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Abstract 15 

Saltmarshes are increasingly recognised an important asset in coastal management as 16 

they dissipate wave energy and thus reduce the potential for coastal flooding. The 17 

frontal surface area (FSA) and the drag coefficient (Cd) are parameters commonly used 18 
in wave attenuation models to express the resistance of vegetation structure to incident 19 

waves. The FSA of vegetation represents the vertical surface area facing incoming 20 
waves which is calculated as the product of height, diameter and density whereas Cd is 21 
often used as tunable parameter that represents the vegetation-wave interactions that 22 

relies on both vegetation properties and wave conditions. Despite their importance in 23 
numerical modelling, substantial uncertainty remains in obtaining these parameters in 24 

the field due to the time-intensive and relatively expensive nature of data collection. An 25 
alternative structural vegetation parameter that can be included in wave attenuation 26 
models is the leaf area index (LAI). The primary advantage of the LAI is that it can be 27 
readily derived from satellite imagery, and thus provides a low-cost, fast alternative to 28 

field data collection. However, to date, its incorporation in widely-used coastal 29 
engineering models is lacking. The aim of this paper is to verify the use of remote-30 

sensed LAI in numerical wave models as an alternative to FSA. Here, the widely used 31 
XBeach model for simulating storm impacts on a range of coastal systems is applied to 32 
two open coast sites with extensive saltmarsh; Chesapeake Bay, USA, and Brancaster, 33 
UK. To assess the performance of wave attenuation modelling using both methods, we 34 
compared the use of remote-sensed LAI from satellite imagery and field-based FSA as 35 

inputs into the model. The LAI-based model provides similar levels of accuracy as the 36 
FSA-based model. Likewise, higher uncertainties related to plant height, diameter, and 37 
density were found in the FSA-based model than in the LAI-based model. Therefore, 38 
the LAI-based model provides the advantage of a low-cost and fast method to 39 
accurately estimate and predict wave attenuation by vegetation using numerical models 40 

such as XBeach. Our practical application in the Brancaster site exemplifies an easy and 41 
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fast approach to obtaining structural parameters of saltmarsh vegetation and estimating 42 
wave attenuation between natural and artificial saltmarshes as well as between seasons. 43 

Keywords: numerical modelling, leaf area index (LAI), remote sensing, wave-44 
vegetation interaction, wave dissipation. 45 

1. Introduction 46 

Saltmarshes are vegetated ecosystems commonly composed of mud or fine sand (Adnitt 47 

et al., 2007) and typically located in estuaries, bays, or low-energy intertidal zones (e.g. 48 

Leonardi et al., 2018). Saltmarshes may preserve coastlines during sea-level rise due to 49 

dynamic equilibrium of sediment accretion by tides (Shepard, et al., 2011) and erosion 50 

process due to waves (Gedan et al., 2011). These ecosystems can reduce the peak of the 51 

flood (e.g. Glass et al., 2018), provide storm wave energy dissipation (e.g. Bridges et 52 

al., 2015), and decrease flow velocities (Schepers et al., 2018). Consequently, 53 

saltmarshes are increasingly considered a valuable component in flood protection 54 

schemes (Adnitt et al., 2007; Williams et al., 2012; Sutton-Grier et al., 2015) for coastal 55 

management. One of the key management questions is whether saltmarsh vegetation 56 

provide substantial levels of coastal flood protection, which is one of the motivations 57 

for this study. 58 

The wave attenuation capacity of saltmarshes depends on the species present, biomass, 59 

plant growth period, and the hydrodynamic conditions (Yang et al., 2012; Garzon et al., 60 

2019b). Specifically, the vegetation structure of saltmarshes has an effect not only on 61 

wind-generated sea-swell waves but also on low-frequency infra-gravity (IG) waves and 62 

the increase in nearshore mean water level due to wave breaking known as wave setup 63 

(van Rooijen et al., 2016). IG waves, with a typical period of 25-250 seconds, are 64 

substantial contributors to wave run-up (Stockdon et al., 2006) and generally dissipate 65 

across relatively long distances (Phan et al., 2015). Wave setup can account for the 66 
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10%–15% of the observed peak surge elevation inside large estuaries (e.g. the 67 

Chesapeake Bay) during high energy events (Sheng et al., 2010).  68 

The impact of vegetation structure on wave attenuation is driven by the plant surface 69 

area facing the incoming waves (Mendez and Losada, 2004) which is characterised by 70 

three biophysical components of vegetation: plant height (hv), diameter (bv), and the 71 

number of plants per unit area (density, Nv) (e.g. de Vries et al., 2018). A single 72 

important parameter derived from the product of these three components is the frontal 73 

surface area (FSA = hv x bv x Nv) that determines the rate of wave energy attenuation 74 

(Shafer and Yozzo, 1998; Suzuki et al., 2012; Marsooli et al., 2016; Marsooli et al., 75 

2017). One relevant dimensionless parameter is the stem-submergence ratio (hv /h) that 76 

relates the plant height to the water depth and significantly impacts wave energy 77 

dissipation (Maza et al., 2015; Garzon et al., 2019a). A number of laboratory-based 78 

wave attenuation studies have reported clear relationships between FSA and rates of 79 

wave energy attenuation, where a larger frontal area results in more dissipation (Smith 80 

and Anderson, 2011; Ozeren et al., 2014; Maza et al., 2015). However, the availability 81 

of measured FSA through vegetation surveys is limited and requires costly and 82 

laborious effort, especially in large areas with constricted access as commonly in the 83 

case for saltmarshes. Likewise, FSA may be highly variable both in space and time. 84 

In wave attenuation modelling, another physical parameter to represent vegetation-wave 85 

interactions, that mostly include unresolved processes, is the drag coefficient (Cd) which 86 

in turn, also affects the rate of wave energy dissipation. Although values for FSA can be 87 

obtained in a rather straightforward way due to its direct link to physical properties (e.g. 88 

plant height, diameter, and density), this is not the case for the drag coefficient. Cd can 89 

vary with several orders of magnitude depending on the hydrodynamic conditions, the 90 
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plant characteristics (including rigidity), and the method used (e.g., derived from wave 91 

height measurements or from direct force observations). It may also be tuned to account 92 

for processes that are not accounted in the model (e.g., vegetation flexibility, spatial 93 

non-uniformity, array blockage, and sheltering effects). For predictive purposes, 94 

previous studies have proposed empirical equations for saltmarsh vegetation describing 95 

Cd as a function of the Reynolds number (Re) or the Keulegan-Carpenter number (KC) 96 

(e.g. Mendez and Losada, 2004; Pinsky et al., 2013; Garzon et al., 2019a). 97 

Nevertheless, because of all the uncertainties surrounding the drag coefficient and its 98 

substantial effect on wave prediction, selecting the best empirical equations for a given 99 

field site and wave condition is challenging, hence using constant Cd values obtained 100 

from the literature or through model calibration (if wave data is available) is still a 101 

common practice (e.g. van Rooijen et al., 2016). 102 

As an alternative to the FSA parameterisation, the frontal area index is a key plant 103 

parameter that represents the submerged frontal plant area facing waves. The frontal 104 

area index is expressed as the plant frontal area of roughness elements per unit ground 105 

area calculated as the product of breadth/width, height and number of plants per unit 106 

bed area (Jasinski and Crago, 1999) which is equivalent to FSA. Derived from the 107 

frontal area index, the more widely used leaf area index (LAI) defined as the one-sided 108 

leaf area per unit ground surface area (Green et al., 1997; Jensen et al., 2002; Bréda, 109 

