIRTH COHORT STUDY 

 

Angela Simpson*1, Vincent Y. F. Tan*2, John Winn3, Markus Svensén3, Christopher M. Bishop3, 

David E. Heckerman4, Iain Buchan5, Adnan Custovic1 

*Joint first authorship 

 

1The University of Manchester, Manchester Academic Health Science Centre, NIHR 

Translational Research Facility in Respiratory Medicine, University Hospital of South 

Manchester NHS Foundation Trust, Manchester, UK 

2Stochastic Systems Group, Laboratory for Information and Decision Systems, Massachusetts 

Institute of Technology, Cambridge, MA 02139, USA 

3Microsoft Research Cambridge, Cambridge, UK 

4eScience Research Group, Microsoft Research, Redmond, Washington 98052, USA 

5The University of Manchester, Northwest Institute for Bio-Health Informatics (NIBHI), 

Manchester, UK 

 

Correspondence and requests for reprints: 

Dr Angela Simpson, University of Manchester, ERC Building, Second floor, Wythenshawe 

Hospital, Manchester M23 9LT, UK 

Phone: +44 161 291 5871, Fax: +44 161 291 5730, Email: angela.simpson@manchester.ac.uk 

Funding: Asthma UK Grant No 04/014, Moulton Charitable Trust, The James Trust and 

Microsoft Research 

Running title: Atopic latent vulnerability and asthma 

Descriptor Number: 101 

Page 1 of 51
 Media embargo until 2 weeks after above posting date; see thoracic.org/go/embargo

AJRCCM Articles in Press. Published on February 18, 2010 as doi:10.1164/rccm.200907-1101OC 

Copyright (C) 2010 by the American Thoracic Society. 

mailto:angela.simpson@manchester.ac.uk


 2

In epidemiological studies and clinical practice, children are classified as atopic if they have a 

positive IgE or skin prick test.  By adopting a machine learning approach, we have identified that 

IgE antibody responses do not reflect a single phenotype of atopy, but multiple different atopic 

vulnerabilities. We have demonstrated that only one of these atopic classes (Multiple Early 

Atopic Vulnerability) predicts asthma.   
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ABSTRACT 

Background: The pattern of IgE response (over time or to specific allergens) may reflect 

different atopic vulnerabilities which are related to the presence of asthma in a 

fundamentally different way from current definition of atopy. 

Methods: In a population-based birth cohort in which multiple skin and IgE tests have 

been taken throughout childhood, we used a machine learning approach to cluster 

children into multiple atopic classes in an unsupervised way.  We then investigated the 

relation between these classes and asthma (symptoms, hospitalizations, lung function 

and airway reactivity). 

Results: A five-class model indicated a complex latent structure, in which children with 

atopic vulnerability were clustered into four distinct classes (Multiple Early [112/1053, 

10.6%]; Multiple Late [171/1053, 16.2%]; Dust Mite [47/1053, 4.5%]; and Non-dust Mite 

[100/1053, 9.5%]), with a fifth class describing children with No Latent Vulnerability 

[623/1053, 59.2%].  The association with asthma was considerably stronger for Multiple 

Early compared to other classes and conventionally defined atopy (odds ratio [95% CI]: 

29.3 [11.1-77.2] vs. 12.4 [4.8-32.2] vs. 11.6 [4.8-27.9] for Multiple Early class vs. Ever 

Atopic vs. Atopic age 8). Lung function and airway reactivity were significantly poorer 

amongst children in Multiple Early class.  Cox regression demonstrated a highly 

significant increase in risk of hospital admissions for wheeze/asthma after age 3 years 

only amongst children in the Multiple Early class (HR 9.2 [3.5-24.0], p<0.001).   

Conclusions: IgE antibody responses do not reflect a single phenotype of atopy, but 

several different atopic vulnerabilities which differ in their relation with asthma presence 

and severity.   

 

Key words: asthma, atopy, unsupervised clustering, Bayesian inference, machine 

learning in epidemiology 
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INTRODUCTION 

Atopy is a term describing the tendency to become IgE-sensitized to common allergens 

to which most people are exposed but don’t have a prolonged IgE antibody response(1, 

2). In most literature, atopic sensitization is defined as a positive allergen-specific serum 

IgE (sIgE) test or skin prick test (SPT) to any common food or inhalant allergen(s), and 

atopic sensitization thus defined remains the single strongest risk-factor for asthma in the 

western world(3-5).  Although evidence from twin and family studies suggests a strong 

genetic component of atopy(6), more than a decade of intensive work has failed to 

identify causal associations with genetic variants that are consistently replicated(7). 

Similarly, the increase in prevalence of atopy since the 1960s suggests an important 

environmental component, but no environmental exposure has consistently been 

associated with the development of the atopy(8).  We propose that one reason for this is 

phenotypic heterogeneity, as the diagnostic label of “atopy” may encompass many 

different phenotypes with different aetiologies, not all of which are associated with 

symptomatic disease.  The conventional epidemiological approach does not reflect the 

complexities of disease; consequently, reproducible genetic and environmental studies 

remain elusive.   

We speculate that the presence of positive ‘allergy test’ (either sIgE or SPT) does not 

equate to the atopic phenotype associated with symptomatic allergic disease. We 

hypothesize that more useful information may be obtained by identifying common 

underlying statistical clusters that are characterized by IgE responses.  Several recent 

publications have demonstrated the utility of using a clustering approach in 

multidimensional data to identify different asthma phenotypes(9-12).  Results of latent 

class analysis on a large dataset collected annually over a 7 year period identified six 

childhood wheezing phenotypes, two of which had not been described previously(10). 

Unsupervised hierarchical cluster analysis identified five distinct clinical phenotypes of 
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adult asthma, emphasising the need for new approaches for classification of disease 

phenotypes(11). We conducted a Principle Component Analysis using answers to 

multiple questions relating to wheeze to identify five syndromes of coexisting symptoms 

which are likely to reflect different underlying pathophysiologic processes(12).  

