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Abstract 23 

 Competition between taxa related to climate changes has been proposed as a possible 24 

factor in Pleistocene megafaunal extinctions, and here we present isotope evidence of the diets 25 

of three co-existing bear species (black bear (Ursus americanus), brown bear (Ursus arctos), and 26 

the now extinct short-faced bear (Arctodus simus)) from a locale in western North America 27 

dating to the Late (Terminal) Pleistocene (~14.5–11.7 ka). The three bear species were found at 28 

a number of sites on Vancouver Island, on the western coast of Canada. In order to examine the 29 

chronological overlap and niche partitioning between these species of bear, we used direct 30 

radiocarbon dating, stable isotope analysis, and ZooMS proteomic identification methods. Here 31 

we present new radiocarbon evidence from Terminal Pleistocene U. americanus, U. arctos, and 32 

Arctodus simus from several sites on the island, along with both bulk collagen and compound-33 

specific isotope data for these species. Radiocarbon dates confirm the chronological overlap of 34 

Arctodus and both Ursus species in the montane regions of the island at the end of the 35 

Pleistocene. Stable isotope data reveal niche differentiation between these species, with U. 36 

americanus occupying a distinctly lower trophic position than the other two taxa.  37 

 38 

 39 
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1. Introduction 43 

 At the terminus of the Pleistocene epoch, the final recession of the Cordilleran Ice Sheet 44 

following the Wisconsin glaciation opened previously ice-locked land masses to colonization by 45 

a variety of species. The maximum geographical extent of ice sheet coverage and exact timing 46 

of ice sheet recession from the northwest coast, and Vancouver Island in particular, remains an 47 



area of study; however, a growing body of environmental proxy data is working to provide 48 

insight on the specifics of these changes at local and regional scales (e.g., Al-Suwaidi et al. 2006, 49 

Cosma et al. 2008, Howes 1983, James et al. 2000, Ward and Thomson 2004, Eamer et al. 2017, 50 

McLaren et al. 2014). Pollen records from several sites on Vancouver Island indicate that glacial 51 

recession and an initially treeless landscape was followed by the colonization of the region by 52 

shade-intolerant Lodgepole Pine (Pinus contorta) and later by the establishment of increasingly 53 

closed and shade-tolerant forests with the appearance of species such as Spruce (Picea), 54 

Mountain Hemlock (Tsuga mertensiana), and Red Alder (Alnus rubra) (Hebda 1983, Al Suwaidi 55 

et al. 2006, Lacourse 2005).  56 

While both Ursus americanus and Ursus arctos were present elsewhere on the 57 

Northwest Coast prior to the Last Glacial Maximum (LGM) (Heaton and Grady 2003), these 58 

species have yet to be documented on Vancouver Island prior to the LGM. Arctodus, however, 59 

was known to be present prior to the LGM on Vancouver Island (Steffen and Harington 2010). 60 

The recolonization of the Northwest Coast by Ursus following deglaciation has been previously 61 

documented by early post-glacial dates from Haida Gwaii (Ramsey at el. 2004) and Vancouver 62 

Island (Steffen and Fulton, 2018). Examples of post-glacial Arctodus in the region are currently 63 

limited to two specimens from Vancouver Island (Steffen and Fulton 2018).  64 

Ursus arctos and Arctodus have been noted to co-occur in the paleontological record 65 

elsewhere in North America (eg. Barnes et al. 2002, Matheus 1995, Davison et al. 2011). 66 

Additionally, U. americanus and U. arctos were found to co-occur to the north on Haida Gwaii 67 

during the Younger Dryas (12,900–11,500 cal YBP) (Fedje et al., 2011) and co-occur regionally in 68 

several parts of North America to this day, including part of the northwest coast. Vancouver 69 

Island presents a case of temporal overlap between not only two, but all three of these bear 70 

species in the time period shortly preceding the extinction of the short-faced bear. 71 

 72 

1.1 Stable Isotope Analysis of Extinct Megafauna 73 

The dietary requirements of now-extinct Arctodus simus have been debated within 74 

paleontological literature, with claims made for everything from an herbivorous to a hyper-75 

carnivorous diet based on morphological characteristics, microwear and paleopathological 76 

analyses, and stable isotope analyses of skeletal remains (Figueirido et al. 2010, Kurtén 1967, 77 

Emslie and Czaplewski 1985, Bocherens et al. 1995, Fox-Dobbs et al. 2008, Donohue et al 2013, 78 

Figueirido et al. 2017). Existing stable isotope data for Arctodus is primarily limited to that of 79 

more northernly specimens from the Yukon and Alaska, with only one specimen from pre-LGM 80 

Vancouver Island (see Steffen and Harington 2010, Matheus 1995, Barnes et al., 2002, 81 

Schwartz-Narbonne et al. 2015, Bocherens et al 1995, Fox-Dobbs et al. 2008), although recently 82 

published data from a single Late Pleistocene specimen found on the California Channel Islands 83 

contributes some insight into the diets of more southernly populations (Mychajliw et al. 2020).  84 

It has been previously suggested by Steffen and Fulton (2018) that U. Arctos and 85 