2003; Jonckheere et al., 2004; Davi et al., 2006; Delegido et al., 2015; Orlando et al., 110 

2016; Korhonen et al., 2017; Casa, Upreti and Pelosi, 2019) can similarly provide 111 

information on vegetation vertical structure (Delegido et al., 2011; Clevers et al., 2017). 112 

Previous studies have demonstrated that LAI can be a robust parameter to estimate 113 

vegetation resistance by describing the impact of leaf mass on vegetative drag (Jalonen 114 
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et al., 2013) and thus on unidirectional flow resistance (Aberle and Järvelä, 2013). 115 

However, these studies have only focused on the relationship between LAI and the 116 

consequent vegetation related drag force in unidirectional flows (Tempest et al., 2015) 117 

while the direct application of LAI to wave attenuation models has been limited (de 118 

Vries et al., 2018). 119 

One of the main advantages of the LAI is that it can be measured using remote sensing 120 

technology (Zheng and Moskal, 2009) and thus offers a low-cost, rapid alternative to 121 

field survey. In practice, remote sensing can infer LAI measurements that represent the 122 

vegetation. For example, Sentinel-2 satellite imagery can be used to derive LAI based 123 

on a neural network method (Verrelst et al., 2015; Upreti et al., 2019) with high spatial 124 

(10 m) and temporal resolutions (ESA, 2015). This paper aims: (i) to assess how 125 

satellite LAI estimations compare to conventional field-derived (FSA) observations of 126 

the saltmarsh vegetation structure and (ii) to quantify the uncertainty associated with 127 

using FSA in relation to LAI to characterise vegetation structure and its influence on 128 

wave attenuation prediction. Specifically, using in situ wave height data from a storm 129 

event in the Chesapeake Bay (USA) (Garzon et al., 2019b), we determined the relative 130 

sensitivity of wave height attenuation model predictions using FSA and LAI. We 131 

subsequently used LAI to model seasonal wave attenuation at a natural and an artificial 132 

saltmarsh restoration in Brancaster (UK) to investigate the suitability of the LAI-based 133 

model in a real case as a demonstration of the efficacy of this modelling approach for 134 

coastal management applications. 135 
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2. Materials and methods 136 

In this study, we use satellite data derived from Sentinel-2 MSI imagery as an input to 137 

represent vegetation structure for XBeach. The model is parameterised based on the 138 

field-based FSA and the remotely-sensed LAI. After that, the model is applied to the 139 

Chesapeake Bay, US and Brancaster, UK study sites respectively. In the following 140 

sections, the methods are explained in more detail as well as their application. 141 

2.1. Satellite-derived saltmarsh cover 142 

Sentinel-2 is a European wide-swath, high temporal (5-10 days) and spatial (10-60 m) 143 

resolution, multispectral imaging mission covering between latitudes 56º south and 84º 144 

north that possess a Multi-Spectral Instrument (MSI) payload sensor (ESA, 2015). The 145 

MSI dataset consists of spectral information from 13 bands ranging from visible (VIS) 146 

to near-infrared (NIR) to shortwave infrared (SWIR) spanning three spatial resolutions 147 

(10 m, 20 m and 60 m, respectively). Sentinel-2 MSI surface reflectance imagery was 148 

obtained from the Copernicus Open Access Hub (ESA, 2021). To avoid erroneous 149 

values of surface reflectance, we manually selected the images where the field site was 150 

cloud-free. All spectral bands were subsequently resampled to 10 m spatial resolution 151 

(ESA, 2015) and LAI estimates were retrieved using the thematic land processing tool 152 

available within the open-source Sentinel Application Platform (SNAP) (Verrelst et al., 153 

2015; Weiss and Baret, 2016; Upreti et al., 2019). We used Sentinel-2 imagery to derive 154 

remote-sensed LAI for the Chesapeake Bay, US site on September 10th, 2015 and for 155 

Brancaster, UK site on July 23th, 2019 and January 29th, 2020. 156 
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2.2. XBeach model description 157 

We used the XBeach model (version 1.23.5426M, Roelvink et al., 2009) to estimate 158 

wave attenuation by vegetation. The model includes a vegetation routine (XBeach-Veg) 159 

that accounts for the vegetation structure and its effect on the wave and flow damping 160 

(van Rooijen et al., 2015, 2016). XBeach has three model options: the stationary wave 161 

mode which solves wave-averaged equations; the surf-beat mode that solves short wave 162 

energy variation on the scale of wave groups as well as infra-gravity (IG) waves; and 163 

the non-hydrostatic mode that fully resolves sea-swell waves and IG waves (Roelvink et 164 

al., 2015). Non-linear wave attenuation models can simulate wave dissipation due to 165 

vegetation (Ma et al., 2013) using the geometric properties of the canopy (Karambas et 166 

al., 2015) and non-linear shallow water equations for infra-gravity waves (van Rooijen 167 

et al., 2015). 168 

Here, the surf-beat mode, which is specifically developed for simulating storm impact, 169 

was used in one-dimensional (1D) and two-dimensional (2D) mode to estimate wave 170 

attenuation. For our simulations, the vegetation characteristics were either based on 171 

field-based FSA measurements or remotely-sensed LAI estimates, as discussed in the 172 

next section. For all other model settings, default values (Roelvink et al., 2015) were 173 

used. Finally, we evaluated the capacity of saltmarshes to attenuate wave energy in 174 

terms of sea-swell wave height, IG wave heights, and wave setup. 175 

2.2.1. Model parameterisation using frontal surface area (FSA) 176 

The conventional practice of parameterising wave attenuation by vegetation utilises 177 

measurements of plant height (hv), diameter or blade width (bv), and the number of 178 

plants per area (density, Nv) that could be either from field measurements, expert 179 
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judgement (estimates) or the literature. The drag coefficient (Cd) is also needed which is 180 

challenging to estimate, therefore, this model utilises Cd from empirical formulations 181 

from the literature. The XBeach vegetation module in surfbeat mode uses the 182 

formulation from Mendez and Losada (2004) for sea-swell wave energy attenuation by 183 

vegetation, which was adjusted to consider vertically heterogeneous vegetation similar 184 

to Suzuki et al. (2012): 185 

𝜀𝑣 =  
1

2√𝜋
𝜌𝐶𝑑𝒃𝒗𝑵𝒗 ( 

𝑘𝑔

2𝜎
)

3
 

𝑠𝑖𝑛 ℎ3 (𝑘𝒉𝒗)+3𝑠𝑖𝑛 ℎ(𝑘𝒉𝒗)

3𝑘 𝑐𝑜𝑠 ℎ3(𝑘ℎ)
𝐻𝑟𝑚𝑠

3
 (1) 186 

where, εv = time-averaged vegetation-induced rate of energy dissipation per unit 187 

horizontal area, ρ = water density (kg/m3), Cd = drag coefficient, bv = vegetation stem 188 

diameter (m), Nv = vegetation density (stems/m2), k = wave number (2π/L); L = 189 

wavelength (m), g = gravitational acceleration (m/s2), σ = wave frequency (rad/sec), h = 190 

water depth (m), hv = vegetation height (m), and Hrms = root mean square wave height 191 