Ideally, one should aim to model all available data (i.e. multiple measurements at 

multiple time points) to identify latent variables which best describe the structure of the 

data. Such models would need to be tailored to individual datasets, to precisely encode 

prior knowledge and to scale up to large volumes of data. A machine learning approach 

using Bayesian inference for unsupervised learning of latent variables to identify 

structure within the data is used commonly by computer scientists for problems in many 

other fields, and is ideally suited to this task. We applied this approach to a large 

complex data-set from a population-based birth cohort in which measures of allergic 

sensitization (both sIgE and SPT) to multiple inhalant and food allergens have been 

taken throughout childhood, to assign children to atopic latent classes in an 

unsupervised way, thus avoiding constraints placed by pre-specified ideas of the nature 

and number of such classes. We sought to investigate whether these different latent 

atopic classes were related to the presence or absence of asthma, in ways that are 

fundamentally different from current diagnostic categories.
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METHODS 

Study design, setting and participants 

Manchester Asthma and Allergy Study is a population-based birth cohort(13-16) (detailed 

description in Online supplement). Participants were recruited prenatally and followed 

prospectively, attending review clinics at ages 1, 3, 5 and 8 years. The study is 

registered as ISRCTN72673620 and approved by the Local Research Ethics Committee 

(04/Q1403/45). Written informed consent was obtained from all parents, and children 

gave their assent. 

Definition of variables 

Atopic sensitization: We ascertained atopic sensitization by skin-prick tests (Hollister-

Stier, VA, USA) and measurement of sIgE (ImmunoCAP, Phadia, Uppsala, Sweden) at 

each time point to a panel of inhalant and food allergens (summarized in Table E2).  We 

defined allergen-specific sensitization as mean wheal diameter at least 3mm greater than 

the negative control and/or specific IgE≥0.35 kU/l.  The conventional definition 

considered a child to be atopic if (s)he had allergen-specific sensitization to at least one 

allergen.  Children with any positive test (SPT or sIgE) at any time point were considered 

to be “Atopic ever”. 

Wheeze:  A validated questionnaire was interviewer-administered to collect information 

on parentally-reported symptoms, physician-diagnosed illnesses and treatments 

received.  Current wheeze was defined as wheeze in the past 12 months. 

Based on prospectively collected data, children were assigned to the following wheeze 

phenotypes: No wheezing–no wheezing ever at any follow-up by age 8 years; Transient 

early wheezing–wheezing only during the first 3 years; Late-onset wheezing–wheezing 

started after age 3 years; Persistent wheezing–wheezing during the first 3 years, 

wheezing in the previous 12 months at ages 5 and 8 years. Intermittent wheezing–

wheezing at one time point during the first 5 years, wheezing at age 8 years. 
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Lung function: We measured specific airway conductance (sGaw) using whole-body 

plethysmography at age 3 and 5 years(15, 17) and FEV1 using spirometry at age 8 years 

(online supplement). 

Airway hyper-reactivity (AHR-methacholine challenge):  Assessed at age 8 years in a 5-

step protocol using quadrupling doses of methacholine (Table E1) according to ATS 

guidelines(18).  A dose-response ratio was calculated and transformed as previously 

described(19).  

Asthma: We used a stringent epidemiological definition of asthma at age 8 years as 

symptomatic airway hyper-reactivity (i.e. presence of current wheeze and positive 

methacholine challenge)(20). 

Hospital admission for asthma/wheeze: A trained physician reviewed the written and 

computerized primary care medical records and extracted the data on hospitalizations for 

wheeze or asthma(21). 

Data analysis  

We took a machine learning approach to the data analysis. Using a Hidden Markov 

Model (HMM)(22), all available SPTs and sIgEs (collected at review clinics at ages 1, 3, 

5 and 8 years) were used to infer one multinomial latent variable per child so as to 

cluster the children in an unsupervised manner into different sensitization classes (Figure 

1).  At the core of the model are the 4 dichotomous latent Acquired Sensitization 

variables for each allergen which are linked together in a Markov chain across the 4 time 

points.  We inferred time-dependent transition probabilities (i.e. the probabilities of 

gaining and losing sensitization at each age) which were assumed to be shared by all 

children in each sensitization class, but were allowed to differ between classes.  

Inference: Inference was performed using Infer.NET 

(http://research.microsoft.com/infernet), a Microsoft-owned library for large-scale 

Bayesian inference, which is now freely available for research purposes. We used 
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Infer.NET to infer the false and true positive rates of the SPTs and sIgEs, missing values, 

the class-specific state-transition probabilities, the observation (emission) probabilities, 

the acquired sensitization variables and also the sensitization class for each child.  An 

approximate Bayesian inference method (Variational Message Passing-VMP)(23) was 

used to perform the inference in an efficient manner. 

Robustness and reproducibility: Robust and reproducible clustering was achieved by 

training the sensitisation HMM multiple times on different subsets of children and 

selecting the clustering which both gave good predictions on the remaining children and 

which was robust to the subset of children selected.  Reproducibility was confirmed by 

computing confusion matrices between different replications of the clustering process 

(see detailed description and confusion matrices in Online supplement). 

Handling the missing data: Variables corresponding to missing data values were 

included in the model but treated as unobserved.  Distributions over these missing data 

values were computed using VMP based on the available measurements.  

Sensitization Class: This is a multinomial variable indicating to which sensitization class 

each child belongs (out of between 2 and 5 classes).  The model assumes that each 

child belongs to one of these classes.  We investigated a two-class and a five-class 

model (see Online supplement).  No assumptions were made about the nature of each 

class.  During inference, a distribution was computed for each child giving the probability 

of their belonging in each class.  For further analysis, we assumed the child belonged to 

the highest probability class. 

We then investigated the association between the classes we had inferred in a 

completely unsupervised manner and the clinical outcomes using appropriate statistical 

methods (chi-squared test, logistic regression, Kaplan-Meier univariate estimates and 

Cox regression multivariate estimates of survival/clinical status).  Results are presented 

as the main effect with 95% confidence intervals (CI).
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RESULTS 

Of the 1186 participants with any evaluable data, 133 who were randomized into the 

primary prevention study(24, 25) were excluded from the analysis of the association 

between clinical outcomes and inferred sensitization class.  All remaining children with 

available clinical outcomes were included at each time point (Table E2).  There was no 

difference in parental history of allergic disease between children with or without missing 

data on clinical outcomes (data available on request). 

At age 8 years, 18% (163/905) of children had current wheeze; 13.7% (124/905) were 

persistent wheezers and 8.1% (45/555) had asthma (symptomatic AHR).  Data collected 

from primary care records revealed that 16.7% (136/814) of children had been admitted 

to hospital with wheezing/asthma on at least one occasion during the first eight years of 

life.  Using conventional definitions, of 827 children who had either SPT or sIgE 

measured at age 8 years, 322 (38.9%) were considered atopic; 1029 children had at 

least one assessment of atopic status throughout the duration of the follow-up, of whom 

441 (42.9%) were considered to be atopic ever. 