(m). In this implementation, Cd can be obtained from empirical expressions found in the 192 

literature or considered a calibration parameter if wave observations are available. 193 

Garzon et al. (2019b) expanded on this FSA-based model by adding several empirical 194 

formulations found in the literature, considering simulated and real Spartina 195 

Alterniflora vegetation as dominant saltmarsh vegetation community. In this study, four 196 

drag coefficient formulations were reapplied: “Garzon QKC”, “Garzon QRe
”, “Anderson 197 

& Smith”, and “Jadhav” formulations. 198 

2.2.2. Model parameterisation using satellite-derived leaf area index (LAI) 199 

In contrast to the default FSA-based model, the LAI-based model uses LAI as a single 200 

input value to characterise vegetation structure by representing the product of height, 201 

diameter, and density (FSA). To do this, we are considering several assumptions which 202 

allow remote-sensed LAI to be incorporated into the numerical model. Firstly, we 203 

assume shallow water conditions in which the wavelength (L) is much larger than the 204 
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water depth (L >> h). Saltmarshes are generally located in areas that fulfil this 205 

requirement, in particular during storm conditions and for infra-gravity waves, as 206 

assumed here (van Liew et al., 2012; Forbes et al., 2015; Mury et al., 2018). 207 

Secondly, the model assumes that vegetation is emergent (which is a requirement for 208 

accurate estimation of LAI from satellite imagery). Satellite data collection during storm 209 

events when vegetation is submerged would not be possible and no longer applicable. 210 

Having emergent vegetation conditions, wave attenuation is mainly a function of water 211 

depth rather than actual vegetation height, as that defines the surface area of plants that 212 

interact with the waves. Here, the near-emergent condition is based on Nepf (2004) 213 

definition using the ratio (h/hv) ranged between 1 and 1.43 in this study which act 214 

physically similar to fully emergent canopies (Garzon et al., 2019a). With these 215 

assumptions, the rate of wave energy attenuation due to vegetation can be rewritten: 216 

𝜀𝑣 =  
3

2√𝜋
𝜌𝐶𝑑𝜸𝒗𝑘 ( 

𝑘𝑔

2𝜎
)

3
𝐻𝑟𝑚𝑠

3 (2) 217 

where we defined a new parameter γv that depends on water depth (h) rather than 218 

vegetation height, stem diameter (bv), and plant density (Nv) and assume it is represented 219 

by the leaf area index obtained from satellite imagery: 220 

𝛾𝑣 = ℎ 𝑏𝑣𝑁𝑣 ≈ 𝐿𝐴𝐼  (3) 221 

However, the spatial variation in LAI can only be attributed to either stem diameter or 222 

density as model input. Here, we opt to incorporate the LAI as vegetation diameter, 223 

while we assigned the density to be unity. We also applied dummy values to the model 224 

input vegetation height (10 m) to ensure emergent vegetation conditions. The 225 

uncertainty associated with these assumptions was verified for a broad range of 226 
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emergent vegetation heights and wave conditions. Direct model results of wave 227 

attenuation with identical model runs with directly specified vegetation properties 228 

(vegetation height, diameter and density inputs) were also tested for significant 229 

variations in the model results. Differences between model runs were found negligible 230 

(< 1%) and thus this simplification is considered acceptable. 231 

Finally, the model uses a constant drag coefficient Cd as we focus on modelling wave 232 

attenuation during storm conditions (with relatively high Re and KC-numbers) under 233 

which Cd has previously been shown to become relatively insensitive of Re and/or KC 234 

(e.g. van Loon-Steensma et al., 2014). LAI values do not provide information on plant 235 

diameter either which is usually required as input for empirical formulations (e.g. 236 

Mendez and Losada, 2004; Pinsky et al., 2013; Garzon et al., 2019a). However, as 237 

shown in Equation 3, LAI accounts for the frontal surface area (FSA) that is expressed 238 

in terms of stem height, diameter, and density and makes it suitable for substitution in 239 

the formula. Overall, under the previous assumptions, the LAI-based model is 240 

convenient since it allows maintenance of the vegetation model implementation in its 241 

current form for a wide utilisation based on specific vegetation structure characteristics. 242 

3. Results 243 

3.1. Model calibration (US site) 244 

3.1.1. Background and vegetation data 245 

FSA-based and LAI-based models were calibrated using vegetation and hydrodynamic 246 

data reported by Garzon et al. (2019b) in a saltmarsh located on the eastern shore of 247 

Virginia National Wildlife Refuge on the southern tip of the Delmarva Peninsula which 248 
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is bordered by the Chesapeake Bay, US (Figure 1). In this study area, the mean tidal 249 

amplitude is 0.9 m and is influenced by a 100-m-wide channel, the barrier island 250 

structure, and high-energy waves from the open ocean (Garzon et al., 2019b). Four 251 

wave sensors recorded total pressure at 4Hz made up of hydrostatic pressure, dynamic 252 

wave pressure and atmospheric pressure from September 24th to October 1st in 2015. 253 

Plus, one hundred and twenty-nine sea state conditions including significant wave 254 

height (Hs), wave peak period (Tp), and water depth (h), were simulated from the 255 

offshore to the backside of the saltmarsh. Detailed information of the field deployment, 256 

transect utilised and wave sensor locations can be found in Garzon et al. (2019a) in 257 

which authors concluded that saltmarshes should be included in coastal defences even 258 

under storm conditions. 259 

Since the focus of this paper is modelling wave attenuation during storm conditions, 260 

only incoming conditions with significant wave heights (calculated from the variance of 261 

water surface elevation spectrum from the wave data) greater than 0.3 m were 262 

considered. Thus, we selected a subset of 15 wave conditions as independent events 263 

with significant wave height (Hs), Tp ranging 2.5-5.9 seconds, and h ranging 0.7-0.9 m 264 

at sensor 2 (Figure 1c) to determine the range of wave attenuation rates in terms of Hs 265 

decay along the transect and considering drag coefficient (Cd) as a calibration parameter 266 

for both FSA and LAI models. The cross-shore distance (x) is defined along with the 267 

profile (Figure 1d), where x = 0 m at the leading edge of the saltmarsh areas, and Hs 268 

decay due to vegetation drag is measured as a function of distance. 269 
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 270 

Figure 1 Chesapeake study site 271 

(a) Location of Chesapeake Bay in the USA, background image corresponds to Esri, 272 
DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 273 

AeroGRID, IGN, and the GIS User Community. (b) Location of Chesapeake Bay study 274 
site: Eastern Shore, background image corresponds to Vertical Aerial Photography 275 

(Environment Agency, 2020c), corresponds to the red square in panel a. (c) Location of 276 

wave sensors (blue dots), normal transect used for the modelling (yellow line), and 277 
centre of 10 m pixels of LAI from satellite imagery (green dots), background image 278 

corresponds to OrthoImagery (USGS, 2020), corresponds to the red square in panel b. 279 
(d) Topo‐bathymetric transect and location of the wave sensors.  280 

Source: Based on data of Chesapeake site 281 

 282 
To assign the vegetation structure component of the FSA-based model, we used FSA as 283 

the product of height (hv), diameter (bv), and density (Nv) based on 18 samples from the 284 

study of Paquier et al. (2016) which was also used by Garzon et al. (2019a). For the 285 

LAI-based model, we obtained LAI values at 165 nearby locations of 10 m by 10 m 286 

pixels from Sentinel-2 MSI (Figure 1c) on the closest available date to the storm event 287 

(14/09/15). Finally, basic descriptive statistics were calculated for all vegetation 288 
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parameters (Table 1), and constant mean values across the vegetation field were used as 289 

input into the XBeach model. FSA seems to show more variability than LAI due to its 290 

limited sample (18 samples), that is why mean FSA is varying by a factor of 2 related to 291 

mean LAI (Table 1). 292 

Table 1 Descriptive statistics of vegetation parameters. 293 

Chesapeake Bay field site (Paquier et al., 2016) 294 

 hv (m) bv (m) Nv (m
-2) FSA LAI 

Min 0.53 0.004 270 0.572 0.417 

Max 0.88 0.007 425 2.681 1.073 

Mean 0.71 0.005 344.7 1.224 0.636 

SD 0.22 0.0015 80 0.623 0.140 

*Lower 0.58 0.0041 296.8 0.704 0.496 

*Higher 0.84 0.0059 392.6 1.949 0.776 

Bolded values were input into the XBeach model. SD: Standard Deviation. *For hv, bv, 295 
and Nv, lower and higher values were obtained as “Mean ± 0.6 x SD” while for LAI 296 

values as “Mean ± 1SD”. 297 

 298 

The sensitivity of wave attenuation to variations in the drag coefficient and to the mean 299 

values of vegetation parameters shown in Table 1 is explored for both FSA-based and 300 

LAI-based models (see section 3.1.3). The range of Cd values obtained from the 301 

empirical formulations resulting from the FSA-based model was compared to constant 302 

Cd values from the LAI-based model. The FSA-based model used 4 relationships for Cd 303 

from the literature: 3 calibrated in the field and one in the laboratory, “Garzon QKC”, 304 

“Garzon QRe
” formulations calibrated in the same marsh (Garzon et al., 2019b). To 305 

consider the sensitivity to vegetation variability, we use the mean and the standard 306 

deviation (SD) values of vegetation input parameters (Lower and Higher in Table 1). 307 

In the LAI-based model, the mean LAI value was used (Table 1) and the Cd was used as 308 

a calibration factor (the FSA-based model was not calibrated to our specific data) in 309 
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which Cd value range from 0.9 to 2.9 with increments of 0.5. Then the optimal Cd value 310 

was obtained from selecting outcomes with the minimum error statistics including 311 

coefficient of determination (R2), root mean square error (RMSE), scatter index (SCI), 312 

and relative bias (R. bias). The offshore water levels and waves were based on 313 

observations at station S1 (Figure 1c). 314 

3.1.2. Comparing FSA-based and LAI-based models performance 315 

In this section, we provide a calibration of the XBeach for the Chesapeake Bay site 316 

using 15 stationary wave conditions selected with significant wave heights (0.30 m – 317 

0.38 m), wave peak periods (2.5 s – 5.9 s), and water depth (1.56 m – 1.81 m). The four 318 

selected Cd values from empirical formulations are used in the FSA-based model while 319 

constant Cd value is used in the LAI-based model. All previous parameters are also 320 

assumed constant across the transect.  321 

Our results show that the significant wave height exponentially decreases as highlighted 322 

in Figure 2 for a representative case with the following offshore wave parameters: Hs = 323 

0.31 m, Tp = 2.71, and mean water level of 0.89 m above MSL at sensor 2. Across all 324 

simulated cases, the simulated wave evolution using the calibrated LAI along the 325 

transect is similar to the FSA-based model in which the “Jadhav” formulation for Cd 326 

provides the best approximation. The other formulations that are considered all 327 

overpredict wave attenuation due to higher drag coefficient values, in particular the 328 

Garzon-KC formulation that leads to a roughly 50% lower wave height at sensor 4 329 

(Figure 2) and also the largest error (Table 2). 330 

Using the LAI-based model with a drag coefficient of Cd =1.9 (based on calibration 331 

with all 15 wave conditions), the wave height evolution is generally captured well by 332 
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the model although it slightly overpredicts the attenuation rates for this particular 333 

condition (Figure 2). 334 

 335 

Figure 2 Wave attenuation along the saltmarsh in the Chesapeake Bay (US) 336 

Using a range of Cd empirical formulations in the FSA-based model (solid lines) and 337 
calibrated Cd in the LAI-based model (dashed line) for one representative wave 338 

condition (Hs = 0.31 m, Tp = 2.71). Sensors are shown as green dots. 339 

 340 

The observed and modelled wave heights at sensor 2 to 4 for all 15 wave conditions are 341 

also compared for the LAI-based model with a calibrated drag coefficient (Figure 3). 342 

Predicted wave heights mainly overestimate the observations in sensor 2 while having a 343 

slight overestimation for small wave height and the underestimation for high wave 344 

heights in sensors 3 and 4, which may evidence that Cd should vary across the transect. 345 

This indicates that while a single calibrated value for Cd based on a range of wave 346 

conditions may lead to acceptable model results for some cases, it may either over- or 347 

underestimate wave attenuation rates for other cases. Here, the obvious alternative 348 

would be to calibrate the model for each individual wave condition to obtain case-349 

dependent drag coefficients. This would, however, greatly limit the predictive capability 350 
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of the model. Based on the 15 wave conditions, the calibrated drag coefficients range 351 

approximately from 1.3 – 2.5. Therefore, we could use constant Cd values across wave 352 

conditions in a predictive model. 353 

To assess the performance of both FSA-based and LAI-based models, the error statistics 354 

are compared (Table 2). Overall, it is found that both models present similar accuracies 355 

in estimating wave attenuation by vegetation, in particular, when analysing sensors 3 356 

and 4. The optimal Cd =1.9 of the LAI-based model and the Jadhav Cd (the most 357 

accurate) of the FSA-based models present similar RMSE, SCI, and relative bias values 358 

while having different R2 values in sensors 3 and 4. However, the most accurate Cd 359 

(LAI-based) and Garzon-KC Cd (FSA-based) have similar RMSE, SCI, and Relative 360 

except for the R2 value in sensor 2. Having similar incident wave values, constant Cd 361 

values are suitable with the bias errors found (slightly under predicting higher waves 362 

and over predicting lower waves).   363 
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 364 

Figure 3 Comparison between observed and modelled significant wave height (Hs) at each sensor location 365 
The subset of the 15 wave records under storm conditions using the LAI-based model 366 

 367 
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Table 2 Error statistics: empirical Cd (FSA-based) and constant Cd (LAI-based) 369 

Cd 
Sensor 2 Sensor 3 Sensor 4 

R2 RMSE SCI 
R. 

bias 
R2 RMSE SCI 

R. 

bias 
R2 RMSE SCI 

R. 

bias 

Garzon-

KC 
0.71 0.04 0.16 0.15 0.84 0.06 0.47 0.46 0.86 0.03 0.55 0.51 

Garzon-

Re 
0.56 0.01 0.06 -0.01 0.85 0.03 0.20 0.19 0.87 0.01 0.25 0.19 

Smith 0.63 0.02 0.07 0.05 0.84 0.04 0.31 0.30 0.87 0.02 0.37 0.33 

Jadhav 0.51 0.02 0.09 -0.07 0.74 0.01 0.11 0.07 0.68 0.01 0.16 0.04 

Cd =1.9 

(LAI)* 
0.17 0.03 0.13 -0.10 0.76 0.02 0.12 0.01 0.86 0.01 0.21 0.04 

The coefficient of determination (R2), the root mean square error (RMSE), the scatter 370 

index (SCI), and the relative bias (R. bias) are shown.  371 
*Drag coefficient in the LAI-based model. 372 