Sensitization Class 

The structure of the classes was inferred in a completely unsupervised manner using all 

data (SPT and sIgE) from all four time points with missing data inferred using Variational 

Message Passing(23) (i.e. we did not assume beforehand how the children will be 

clustered, the unsupervised learning algorithm automatically discovered the latent 

structure) under the assumption that data was missing at random.  

We present the results with the sensitization state being considered to have two classes 

(best reflecting a conventional assignment to atopy/no atopy), and five classes (which 

better captured the underlying structure of the data). 

Two-class model: The children were assigned as having either a Latent atopic 

vulnerability (280/1053, 26.6%) or No latent atopic vulnerability (773/1053, 73.4%) 
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(Figure E1); 161 of 440 children (36.6%) who were sensitized on at least one occasion 

were classified as not vulnerable. Compared with conventional definitions, there was 

complete agreement in 86.0% (Atopy age 8 years) and 84.0% of cases (Atopy ever). 

Five-class model: This model indicated a more complex latent structure incorporating 

time-varying probabilities of the gain and the loss of sensitization (Figure E2).  The 

children with latent atopic vulnerability were clustered into four distinct sensitization 

classes, which, based on our interpretation of the characteristics of each class, we 

assigned as the following:  

(1) Non-dust Mite Atopic Vulnerability (100/1053, 9.5%) 

(2) Dust Mite Atopic Vulnerability (47/1053, 4.5%) 

(3) Multiple Late Atopic Vulnerability (171/1053, 16.2%)  

(4) Multiple Early Atopic Vulnerability (112/1053, 10.6%)  

The final class comprised children with No Latent Vulnerability (623/1053, 59.2%).  In 

this model, 61/440 (13.9%) children who were atopic ever were classified as having No 

Latent Vulnerability; amongst 322 children who were atopic at age 8, 36 (11.2%) were 

classified as having No Latent Vulnerability.  All but one child in the Multiple Early class 

were atopic at age 8 years using conventional definition, but the Multiple Early class 

comprised only 28.0% of those atopic at age 8 years (Table E3). 

To determine the appropriate number of classes, differing numbers of clusters were 

tested as to their ability to predict the sensitization state of children where that state was 

artificially made missing. This imputation process suggests that between 3 and 5 clusters 

were justified (Figure E3 in the Online supplement) and so a 5-class model was selected 

since it exposed the most information about the structure of the data set. The choice of 5 

classes was also validated when considering the confusion matrices found when the 

clustering process was replicated (see Tables E4 and E5 in the Online supplement).  For 

the 5-class case, there was very little confusion between different clusterings, indicating 
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that the 5-class clustering is robust. For example, for the Multiple-Early class 111 of the 

112 children assigned to this class in the reference clustering were repeatedly assigned 

to the same class in other 5-class clusterings. 

Sensitization class and clinical outcomes   

We went on to ascertain relationships between atopy defined conventionally (atopic ever, 

atopic at age 8 years), the novel latent classes (two-class and five-class models) and 

clinical phenotypes associated with asthma (current wheeze, persistent wheeze, 

symptomatic AHR, hospital admission with asthma/wheeze), adjusting for gender.  The 

results are presented in Figures 2 and E4 and Table E6.  The relationships with clinical 

outcomes for ever atopic, atopic at age 8 years and the two-class model were not 

materially different.  However, for the five-class model, it was apparent that there were 

marked differences between the four classes of atopic vulnerability, in that the 

associations with clinical outcomes were considerably stronger for Multiple Early 

compared to other classes, the two-class model and conventionally defined atopy (e.g. 

for symptomatic AHR, odds ratio [95% CI]: 29.3 [11.1-77.2] vs. 12.4 [4.8-32.2] vs. 11.6 

[4.8-27.9] vs. 9.2 [4.5-18.9] for Multiple Early class vs. Ever Atopic vs. Atopic age 8 vs. 

Latent Atopic vulnerability-two-class model; Table E6).  There was a very strong 

association between Multiple Early class and persistent wheezing (12.9 [6.8-24.4]. 

These finding indicated that IgE antibody responses do not reflect a single phenotype of 

atopy, but several atopic vulnerabilities which differ in their relationship with asthma.  To 

further test this, we proceeded to investigate the relationship between markers of asthma 

severity (objective measures of lung function and airway reactivity, hospital admissions) 

within the five-class model.  

Lung function, airway reactivity and hospital admissions in the five-class model  

In the univariate analysis we found a significant association between sGaw at age 3 and 5 

years, FEV1, FEV1/FVC ratio and DRR at age 8 years and five-class latent variable 
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(Table E7).  Multiple comparison test (Tukey) revealed that for all measures of lung 

function and airway reactivity, lung function was significantly poorer amongst children in 

Multiple Early class compared to those with No Latent Atopic Vulnerability, with little 

differences between the other three classes and the No Latent Vulnerability class (Table 

E7, Figures E5-E9). 

In the multiple ANOVA models adjusted for gender, maternal smoking and wheezing 

(sGaw, FEV1/FVC ratio and DRR) and gender, wheezing, maternal smoking and height 

(FEV1), children in the Multiple Early class had significantly poorer lung function 

compared to those in the No Latent Vulnerability class (sGaw age 3, p=0.02; sGaw age 5, 

p=0.01; age 8 FEV1, FEV1/FVC ratio and DRR: p<0.001; Table 1). There were no 

significant differences in lung function between the other three classes and the No Latent 

Vulnerability class, apart from airway reactivity (DRR) being significantly higher in the 

Multiple Late class (p=0.05, Table 1). 

Kaplan-Meier plots demonstrating the age of the first hospital admission with 

wheeze/asthma in relation to the five-class model are presented in Figure 3A. The 

results of a Cox regression that included the five classes, gender and maternal smoking 

indicated a highly significant association between the risk of hospital admission and five-

class model (P<0.0001), with a risk of hospital admission increasing amongst children in 

the Multiple Early class (hazard ratio (HR) [95% CI], 5.1 [2.8-9.3], p<0.001),  Dust Mite 

class (3.4 [1.4-8.2.7], p=0.004) and Non-dust Mite (2.5 [1.2-5.3, p=0.02]), but not those in 

the Multiple Late class (1.3 [0.6-2.9, p=0.4]).  In order to remove the effect of hospital 

admission for wheeze caused only by early-life virus infections, we have reanalyzed the 

data on the time to the first hospital admission with wheeze/asthma amongst children 

who had a hospital admission after age 3 years (Kaplan-Meier plot, Figure 3B).  Cox 

regression demonstrated a highly significant increase in risk only amongst children in the 

Multiple Early class (HR 9.2 [3.5-24.0], p<0.001).  
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Discussion 