 373 

3.1.3. Sensitivities of wave attenuation to Cd and vegetation properties 374 

Overall, both the FSA-based and the LAI-based models have similar sensitivity to 375 

variations of drag coefficient (Cd), as well as, variations of height, diameter, density, 376 

and LAI. The Cd values calculated by XBeach in the FSA-based model vary from 1 to 2 377 

which resulted in a range of wave evolution predictions (Figure 2). A similar range of 378 

Cd -values is used in the LAI-based model to assess the model sensitivity, showing that 379 

using a drag coefficient equal to the calibrated value minus or plus one results in about 380 

50% lower or higher wave heights at sensor 4, respectively (Figure 4). 381 

 382 

 383 

 384 
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 385 

Figure 4 Wave attenuation using constant Cd values in the LAI-based model 386 
 Using a range of Cd constant values (solid lines) for one representative wave condition 387 

(Hs = 0.31 m, Tp = 2.71). Sensors are shown as green dots. 388 

 389 

The range of estimated wave height across the saltmarsh for a range of vegetation 390 

properties is determined (grey areas in Figure 5) using both models. Based on the mean 391 

and standard deviation (SD) values in Table 1, the FSA-based model uses the mean and 392 

the mean ± 0.6 x SD of height, diameter, and density as inputs while the LAI-based 393 

model uses the mean and the mean ± 1SD of LAI as input. All previous input 394 

parameters are assumed constant across the saltmarsh. 395 

The FSA-based model produces a wider range of estimated wave heights than the LAI-396 

based model (Figure 5). In other words, the combined uncertainties of height, diameter, 397 

and density of the FSA-based model produce substantially higher uncertainty in wave 398 

attenuation predictions compared to the effect of the single uncertainty of LAI of the 399 

LAI-based model. Overall, the LAI-based model produces less uncertainty than the 400 

FSA-based model related to Cd and vegetation variability. The Cd used in the FSA-401 

based model (Jadhav’s = 0.98) is around half of the Cd used in the LAI-based model 402 
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(1.9). However, when running simulations with the same Cd in both models, the 403 

uncertainties found remain very similar as shown in Figure 5. 404 

 405 

406 

 407 

Figure 5 Wave attenuation sensitivity due to vegetation parameters 408 
Using one lower and one higher value of (a) height, diameter, and density (FSA-based 409 

model) and (b) LAI (LAI-based model) on one representative wave condition  410 
(Hs = 0.31 m, Tp = 2.71). Sensors are shown as green dots. 411 
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3.2. Model application (UK site) 413 

3.2.1. Site description and 2D model settings 414 

Further applicability of the LAI-based model to other saltmarsh communities and 415 

geographical locations is relevant for generalisation purposes. This study selected a UK 416 

saltmarsh site to model a hypothetical future condition with a specific storm event as an 417 

example of model application. To explore the capacity of two types of saltmarshes, 418 

natural and artificial (in particular, a nature-based scheme referred to as “managed 419 

realignment”), to attenuate wave energy with and without vegetation, during summer 420 

and winter seasons and thus provide coastal flood protection, a two-dimensional model 421 

was used in the UK site. This study is not intended to provide more accurate results than 422 

using field-based methods to determine FSA, instead, the key goal is to have a fast and 423 

cheap methodology using remote sensing. 424 

The study site is located in Brancaster on the North Norfolk coastal strip (Figure 6), on 425 

the western coast of England, and consists of a freshwater grazing marsh (Myatt-Bell et 426 

al., 2002). Both natural and artificial saltmarshes are located in the same marsh platform 427 

(approximately same elevation) with similar morphological characteristics and subject 428 

to identical hydrodynamic conditions. Hence it can be considered that any differences in 429 

wave attenuation in both sites are caused by differences in saltmarsh vegetation 430 

properties. Currently, these saltmarshes are sheltered from storm waves by 4-5 meters 431 

high artificially armoured sand dunes (Myatt-Bell et al., 2002) (Figure 6d). However, 432 

government authorities are planning to remove the dunes in future in order to restore the 433 

natural habitat and provide protection through the saltmarsh. Here, we tested the 434 

scenario without these dunes in which saltmarshes will be directly impacted by waves. 435 
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To evaluate the impact of saltmarsh vegetation on wave attenuation between artificial 436 

and natural saltmarshes and between seasons, a storm surge event with high water level 437 

of 2.56 m at Ordnance Datum - OD, significant wave height of  2.80 m, and peak period 438 

of 14.0 s, recorded in November 2008 (Environment Agency, 2014) in the Brancaster 439 

study site was simulated that would reach saltmarsh vegetation in the case of no dunes. 440 

Wave data were extracted from the Acoustic Wave and Current meter (AWAC) located 441 

offshore of Scolt Head Island (S9N; Figure 6c). 442 

The offshore boundary of the grid domain lies approximately on the AWAC location at 443 

20 meters water depth. The lateral boundaries were set up as Neumann boundaries. For 444 

all other XBeach settings, default values were used. The grid had dimensions of 7 x 5 445 

km and a cross-shore and long-shore resolution of 10 m. The model bathymetry was 446 

extracted from Digimap Service (Digimap, 2020) operated by EDINA at the University 447 

of Edinburg formed by seabed elevation relative to the Chart datum (CD) that was 448 

changed into Ordnance Datum (OD) for our case study. Topography data were extracted 449 

from the SurfZone Digital Elevation Model (DEM) generated by the Environment 450 

Agency (UK) in 2014. 451 

 452 

 453 

 454 
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 455 

Figure 6 Brancaster study site 456 
(a) United Kingdom (b) North West Norfolk coast, corresponds to the red square in 457 

panel a. (c) Brancaster Bay, corresponds to the red square in panel b, location of AWAC 458 

S9N instrument (53º 00.027’N; 00º 41.065’ E; 5m depth CD) and the XBeach model 459 
domain (7 x 5 km yellow rectangle, at 10 m grid resolution). (d) Location of Brancaster 460 

West Marsh (middle polygon), two natural saltmarsh areas (side polygons), corresponds 461 
to the red square in panel c, elevation at Ordnance Datum Newlyn (OD): the sea level 462 

height datum in the UK. The middle marsh and the marsh on its left were used to 463 



24 
 

calculate wave attenuation by vegetation. Background image corresponds to RGB 464 
Sentinel-2 imagery from ESA (2021) in panels b and c. 465 

Source: Based on data from Environment Agency (2020) 466 
 467 

LAI values were derived from Sentinel-2 MSI imagery from July 23rd, 2019 for summer 468 

and January 29th, 2020 for winter seasons based on an empirical Gaussian processes 469 

regression (GPR) model calibrated for that site (R2= 0.99 and 0.89 respectively) from 470 

Figueroa-Alfaro et al. (2021). Finally, LAI values were classified into 6 classes (A-F) 471 

(Figure 7) based on the “natural breaks” classification and then the mean of each class 472 