Principal findings 

We have demonstrated that genuinely novel phenotypes of atopy can be revealed by 

adopting a machine learning approach which takes full advantage of the data-intensive 

environment provided by a birth cohort study.  Machine learning techniques identified 

latent structures within the data which may accurately reflect “unbiased” phenotypes of 

atopy and avoid constraints of investigator-imposed classifications.  Our results suggest 

that IgE antibody responses do not reflect a mere presence or absence of atopy, but 

instead multiple atopic vulnerability classes.  The validity of these classes was tested by 

examining their relations to the presence and severity of asthma and measures of lung 

function, which demonstrated that different atopic vulnerabilities (i.e. different phenotypes 

of atopy) differ markedly in their relationship with asthma. It is not the presence or 

absence of specific IgE antibodies, but the pattern of the response (age at development, 

type and number of specific allergens involved) that has a fundamental effect on the 

clinical expression of asthma.  It is of note that less than a third of children who would 

have been considered atopic at age 8 years using conventional diagnostic criteria were 

in the class most strongly associated with asthma (Multiple Early), whereas there was 

little appreciable increase in risk of asthma amongst those in the other classes.  We 

propose that positive specific IgE or positive skin prick tests do not equate to atopy, but 

should be viewed as intermediate phenotypes of a true atopic vulnerability.  This may be 

analogous to asthma, where a collection of intermediate phenotypes can objectively be 

measured (e.g. peak flow variability, airway hyper-reactivity, or an obstructive spirometric 

pattern), but  individually their presence does not equate to a diagnosis of asthma(26). 

Strengths and limitations 

We recognize that Bayesian learning applied to a longitudinal dataset is exploratory and 

hypothesis generating, rather than confirmatory.  However, the classes we identified 
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seem intuitively correct (i.e. have face validity), and we have demonstrated significant 

relationships with asthma, lung function and airway reactivity (i.e. have content validity). 

We acknowledge the computational complexity and intensity of this analysis.  It is 

important to emphasise that this is not a simple “black box” or the “data-mining” 

approach; the analysis is informed by and capitalizes on the wealth of knowledge which 

already exist on the problem.  Once determined, the classes may become clinical 

outcome variables in their own right and can be used in further analyses. Such 

dimensionality reduction reduces the need for repeated cross-sectional analysis, as often 

seen in longitudinal datasets, and reduces the need for multiple testing.   

A strength of our model is that is generative, enabling missing measurements to be 

handled meaningfully.  A further strength of the study is that the prevalence of atopic 

sensitization among the parents of the children in our cohort(27, 28) is similar to that of 

young adults in the UK(29), suggesting that the cohort is representative of the general 

population.  However, it would be of great value and importance to explore similar 

approaches in the other large birth cohort studies. We recognize that the number of 

relevant classes might be different to the five reported here, and further replications 

would be desirable. 

We acknowledge that our findings do not have an immediate impact on clinical practice. 

However, we argue that our approach to data analysis will advance our understanding of 

the etiology of asthma.   

Interpretation of the study 

The study of asthma at the population level to date has been predominantly hypothesis 

driven, often focussing on ill-defined, over-simplified phenotypes, using reductionist 

approaches to causality.  Whilst identifying some major independent determinants of 

disease, this approach does not fully reflect the complexity of disease.  Furthermore, it 

fails to take full advantage of the richness of the available datasets collected in birth 
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cohort studies. We propose that one of the reasons for contradictory findings reported by 

a number of genetic and environmental studies aiming to elucidate the mechanisms of 

asthma is phenotypic heterogeneity and poor phenotype definition.       

In epidemiological studies of allergic diseases investigators collect large volumes of 

information, often at multiple time points.  Data on sensitization collected over a time 

series may be used to assign a phenotype based on distinctive patterns of results (e.g. 

early, late or very late IgE sensitization(30), mono- or poly-sensitization(30), remission or 

persistence(30), declining, flat or increasing pattern(31)). These categories are often 

imposed by the investigators, and do not necessarily reflect the substructure within the 

dataset.  Ideally, one should aim to model all the data to identify a single multinomial 

latent variable which best describes the structure of the data.  By using a machine 

learning approach, we have demonstrated that diagnostic label of “atopy” encompasses 

several different phenotypes which may have different etiologies. 

Since these classes better reflect the presence and severity of disease, we propose that 

further efforts be made to develop new diagnostic tests that will allow clinicians to better 

differentiate between the true atopic classes than the currently available tests.  Current 

reagents for skin testing and specific IgE measurement are based on whole extracts 

containing multiple proteins, many of which are recognized by IgE antibodies(32) (e.g., 

for dust mite D pteronyssinus there are >20 recognized allergens(33)).  We speculate 

that response to different individual proteins within an allergen may be associated with 

different atopic classes (and consequently different clinical phenotypes). Utilization of this 

component-based approach may offer novel diagnostic possibilities and improve the 

value of allergy diagnosis, allowing practicing physicians more accurate diagnosis based 

on a single measurement at the time of presentation. 

We have previously extended the observation that sensitization to inhalant allergens is a 

risk factor for wheezing by demonstrating that the level of specific IgE antibodies offers 
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more information than just the presence of  IgE(34).  The current paper introduces the 

concept of different atopic vulnerabilities with distinct characteristics in terms of their 

association with disease.  We have demonstrated that only one of the atopic classes 

(Multiple Early) predicts asthma.  This may in part explain the huge variability in the 

relationship between “atopy” and asthma observed in the different parts of the world (e.g. 

the fraction of wheeze attributable to sensitization ranges from 0% in Turkey to 94% in 

China(35)), as the relative contribution of different atopic vulnerabilities to “atopy” may 

differ in each location consequent to differences in genetic predisposition and 

environmental exposures.  

Conclusions 

Viewing atopic sensitization as a dichotomous trait in its relationship to asthma may be 

an oversimplification.  Our data suggest that IgE antibody responses do not reflect a 

single phenotype of atopy, but several different atopic vulnerabilities which differ in their 

relationship with asthma.  One of these atopic vulnerability classes (Multiple Early, 

comprising approximately one quarter of children who would be considered atopic using 

conventional definition) predicts not only the presence, but also persistence and severity 

of childhood asthma. 
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LEGEND FOR FIGURES 

 

Figure 1.  Graphical representation of a Hidden Markov Model: all available SPTs and 

sIgEs were used to infer one multinomial latent variable per child to cluster the children in 

an unsupervised manner into different sensitization classes 

 

Figure 2.  Association between atopy defined conventionally (atopic ever, atopic at age 8 

years), the novel latent classes (two-cluster and five-cluster models) and clinical 

phenotypes associated with asthma ascertained by age 8 years: regression analysis 

adjusted for gender.  Results expressed as adjusted odds ratios and 95% confidence 

intervals  

 

Figure 3.  Kaplan-Meier Estimates of Cumulative Risk of hospital admission with 

wheeze/asthma during the first 8 years of life stratified on Five-class model 

Panel A:  Age at first hospital admission for children with hospital admission with 

wheeze/asthma at any age  

Panel B: Age at first hospital admission amongst children who had a hospital admission 

after age 3 years 
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Table 1.  Lung function (specific airway conductance at ages 3 and 5 years; FEV1 and 

FEV1/FVC ratio at age 8 year) and airway reactivity (dose-response ratio – DRR) in 

children with different latent atopic vulnerabilities in the five-class model 

Estimated marginal means and 95% CIs from multiple ANOVA models adjusted for gender, 

maternal smoking and wheezing (sGaw and FEV1/FVC ratio) and gender, wheezing, maternal 

smoking and height (FEV1)   

 

 No Latent atopic 

vulnerability 

 Non-dust Mite Dust mite Multiple late Multiple early 

sGaw age 3, kPa/s 

 

0.90 

0.87-0.92 

0.90 

0.83-0.98 

0.97 

0.89-1.07 

0.88 

0.83-0.94 

0.83 

0.78-0.88 

sGaw age 5, kPa/s  

 

0.84 

0.82-0.87 

0.82 

0.79-0.86 

0.84 

0.79-0.90 

0.85 

0.82-0.88 

0.81 

0.78-0.84 

FEV1 age 8, (L/sec)  

 

1.58 

1.54-1.62 

1.62 

1.54-1.70 

1.60 

1.54-1.66 

1.57 

1.53-1.61 

1.47 

1.42-1.52 

FEV1/FVC age 8 (%) 

 

86.01 

84.76-87.25 

86.86 

84.38-89.34 

85.97 

84.02-87.92 

85.32 

84.08-86.56 

83.82 

82.40-85.24 

DRR age 8 

 

8.40 

6.61-10.49 

6.33 

3.61-10.42 

7.64 

5.07-11.28 

9.73 

7.55-12.52 

13.32 

9.96-18.03 
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Figure 1 
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Figure 2 
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Figure 3A 
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Figure 3B 
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METHODS  

Study populations 

The Manchester Asthma and Allergy Study is an unselected, population-based 

prospective study which follows the development of asthma and other atopic disorders in 

a cohort of children.  The setting is the maternity catchment area of Wythenshawe and 

Stepping Hill Hospitals, comprising of 50 square miles of South Manchester and 

Cheshire, UK, a stable mixed urban-rural population.  Study was approved by the Local 

Research Ethics Committee. Informed consent was obtained from all parents. 

Screening & Recruitment  

All pregnant women were screened for eligibility at 'Booking' antenatal visits (8th-10th 

week of pregnancy).  The study was explained to the parents, and informed consent for 

initial questionnaires and skin prick testing was obtained.  Both parents completed a 

questionnaire about their and their partner’s history of asthma and allergic diseases and 

smoking habits.   

If the pregnant woman’s partner was not present at the antenatal clinic visit, an invitation 

was sent for him to attend an open-access evening clinic for skin prick testing and 

questionnaire.  Once both parents had completed questionnaires and skin prick testing, 

a full explanation of the proposed future follow-up for the child was given.  

Of the 1499 couples who met the inclusion criteria (<10 weeks of pregnancy, maternal 

age >18 years, questionnaire and skin test data available for both parents), 288 declined 

to take part in the study.   

Of the 1186 participants with any evaluable data, 133 who were randomized into the 

primary prevention study were excluded from the analysis of the association between 

clinical outcomes and inferred sensitization class.   
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Follow-up 

The children have been followed prospectively, and attended review clinics at ages 1, 3, 

5 and 8 years (±4 weeks).  At age 1 year, only high and low risk children were invited to 

attend for clinical follow up. At all other time points for all other measures all children 

were invited to participate. 

Definitions of exposures and outcomes 

Atopic sensitization   

Atopic sensitization was ascertained by skin prick testing at age 1, 3, 5 and 8 years (D 

pteronyssinus, cat, dog, grasses, moulds, milk, egg [Bayer, Elkahrt, IN, USA]). We 

defined sensitization as a mean weal diameter 3mm greater than negative control to at 

least one of the allergens tested.  We also measured specific serum IgE to mite, cat, 

dog, grasses, milk, egg and peanut by ImmunoCAPTM (Phadia, Uppsala, Sweden) 

collected at the four time points. We defined allergen-specific sensitization as mean 

wheal diameter at least 3mm greater than the negative control and/or specific 

IgE≥0.35kU/l.  Conventional definition considered a child to be atopic if he/she had 

allergen-specific sensitization to at least one allergen.  Children with any positive test 

(skin test or IgE) at any time point were considered to be atopic ever, and those with no 

evidence of sensitisation as never atopic. 

Wheeze 

A validated ISAAC questionnaire was administered by a trained interviewer to collect 

information on parentally reported symptoms, physician-diagnosed illnesses and 

treatments received.  

Lung function  

At age 3 and 5 years we carried out measurements of specific airway conductance 

(sGaw) to assess airway function in all children who were willing to cooperate.  

Measurements were made using a constant volume whole body plethysmograph 
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(Masterscreen Body 4.34; Jaeger, Würzburg, Germany).  Flow and volume were 

measured with a heated differential pressure screen-type pneumotachograph with a 

resistance of 0.036 kPa-1
⋅s and a dead space of 160mls.  Pressure measurements were 

made with a pressure transducer (Nr.660.99007; Hube Control AG, Wuerenlos, 

Switzerland) with an input range of ±100 Pa, a resolution of 0.05 Pa and a linear 

response up to 10 Hz.  The plethysmograph was calibrated daily.  Sensors in an ambient 

unit supplied with the plethysmograph recorded ambient data on temperature, humidity 

and barometric pressure. The pneumotachograph was volume calibrated according to 

the American Thoracic Society recommendations using a 2 L syringe at flow rates of 0–

1.5, 1.5–5 and >5 l/s.  The half value period was calibrated to ensure a specific leakage 

in the box of 4-7 seconds. 