(Table 3) was input in the model. 473 

 474 

Figure 7 Remote sensed LAI classes of natural and artificial saltmarshes 475 
LAI is classified from low (A) to high (F) values are their distribution within the 476 

saltmarshes are shown. White spaces contain no vegetation. 477 

 478 

Table 3 Mean remote-sensed LAI values used as input in the model 479 

Class A B C D E F 

Surface (%) 26% 17% 28% 23% 5% 1% 

LAI 

(m2/m2) 

Summer 0.51 0.86 1.25 1.66 2.08 2.54 

Winter 0.49 0.71 0.86 1.03 1.23 1.43 

Surface (%) shows the coverage per each saltmarsh class (A - F) 480 

 481 
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3.2.2. Potential outcomes of wave attenuation estimations 482 

The LAI-based model, when calibrated, provides good results for the Chesapeake site 483 

based on data and comparison to the FSA-based model (Figure 2). Given the suitability 484 

of our LAI-based model, we can transfer this to another location with the type of 485 

vegetation and wave conditions for this site, using the calibrated Cd to assess the 486 

efficacy of managed realignments such as our Brancaster site (artificial saltmarsh) 487 

which was created to provide flood protection as a nature-based mitigation strategy. The 488 

storm simulated is a potential event during winter months and the following 489 

hydrodynamic data (historically recorded) are used; water level elevation (2.56 m at 490 

Ordnance Datum - OD) as the high water level, significant wave height (2.80 m), peak 491 

period (14.0 s), and wave direction (360º) which is approximately normally-incident. To 492 

have a better visualisation of the wave attenuation effect due to vegetation, the cross-493 

shore direction is showed as x-axis (Figures 8 and 9) by flipping 90 degrees anti-494 

clockwise relative to Figure 7. Seasonality will also influence flood protection provided 495 

since vegetation structure, expressed as LAI, varies from season to season. Saltmarsh 496 

vegetation is fully grown in summer and some senescent in winter. 497 

XBeach is run for a future scenario in which the artificially armoured sand dunes 498 

fronting the saltmarsh vegetation are removed (Myatt-Bell et al., 2002) allowing 499 

saltmarshes to attenuate wave energy rather than the dunes. Three scenarios are 500 

simulated: without vegetation, with summer vegetation and with winter vegetation. The 501 

root-mean-square wave height (Hrms) for sea-swell waves (Hrms_ss) is based on the wave 502 

energy output; the infra-gravity (IG) wave height (Hrms_ig) is derived from the water 503 

level variance, and wave setup is calculated as the difference between the simulated 504 

mean water level across the domain and the offshore mean water level. Finally, the 505 
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absolute and relative wave height and wave setup differences between non-vegetated 506 

scenario and vegetated scenario (both summer and winter vegetation) are assessed. 507 

Under the non-vegetated scenario, once the incident wave height is mainly reduced to 508 

0.13 m due to topography, the sea-swell height at the saltmarsh offshore boundary is 509 

reduced substantially from approximately 0.13 to 0.05 m due to depth-induced wave 510 

breaking (Figure 8a). Under vegetated scenarios, there is an additional reduction in sea-511 

swell wave height of up to 0.08 m, which is similar in summer (Figure 8b) and winter 512 

(Figure 8c). Most of the energy reduction occurs near the leading edge of the marsh due 513 

to depth-limited wave breaking. The additional wave height reduction due to saltmarsh 514 

vegetation equals around a maximum of 75% of the wave height on the inland portion 515 

of the saltmarsh (Figure 9a and 9b). When comparing natural and artificial saltmarshes, 516 

both show similar wave height reduction. Interestingly, there are slightly higher waves 517 

immediately on the offshore boundary of the saltmarsh vegetation that might be related 518 

to an increment of the local water depth associated with IG wave reflection (Figure 8d) 519 

as well as an increase of wave setup (Figure 8g), thereby reducing depth-induced wave 520 

breaking of sea-swell waves. 521 

Infra-gravity (IG) waves can become important contributors to the total nearshore water 522 

level during storm conditions (van Thiel de Vries et al., 2008). Under the non-vegetated 523 

scenario, there are two areas with IG wave heights up to 0.7 m in the artificial marsh 524 

while IG wave height reduction is a maximum of 0.3 m in the natural saltmarsh area 525 

(Figure 8d). The IG wave height is substantially reduced by saltmarsh vegetation during 526 

both seasons with a wave height reduction up to 0.21 m in the artificial saltmarsh while 527 

about 0.07 m reduction is found within the natural saltmarsh (Figure 8e and 8f). A small 528 

increase in IG wave height is also found at the offshore boundary of the saltmarshes 529 
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which is due to IG wave reflection off the saltmarsh leading edge (Figure 8e and 8f). 530 

Notably, around 30% of IG wave height is reduced due to saltmarsh vegetation on both 531 

seasons (Figure 9c and 9d). Behind the saltmarshes, there is also a deeper area (non-532 

vegetated in the model) in which IG waves are being reflected back and forth 533 

(resonance). 534 

The wave setup (increase in nearshore mean water level due to wave breaking) reaches 535 

up to 0.49 m at the offshore boundary of both saltmarshes and decreasing more rapidly 536 

in the artificial saltmarsh than in the natural saltmarsh areas, under the non-vegetated 537 

scenario (Figure 8g). Similar to IG waves, wave setup is substantially decreased by 538 

saltmarsh vegetation with a reduction up to 0.12 m in the artificial saltmarsh while 539 

approximately 0.03 m reduction is shown in the natural saltmarsh. Setup is much 540 

smaller in the natural saltmarsh without vegetation and this reduction may be related to 541 

the bathymetry-topography. There is also a small increase in wave setup at the offshore 542 

boundary of the saltmarshes followed by a small decrease (Figure 8h and 8i). Similar to 543 

the attenuation of IG waves, around 30% of wave setup is reduced but only in the 544 

artificial saltmarsh while the natural marsh provides relatively small attenuation (Figure 545 

9e and 9f). The attenuation of wave setup within the saltmarsh leads to lower mean 546 

water levels directly onshore (approximately 0.05 m). 547 

Overall, our results show that the artificial saltmarsh provides similar rates of wave 548 

attenuation as a natural saltmarsh in terms of sea-swell wave height during both 549 

seasons, meaning the vegetation scheme can effectively provide wave height reduction. 550 

Saltmarshes are also able to attenuate IG wave energy and wave setup, providing 551 

additional risk reduction. In comparison, the artificial saltmarsh (having greater IG 552 

energy to start with) tends to produce slightly more attenuation than the natural 553 
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saltmarsh in terms of IG wave height and wave setup during both seasons (Figure 8 and 554 

9). Given that validation data is not available, our result are expressed as relative wave 555 

dissipation due to vegetation.  556 
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 557 
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 558 

Figure 8 Wave attenuation at Brancaster site 559 
Wave height decay of sea-swell waves (a) and infra-gravity waves (d) and variation of wave setup (g). Differences between simulations 560 

with summer vegetation and without vegetation (b, e, and h) and between simulations with winter vegetation and without vegetation (c, f, 561 
and i) of sea-swell waves (a, b, and c), infra-gravity waves (d, e, and f), and wave setup (g, h, and i). 562 