The pressure transducer was calibrated using a 50 mL motor driven piston pump to 

generate sinusoidal variations of plethysmographic pressure.  Electronic body 

temperature, pressure, and saturation (BTPS) compensation was applied throughout, 

using a time-shift of 60 ms.   

sGaw is measured by a single-step procedure from the simultaneously measured 

changes of respiratory flow and changes of plethysmographic pressure, omitting the 

measurement of TGV.  Measurements were carried out during tidal breathing using a 

facemask, which was adapted by fitting a standard paediatric facemask with a non-

compressible mouthpiece made from silicone tubing.  The end of the tubing was made 

rigid with an aluminium splint.  The purpose of this was to maintain stable airway 

opening, prevent nose breathing and support the cheeks.  The procedure was explained 

to the accompanying adult and the use of the facemask demonstrated to the child.  The 

children were encouraged to sit in the plethysmograph alone but if they refused, the 

accompanying adult, usually a parent, accompanied the child in the plethysmograph 
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cabinet with the child seated on their knee.  The door of the plethysmograph was closed 

and the subject asked to breathe through the facemask.  

Children were encouraged to breathe at a rate of 30-45 breaths per minute.  If a parent 

accompanied the child, the adult was asked to inhale and hold their breath for 

approximately 20 seconds.  sGaw measurements were made once a stable breathing 

pattern had been re-established.  Once a stable breathing pattern was established, at 

least three measurements of sGaw were performed, and each was calculated from the 

means of 5 consecutively measured technically acceptable loops (each child performed 

at least 15 loops).  The median of these 3 measurements of effective sGaw was used in 

the analysis.  The measured values of sGaw were corrected for the influence of the 

pneumotachograph screen and for the volume displacement caused by the subject (or 

subject + parent).   

Children were asymptomatic at the time of assessment of lung function.   

Airway reactivity - Methacholine Challenge 

Airway reactivity was assessed using a 5 step protocol performed according to ATS 

guidelines. The methacholine (acetyl-β-methylcholine chloride) solutions were prepared 

with sterile normal saline (Stockport Pharmaceuticals, UK). Quadrupling doses of 

methacholine (0.0625 – 16.0 mg/mL) were delivered to subjects via a DeVilbiss 646 

nebuliser (Sunrise Medical HHG, Somerset, PA) and a KoKo dosimeter (Pulmonary Data 

Services, Doylestown, PA) calibrated to deliver 0.009 mL per 0.6s actuation. The dosing 

schedule is described in Table E1. The test was explained to the subject and the best 

baseline FEV1 measurement performed in the wedge bellow spirometer was recorded. 

The predicted FEV1 was calculated and if the measured values was <1.0 l or less than 

60% predicted the test was not performed. If the child was unable to produce 

reproducible FEV1 measurements the procedure was abandoned. Assuming the child 

met the criteria to continue, the 20% drop from the child’s baseline value was calculated 
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so that the operator would know when to stop the test. After normal tidal expiration to 

FRC (functional residual capacity) the dosimeter was triggered at the onset of 

inspiration, and the subject asked to inhale slowly and deeply over 6 s. Subjects were 

instructed to hold their breath for 5 s, followed by slow exhalation for 5 s. FEV1 was 

measured 30 and 90 seconds after 5 inhalations of each dose of methacholine.  The 

challenge was stopped when either a 20% fall in FEV1 was observed, or the maximum 

methacholine concentration had been administered with a fall of less than 20% in FEV1. 

Children were categorized as having a positive or a negative challenge based on 

whether or not they reached a 20% fall in FEV1 by the final dose of the challenge 

(16mg/ml). 

 Hospital admission for asthma/wheeze:: The UK health care system ensures that a 

single medical record is held by the primary care physician which provides a full record 

of all encounters with health professionals. GPs are legally required to maintain accurate 

records of all medical encounters of their patients, including retention of all records of 

hospital encounters. A trained physician reviewed the written and computerized primary 

care medical records and extracted the data on hospitalisations for wheeze or asthma.    

Data analysis  

We took a machine learning approach to the data analysis. Using a Hidden Markov 

Model, the available physiological measurements of skin prick tests (SPTs) and serum 

specific IgE tests (SITs) to a panel of allergens were used to infer one multinomial latent 

variable per child to cluster the children in an un-supervised manner into different 

sensitization classes (the model is shown in Figure 1). 

At the core of the model are the 4 binary latent variables for each allergen labelled 

‘Acquired Sensitization’ and these are linked together in a Markov chain across the 4 

time points.  We inferred time-dependent transition probabilities (i.e. the probabilities of 
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gaining and losing sensitization at each age) which were assumed to be shared by all 

children in each sensitization class, but differing between classes.  In our model, for 

ease of inference, we placed conjugate priors on all the variables that were to be inferred 

- using beta priors as the variables of interest were binary and beta is conjugate to the 

binomial distribution E1. We also observed that our results were insensitive to the choice 

of hyperparameters (the parameters that define the prior distributions). 

Inference  

Inference was performed using Infer.NET (http://research.microsoft.com/en-

us/um/cambridge/projects/infernet/), a Microsoft-owned library of statistical algorithms for 

large-scale Bayesian inference. We inferred the false and true positive rates of the SPT 

and IgE tests, missing SPT and IgE values, the state-transition and observation 

(emission) probabilities, the acquired sensitization variable and finally, the sensitization 

class.  An approximate Bayesian inference method (Variational Message Passing-

VMP)18 was used to perform the inference in an efficient manner. 

Handling the missing data  

Variables corresponding to missing data values were included in the model but treated 

as unobserved.  Distributions over these missing data values were also computed using 

VMP based on the available measurements. This approach assumes that the missing 

values are missing completely at random (MCAR).  

Training and validation data sets with multiple imputations and assessment of the 

robustness of the clustering  

To determine the appropriate number of classes, differing numbers of clusters were 

tested as to their ability to predict the sensitization state of children where that state was 

artificially made missing. The process starts by randomly dividing the data so that 80% 

Page 31 of 51



 8 

formed a training set and the remaining 20% formed a validation set. Using the training 

set, a clustering is learned by computing posterior distributions over the parameters of 

the sensitisation HMM using the variational message passing (VMP) inference algorithm.  

Hence, for each cluster, distributions were learned over the probability of initial 

sensitisation and the probabilities of gaining and retaining sensitisation for each cluster. 

In addition, common distributions were learned over probabilities of positive tests given 

sensitisation or lack of sensitisation. 

This learned clustering was validated using an imputation experiment, where removed 

data values were predicted under the learned clustering. In each run of the experiment, 

the posterior distributions learned in the initial clustering (using the training data) were 

used as corresponding prior distributions in a new clustering model, used to cluster the 

validation data. 20% of the values in the validation data were removed at random and 

then predicted using the posterior distributions of the new clustering model. 