 563 
 564 

 565 

 566 
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 567 

Figure 9 Relative wave attenuation at Brancaster site 568 
Relative wave height differences of sea-swell waves (a, b), and infra-gravity waves (c, 569 

d), and the relative difference in wave setup (e, f) between simulations with vegetation 570 
in summer (a, c, and e) and winter (b, d, and f) compared to the scenario without 571 

vegetation. 572 

 573 
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4. Discussion 574 

4.1. Comparison of FSA-based and LAI-based models 575 

Most studies of wave attenuation by vegetation focus on the determination of the drag 576 

coefficient of vegetation (Cd) (Jadhav et al., 2013) that must be calibrated in advance to 577 

be used in hydrological models (Mendez and Losada, 2004). Currently, empirical 578 

formulas are incorporated from literature to obtain Cd (Marsooli et al., 2017) based on 579 

local plant properties, and hydrodynamic and topographical characteristics (Yang et al., 580 

2012). Our results using FSA as the vegetation input show that the range of wave 581 

attenuation derived from the four empirical formulations of Cd (for the same vegetation 582 

species) in the Chesapeake Bay study site spans the field-observed wave attenuation 583 

values (Figure 2) and the Jadhav formulation most accurately simulates wave heights 584 

for the Chesapeake Bay dataset of Garzon et al. (2019a). It has been demonstrated by 585 

Garzon et al. (2019b) and again in this paper that the use of empirical formulations 586 

tends to be adequate to estimate wave attenuation; however, it requires wave and 587 

vegetation measurements to derive Cd as part of the estimations. 588 

Our results using LAI as the vegetation descriptor assess a range of constant values of 589 

Cd in the calibration and identify an optimal Cd =1.9 (Figure 4). Overall, the error 590 

statistics on both FSA-based and LAI-based models seem to be very similar, meaning 591 

that the LAI-based model is an effective alternative to the FSA-based model. This gives 592 

an advantage to the LAI-based model because it uses one remote-sensed input 593 

parameter instead of three field-based inputs. In this way, it is possible to cover larger 594 

saltmarsh vegetation areas in which field data might be difficult to obtain. Likewise, 595 
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time consumed in field vegetation surveys can be minimized without losing significant 596 

model accuracy and provides more complete spatial coverage. 597 

Nevertheless, some shortcomings of the LAI-based model should be considered in its 598 

application. As described in section 2.2.2, it is assumed hydrodynamic conditions are 599 

shallow water in low-lying coastal environments and near-emergent or emergent 600 

vegetation conditions where wave attenuation mainly relies on water depth. Emergent 601 

condition is also an assumption that may not always be valid, for instance, during a 602 

storm surge when entire marshes are submerged. As a result, the date of the data 603 

collection should be selected carefully by considering these conditions in shallow 604 

waters. Related to the assumption of Cd, the physical meaning of this coefficient is 605 

already complex when using the field-based approach (as we are assuming plants to be 606 

rigid cylinders) and become more complex with LAI representing FSA. Given that our 607 

paper also assumed a constant Cd value, further investigations are needed to estimate 608 

this value and apply the LAI-based model in many sites to validate the method and 609 

provide more robust and accurate results based on the monitoring and management 610 

requirement of the specific study area. 611 

4.2. Impact of variation of Cd and vegetation  612 

Since the drag coefficient (Cd) is an essential parameter in wave attenuation by 613 

vegetation, it is important to consider its impact in wave attenuation modelling. Our 614 

results show that varying Cd produces significant (and comparable) uncertainty in both 615 

the FSA-based model (Figure 2) and the LAI-based model (Figure 4). One reason for 616 

the uncertainty of the FSA-based model is the uncertainty associated with the field-617 
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based vegetation parameters while the uncertainty of the LAI-based model depends on 618 

the uncertainty of a single parameter (LAI). 619 

The FSA-based model incorporated Cd values from empirical formulations ranging 620 

from ~1 to ~2 (Figure 2) while the LAI-based model used constant Cd values from 0.9 621 

to 2.9 (Figure 4), both covering similar areas of wave attenuation. In order to have 622 

similar wave attenuation conditions, the Cd values in the LAI-based model were 623 

selected from the optimal Cd value tested when matching the observed wave attenuation 624 

values in the field (Figure 2). That is why Cd = 1.9 and increments of 0.5 were chosen in 625 

the LAI-based model. Although there was not validation data for the UK site, this paper 626 

focused on the relative wave attenuation between non-vegetated and vegetated 627 

scenarios. Further studies may estimate Cd in the UK site for validated results as well as 628 

validating the method in many sites. 629 

Some uncertainties in wave attenuation estimation are also due to the initial assumption 630 

of uniform vegetation properties (Foster-Martinez et al., 2018). The traditional and most 631 

used model (FSA-based model) considers the height, diameter, and density of 632 

vegetation (Anderson and Smith, 2015; Marsooli et al., 2016; Marsooli et al., 2017). 633 

However, incorporating sampling variation (Table 1) leads to significant uncertainty in 634 

attenuation modelling based on FSA in the Chesapeake Bay study site. Wave 635 

attenuation prediction using the FSA-based model, therefore, has a higher uncertainty 636 

level than using a single LAI value measured from satellite imagery in the LAI-based 637 

model as our results evidence. Thus, LAI is measurement across the entire saltmarsh 638 

that can be more easily obtained compared to the FSA parameters. Overall, both 639 

methods require validation of Cd for different vegetation, locations, seasons, etc. 640 
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4.3. Wave attenuation modelling application in 2D 641 

One of the main techniques to monitor managed realignments is ecological monitoring 642 

(Adnitt et al., 2007) such as vegetation surveys to evaluate the establishment of 643 

saltmarsh vegetation. Managed realignments often take around 4-5 years or more to 644 

establish their vegetation. For example, restored saltmarshes in the Great Bay Estuary, 645 

US show plant colonisation may be achieved within 7 years (Morgan and Short, 2002). 646 

At the Brancaster study site, the scheme was created in 2002 (Rees and Burns, 2014); 647 

and so, it is hypothesised that its saltmarsh vegetation is fully established and 648 

contributes to wave attenuation as well as a natural saltmarsh. This is confirmed by our 649 

maps of the relative wave height variation of sea-swell waves (Figure 9a and 9b). Maps 650 

of wave attenuation of infra-gravity (IG) waves (Figure 9c and 9d) and wave setup 651 

(Figure 9e and 9f) mainly show higher wave attenuation on the restored saltmarsh 652 

(given the higher IG energy at the beginning) rather than in the natural saltmarsh, 653 

proving significant evidence of potential flood protection. 654 

The level of wave attenuation of sea-swell waves due to saltmarsh vegetation seems to 655 

be higher at the offshore boundary of the vegetated field and partially due to depth 656 

limited breaking. Previous studies have shown an exponential decrease of wave height 657 

due to wave propagation when crossing a vegetation field (Yang et al., 2012; van 658 

Wesenbeeck et al., 2017) with idealised bottom topography (Parvathy and Bhaskaran, 659 

2017). Similarly, our results show exponential wave attenuation starting at the offshore 660 

boundary of the saltmarshes. This pattern is also seen in 1D wave attenuation modelling 661 

in XBeach which displays the exponential wave height decay inside two marshes 662 

(Garzon et al., 2019b) including the Chesapeake, US site. 663 
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Our results of sea-swell wave attenuation are important and confirm previous studies of 664 

wave attenuation (van Rooijen et al., 2016; Ozeren et al., 2017) given that both IG 665 

waves and wave setup are affected by saltmarsh vegetation as well. Both contribute 666 

directly to the total near-shore water level but also have an indirect impact allowing 667 

more sea-swell wave energy to propagate through. Wave setup is also affected by 668 

vegetation on distinct coastal configurations (van Rooijen et al., 2016). The slight 669 

increase in wave height on the offshore area seems to mainly occur due to IG waves. 670 