 Because VMP can be sensitive to its random initialisation, the training process was 

repeated for 10 different such initialisations and the clustering with the best score 

selected. To avoid bias due to the training/validation splits itself, the entire process was 

repeated for 10 different random training/validation data splits. The imputation score was 

computed as the sum of the log probability of the removed values under their inferred 

posterior distributions, averaged across the 10 runs. Results for models with 1–7 clusters 

are shown in Figure E3; note that the baseline in the figure has been adjusted so that the 

(unique) single cluster model has a score of zero. 

The robustness and repeatability of the clustering process to small changes in the data 

set was assessed by comparing the clusterings given by the 10 random 

training/validation splits.  For each clustering with a given number of clusters, a 

confusion matrix was computed indicating how frequently children were assigned to the 
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same cluster in the other nine clusterings.  The clustering with the best confusion matrix 

(defined as the matrix with the largest sum of diagonal elements) was selected as the 

reference clustering for the given number of clusters. The confusion matrices for the 

reference clusterings with 2 and 5 clusters is shown in Tables E4 and E5, demonstrating 

no confusion between clusters in the 2-class case and very little confusion between the 

clusters in the 5-class case.  

 Sensitization Class  

This is a multinomial variable indicating to which sensitization class each child belongs 

(out of between 2 and 5 classes).  The model assumes that each child belongs to one of 

these classes.  We investigated a two-class and a five-class model.  The number of 

clusters was chosen as the maximum that contained sufficient observations for a 

statistically credible inference, and had a structure that was plausible. For example, if the 

number of clusters was set to 6, the number of children in some clusters will be very 

small. In some cases, some clusters may even not contain a single individual.No 

assumptions were made about the nature of each class. We assumed only that children 

in different classes have different state-transition probabilities, but they have the same 

observation probabilities across time.  During inference, a distribution was computed for 

each child giving the probability of their belonging in each class.  For further analysis, we 

assumed the child belonged to the highest probability class - a maximum a-posteriori 

approach. 

We then investigated the association between the clinical outcomes and the classes 

which had been inferred in a completely unsupervised manner.  The relation between 

each class and relevant clinical outcomes were tested in models that adjusted for known 

confounding factors, effect modifiers and multiple testing.
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TABLES 

 

Table E1.  Dosing schedule for methacholine challenge 

 

Step Methacholine 

concentration (mg/ml) 

Methacholine dose 

(mg) 

Cumulative 

methacholine dose (mg) 

1 0.0625 0.003 0.003 

2 0.25 0.011 0.014 

3 1.0 0.045 0.059 

4 4.0 0.180 0.239 

5 16.0 0.720 0.959 
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Table E2. Number of children with available outcomes at each time point 

 

 1 year 3 years 5 years 8 years 

Atopic status     

Skin prick tests ( Mite, cat, dog, grass, milk, egg) 377 857 849 817 

Skin prick tests (peanut)    815 

Specific IgE to  mite, cat, dog, milk, egg 186 175 534 511 

Specific IgE to  grass pollen, peanut   534 511 

Clinical outcomes     

Current wheeze (questionnaire) 1020 981 950 905 

Wheeze phenotypes   950 905 

Asthma exacerbations (primary care records)     814 

Lung function and airway hyperreactivity     

sGaw (whole-body plethysmography)  560 829  

FEV1 (spirometry)    695 

Methacholine challenge    555 
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Table E3. Relationship between conventional definition of atopic sensitisation at age 8 

years and latent atopic vulnerabilities in the five-class model 

 

 

  Five-class model Total 

  

No latent 

vulnerability 

Non-dust 

mite Dust Mite 

Multiple 

Late 

Multiple 

Early  

Not atopic 406 79 9 9 1 504 

  80.6% 15.7% 1.8% 1.8% 0.2% 100.0% 

Atopic 36 17 38 141 90 322 

  11.2% 5.3% 11.8% 43.8% 28.0% 100.0% 

Total 442 96 47 150 91 826 

  53.5% 11.6% 5.7% 18.2% 11.0% 100.0% 
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Table E4. Robustness and confidence: The confusion matrix for the reference 

clusterings for 2 clusters. The rows corresponds to cluster assignments under the 

reference clustering (numbers in parentheses give the number of children assigned to 

the cluster) and the columns correspond to average cluster assignments, along with their 

standard deviations, computed over the remaining training/validation 9 clusterings. The- 

matrix is diagonal, indicating that all clusterings are in complete agreement.  

 

 No Latent Vulnerability Latent Vulnerability 

No Latent Vulnerability 

(773) 
773.0 ±  0.0 0.0 ±  0.0 

Latent Vulnerability  

(280) 
0.0 ±  0.0 280.0 ±  0.0 

 

Table E5. Robustness and confidence: The confusion matrix for the reference 

clusterings for 5 clusters. The rows corresponds to cluster assignments under the 

reference clustering (numbers in parentheses give the number of children assigned to 

the cluster) and the columns correspond to average cluster assignments, along with their 

standard deviations, computed over the remaining training/validation 9 clusterings. This 

matrix indicates that  there is little disagreement between clusters. 

 

 No 

Vulnerability 

Non-Dust Mite Dust Mite Multiple Late Multiple Early 

No Vulnerability 

(623) 
617.8 ±  8.9 4.7 ±  9.5 0.6 ±  2.3 0.0 ±  0.0 0.0 ±  0.0 

Non-Dust Mite (100) 15.8 ± 44.6 83.4 ± 45.6 0.0 ±  0.0 0.8 ±  1.3 0.0 ±  0.0 

Dust Mite (47) 0.1 ±  0.7 0.7 ±  2.6 45.2 ±  6.0 1.0 ±  4.2 0.0 ±  0.0 

Multiple Late (171) 0.0 ±  0.0 0.2 ±  1.3 2.9 ±  7.2 167.4 ±  6.6 0.4 ±  2.7 

Multiple Early (112) 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.9 ±  0.7 111.1 ±  0.7 
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Table E6.  Association between atopy defined conventionally (atopic ever, atopic at age 8 years), the novel latent classes (two-

cluster and five-cluster models) and clinical phenotypes associated with asthma: regression analysis adjusted for gender  

aOR-Adjusted odds ratio, CI-Confidence interval; *index category – No latent atopic vulnerability;  **index category – never wheezers  