These waves appear to be partially reflected by the saltmarsh vegetation and create 671 

higher local water depths in which the sea-swell waves are able to travel to a small 672 

distance further because of the increased water depth.  673 

Finally, some studies have found that seasonality also plays an important role since 674 

vegetation may be present or absent during winter in some environments (Reef et al., 675 

2018). The presence of vegetation in numerical models is essential in simulating 676 

hydrodynamic conditions in saltmarsh platforms (Ashall et al., 2016) and, posteriorly, 677 

predicting wave attenuation on coastal environments over time. Garzon et al. (2019b) 678 

showed reduced protection against waves during winter than fall in saltmarshes in the 679 

Chesapeake Bay, US. However, another study found wave attenuation from Spartina 680 

foliosa (California cordgrass) did not significantly vary between summer and winter 681 

(Foster-Martinez et al., 2018). Given that our study lacks validation data, our results 682 

found similar relative wave attenuation using summer and winter saltmarsh vegetation 683 

which are the same for both natural and artificial saltmarshes. The next step would be to 684 

validate our outcomes for this site. Further investigations may also explore other types 685 

of saltmarsh vegetation communities with different seasonal vegetation (annual or 686 
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perennial plants) given that using LAI makes it easier to assess seasonality and relate it 687 

to wave attenuation. 688 

4.4. General application for coastal risk assessments 689 

Coastal managers may benefit from this method following several straight-forward 690 

steps. First, retrieval of remotely-sensed saltmarsh LAI from free and open-access 691 

Sentinel-2 MSI imagery. Although there are few studies of saltmarsh retrieval derived 692 

from Sentinel-2 (i.e. Darvishzadeh et al., 2019), potential saltmarsh LAI may be 693 

retrieved from different saltmarsh communities. Usually, saltmarsh vegetation is made 694 

of mixed canopy but dominant species should be considered to be quantified in terms of 695 

LAI. Second, confirmation of the assumptions required for the LAI-based model. 696 

Saltmarshes are commonly found on low-lying coastal areas (Pontee and Parsons, 2009) 697 

having emergent vegetation and under shallow conditions (Shi et al., 2016); as a result, 698 

these assumptions should be confirmed in most of the cases. Third, the direct 699 

application of the XBeach wave model. As described in our method (see section 2.2.2), 700 

the current code and settings of the XBeach model can be used to estimate wave 701 

attenuation using LAI as input representing vegetation structure of the saltmarsh.  702 

In terms of drag coefficient (Cd), this parameter is relevant but complex to estimate 703 

since it depends on the hydrodynamic conditions and vegetation parameters such as 704 

stem height, diameter, and density (Shafer and Yozzo, 1998; Suzuki et al., 2012; 705 

Marsooli et al., 2016). In order to use our LAI-based method, it is ideal to use an 706 

already estimated Cd of the study site. However, if it is unknown, a constant value may 707 

be used such as the typical value of Cd = 1 (i.e. Van Loon-Steensma, 2014) for 708 

comparing relative alternatives. Finally, the output generated should be carefully 709 
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interpreted. Although reduction of sea-swell waves can provide a good insight of wave 710 

attention, changes of infra-gravity waves and wave setup should be considered as 711 

complementary outputs. Likewise, the outputs need to be clarified under the 712 

assumptions described in the LAI-based model and they might not be valid under other 713 

conditions such as submerged vegetation, deep water (relative to the wave length), or 714 

large storm events where wave attenuation by vegetation is not significant. 715 

5. Conclusions 716 

Numerical models can be used to estimate and predict wave attenuation by vegetation. 717 

This is important for monitoring coastal environments that are particularly vulnerable to 718 

wave-induced flooding. Field-derived input data for the modelling such as structural 719 

parameters of vegetation are difficult to obtain, but remote sensing techniques offer a 720 

faster and cheaper way to obtain vegetation parameters such as LAI. We conclude that 721 

the use of LAI as a vegetation parameter in the proposed LAI-based wave attenuation 722 

model is a suitable alternative given its similar accuracy to the traditional FSA-based 723 

model which uses field data. 724 

Uncertainties of vegetation input parameters in numerical modelling may influence 725 

uncertainties of the wave attenuation estimations. We identified that variation of Cd 726 

values has a slightly higher impact on wave attenuation in the FSA-based model rather 727 

than in the LAI-based model. Likewise, the former model is sensitive to plant properties 728 

of height, diameter, and density given the natural variability which is hard to measure 729 

and produced a moderate uncertainty on wave attenuation. In contrast, the LAI-based 730 

model partially generated low wave attenuation uncertainty due to the single remote-731 

sensed LAI input, covering the spatial variability in the saltmarsh. 732 
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Our practical application using the LAI-based model evidences an easier and faster 733 

approach to obtaining structural parameters of saltmarsh vegetation that can be used as 734 

input in wave attenuation models such as XBeach. Predictions derived from modelling 735 

may support evidence to increase the implementation of natural-based flood control 736 

schemes such as managed realignments. In our study, there is evidence that the level of 737 

wave attenuation due to saltmarsh vegetation in the managed realignment is as effective 738 

as that seen in natural saltmarsh in terms of the wave height variation in wind-generated 739 

sea-swell waves. The Brancaster managed realignment also partially provides more 740 

wave attenuation than natural saltmarsh in terms of wave height of infra-gravity waves 741 

and wave setup because the artificial saltmarsh has more IG energy than the natural 742 

saltmarsh. This result may be site specific, as a result of the topography/bathymetry. 743 

In this study, the seasonality does not have a prominent impact on wave attenuation 744 

estimations. The FSA-based model only gives measurements for a specific moment, 745 

similar to the LAI-based model. However, remotely-sensed LAI as a temporal input can 746 

easily provide estimates of seasonal variation of wave attenuation. Further investigation 747 

is required to explore the application of the LAI-based model to other types of saltmarsh 748 

communities and to other regions. 749 
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 774 

Figure A.1 Wave height decay using LAI-based model 775 

Using a range of Cd constant values (solid lines) for one representative wave condition 776 
(Hs = 0.31 m, Tp = 2.71). 777 

 778 

Table A.1 Error statistics using the LAI-based model 779 
The coefficient of determination (R2), the root mean square error (RMSE), the scatter 780 

index (SCI), and the relative bias (R. bias) are shown. 781 

Cd 
Sensor 2 Sensor 3 Sensor 4 

R2 RMSE SCI R. bias R2 RMSE SCI R. bias R2 RMSE SCI R. bias 

Cd =1.8 0.16 0.03 0.14 -0.11 0.75 0.02 0.13 -0.02 0.86 0.01 0.21 -0.01 

Cd =1.9 0.17 0.03 0.13 -0.10 0.76 0.02 0.12 0.01 0.86 0.01 0.21 0.04 

Cd =2.0 0.18 0.03 0.12 -0.09 0.76 0.02 0.13 0.04 0.87 0.01 0.23 0.08 

Cd =2.1 0.19 0.03 0.11 -0.08 0.77 0.02 0.14 0.06 0.87 0.01 0.24 0.11 

Cd =2.2 0.19 0.03 0.10 -0.06 0.78 0.02 0.16 0.09 0.87 0.01 0.26 0.15 
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