   2 cluster model Five cluster model - Latent atopic vulnerability* 

 Ever atopic Atopic, age 8 Vulnerable Non-dust Mite Dust mite Multiple Late Multiple Early 

 aOR 

95%CI 

P aOR 

95%CI 

P aOR 

95%CI 

P aOR 

95%CI 

P aOR 

95%CI 

P aOR 

95%CI 

P aOR 

95%CI 

P 

Asthma 12.43 

4.80-32.17 

<0.001 11.57 

4.79-27.93 

<0.001 9.24 

4.52-18.91 

<0.001 N/A  6.49 

1.72-24.20 

0.006 6.74 

2.44-18.59 

<0.001 29.33 

11.14-77.24 

<0.001 

Asthma 

exacerbation 

2.03 

1.41-2.92 

<0.001 1.74 

1.19-2.54 

0.004 2.29 

1.51-3.20 

<0.001 2.75 

1.57-4.82 

0.001 3.21 

1.57-6.58 

<0.001 1.71 

1.02-2.97 

0.04 4.42 

2.85-8.14 

<0.001 

Exacerbation 

after age 1  

2.36 

1.59-3.50 

0.001 1.78 

1.19-2.68 

0.006 2.53 

1.70-3.75 

<0.001 3.09 

1.69-5.64 

0.001 3.43 

1.60-7.38 

0.002 1.89 

1.08-3.30 

0.026 6.14 

3.55-10.63 

<0.001 

Exacerbation 

after age 3 

2.95 

1.91-4.79 

<0.001 2.31 

1.43-3.72 

0.001 3.17 

2.01-4.99 

<0.001 2.77 

1.33-5.78 

0.007 3.86 

1.61-9.24 

0.002 2.60 

1.37-4.91 

0.003 6.65 

3.56-12.44 

<0.001 

Persistent 

wheeze** 

4.84 

3-09-7.59 

<0.001 3.54 

2.27-5.54 

<0.001 5.46 

3.80-7.85 

<0.001 1.82 

0.83-4.01 

0.14 4.37 

1.93-9.91 

<0.001 2.77 

1.52-5.06 

0.001 12.86 

6.78-24.41 

<0.001 

Current 

wheeze 

5.83 

3.94-8.63 

<0.001 5.90 

3.98-8.75 

<0.001 5.46 

3.80-7.85 

<0.001 1.07 

0.48-2.36 

0.88 4.96 

2.45-10.06 

<0.001 4.70 

2.92-7.56 

<0.001 14.20 

8.49-23.75 

<0.001 
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Table E7.  Lung function (specific airway conductance at ages 3 and 5 years; FEV1 and 

FEV1/FVC ratio at age 8 year) and airway reactivity in children with different latent atopic 

vulnerabilities in the five-class model  

 

 No Latent atopic 

vulnerability 

Non-dust Mite Dust mite Multiple late Multiple early 

sGaw age 3, kPa/s 

GM, 95% CI 

0.92 

0.90-0.94 

0.90 

0.83-0.97 

0.94 

0.86-1.02 

0.89 

0.85-0.93 

0.83 

0.79-0.88 

sGaw age 5, kPa/s  

GM, 95% CI 

0.87 

0.85-0.88 

0.84 

0.80-0.87 

0.85 

0.80-0.90 

0.86 

0.83-0.88 

0.80 

0.77-0.83 

FEV1% pred, age 8,  

mean, 95% CI 

102.63 

101.39-103.86 

101.64 

98.90-104.40 

103.03 

99.24-106.82 

101.01 

98.85-103.16 

94.12 

91.40-96.86 

FEV1,/FVC, age 8, % 

mean, 95% CI 

87.11 

86.52-87.71 

86.78 

85.44-88.11 

86.04 

84.20-87.87 

86.03 

84.20-87.07 

83.49 

82.18-84.82 

DRR age 8 

mean, 95% CI 

6.90 

6.09-7.79 

6.04 

4.45-8.02 

7.67 

5.27-10.96 

10.12 

8.20-12.50 

15.54 

11.82-20.82 
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Figure E1.  The structure of the two clusters (No latent atopic vulnerability and Latent atopic vulnerability)  

Panel A: number of sensitization a child has to each specific allergen  

Panel B: number of sensitizations at each time point (for skin tests and IgE).  

The blue, green and red bars denote the number of children who have fewer than 1, between 1 and 2 and more than 2 sensitizations 

respectively.  

                    Panel A           Panel B 
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Figure E2. The structure of the five clusters (No latent atopic vulnerability, Non-dust Mite Atopic Vulnerability, Dust Mite Atopic 

Vulnerability, Multiple Late Atopic Vulnerability, Multiple Early Atopic Vulnerability) 

Panel A: number of sensitization a child has to each specific allergen  

Panel B: number of sensitizations at each time point (for skin tests and IgE).  

The blue, green and red bars denote the number of children who have fewer than 1, between 1 and 2 and more than 2 sensitizations 

respectively.  
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Figure E2, PANEL A

 No latent 
atopic 

vulnerability 

Non Dust Mite  

 Dust mite 

 Multiple Late 

Multiple  Early 

0

500

1000

6
2
3

0

50

100

1
0
0

0

50

4
7

0

100

200

1
7
1

mite cat dog pollen milk egg mold peanut
0

50

100

1
1
2

Page 42 of 51



 19 

Figure E2, PANEL B  
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Figure E3.  Average imputation score for models with 1–7 clusters; note that the score 

baseline has been adjusted (see text for details).  
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Figure E4. Proportion of children with different clinical outcomes within those considered 

“atopic” by four different classifications 
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Figure E5. Specific airway conductance at age 3 in children with different latent atopic 

vulnerabilities in the five-class model 
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Figure E6. Specific airway conductance at age 5 years in children with different latent 

atopic vulnerabilities in the five-class model 
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Figure E7.  FEV1 (% predicted) at age 8 year in children with different latent atopic 

vulnerabilities in the five-class model 

 

 

Atopic vulnerability, 
Multiple Early

Atopic vulnerability, 
Multiple Late

Atopic vulnerability, 
Dust Mite

Atopic vulnerability, 
Non-dust Mite

No latent atopic 
vulnerability

F
E

V
1
 %

 p
re

d
ic

te
d

 a
g

e
 8

 (
m

e
a

n
, 
9
5
%

 C
I)

110.00

105.00

100.00

95.00

90.00

Page 48 of 51



 25 

Figure E8.  FEV1/FVC ratio at age 8 year in children with different latent atopic 

vulnerabilities in the five-class model 
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Figure E9.  Airway reactivity (dose-response ratio) at age 8 years in children with 

different latent atopic vulnerabilities in the five-class model 
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