Arctodus may have exhibited territorial niche partitioning on the island, and that competition 86 

should be considered as a factor in extinction. They proposed that future studies of the trophic 87 

interactions of these species may reveal the influence of competition on resource availability 88 

for Arctodus the end of the Pleistocene. Additionally, the influence of competition on Arctodus 89 

diet has been suggested in recent explorations of Arctodus diet that consider regional variability 90 

and the presence of other large carnivore species (Figueirido et al. 2017).  91 



To better understand the diets of these three co-existing bear species in this region, we 92 

used both bulk collagen stable isotope analysis as well as compound-specific stable isotope 93 

analysis (CSIA) on a subset of specimens from all three species, as the latter technique offers a 94 

high-resolution dietary analysis. A variety of contributing factors can influence the bulk collagen 95 

carbon and nitrogen isotope composition of a consumer’s tissues, including diet, environmental 96 

and climatic conditions, and digestive physiology (DeNiro and Epstein 1978, DeNiro and Epstein 97 

1981, Austin and Vitousek 1998, Craine et al. 2009, McMahon and McCarthy 2016). By 98 

analyzing the carbon and nitrogen isotope ratios of individual amino acids within bone collagen, 99 

it is possible to differentiate between some of the factors that contribute to the resulting 100 

isotopic composition of consumer tissue. This is a relatively novel approach to isotope analysis 101 

of paleontological materials; current challenges in the application of CSIA are summarized by 102 

Whiteman et al. (2019). 103 

While some amino acids in bone collagen closely reflect the isotopic composition of an 104 

animal’s diet, others experience higher magnitudes of trophic fractionation due to the isotopic 105 

effects of amino acid synthesis and assimilation within the consumer’s body. For the 106 

investigation of carbon isotopes, CSIA allows for the distinction between the isotopic 107 

compositions of essential and non-essential amino acids. Essential amino acids are those that 108 

cannot be synthesized by the consumer; therefore, their carbon skeletons must be acquired 109 

intact from dietary sources, and the carbon isotope composition of these amino acids in 110 

consumer tissue closely reflects that of their dietary source. Non-essential amino acids, which 111 

can be either directly acquired from dietary sources or synthesized within the body, reflect the 112 

carbon isotope composition of dietary sources to different extents (Whiteman et al. 2018; 113 

however, see Newsome et al. 2011 to consider the contribution of the gut microbiome to 114 

essential amino acid isotope composition).  115 

Because the nitrogen-containing amine group of each amino acid is affected by different 116 

processes than its carbon skeleton, CSIA of nitrogen makes use of the distinction between 117 

‘source’ and ‘trophic’ amino acids. Source amino acids are known to closely reflect the nitrogen 118 

isotope composition of a dietary source, while trophic amino acids undergo significant 119 

fractionation through the processes of deamination and transamination. The distinction 120 

between these two groups has been well-established empirically across many food webs 121 

(McClelland and Montoya 2002, Chikaraishi et al. 2009, Naito et al. 2010, Naito et al. 2013) and 122 

more recently, metabolic explanations have been proposed to explain the fidelity of these 123 

groupings (Chikaraishi et al. 2014, McMahon and McCarthy 2016, O’Connel 2017). 124 

In this study, we aim to contribute to the small but growing body of individual amino 125 

acid stable isotope data for extinct taxa and provide compound-specific collagen stable isotope 126 

data for extant North American large mammal species—Ursus americanus and Ursus arctos. In 127 

combination with direct radiocarbon dating and ZooMS proteomic identification, we use this 128 

data to explore the ecological context of these three bear species on Vancouver Island at the 129 

end of the Late Pleistocene.  130 

 131 

2. Materials  132 

A total of ten bone samples were analyzed in this study, consisting of three short-faced 133 

bears (Arctodus simus) four brown bears (Ursus arctos), and three black bears (Ursus 134 

americanus) from five locations on Vancouver Island, in British Columbia, Canada. All Terminal 135 



Pleistocene material examined in this paper originates from montane cave sites. Limestone 136 

solution caves can provide shelter for hibernating bears and sometimes act as traps for large 137 

mammals, both situations resulting in the deposition of bones on cave floors. The specimens 138 

examined in this study are housed at the Royal British Columbia Museum (RBCM) in Victoria, 139 

B.C., Canada. The approximate geographic origins of the samples can be found in Figure 1.  140 

 141 

 142 
Figure 1. Pleistocene bear recovery locations in this study.  143 

S-SFU 269 and 270 come from Windy Link Pot Cave. The cave, with an entrance 144 

elevation of approximately 900 m above sea level, is part of a large underground system 145 

spanning nearly 10 km. The specimens used in this study were collected from the cave floor 146 

surface at the base of the 78 m vertical drop cave entrance. They were identified as Ursus 147 

americanus by Nagorsen et al. (1995), who report a detailed morphological description of their 148 

identification. S-SFU 269 was sampled from a skull, and S-SFU 270 from a mandible, each 149 

representing a different individual.  150 

S-SFU 277–281 come from Pellucidar Cave. Pellucidar Cave is a large limestone cave 151 

system with an underground stream elevated at approximately 480 m above sea level (Steffen 152 

and McLaren 2008); it is described in detail by Nagorsen and Keddie (2000). The specimens in 153 

this study were collected from the cave floor surface, approximately 60 m in from the cave 154 

opening. The morphology and radiocarbon dates of these specimens are described in detail by 155 

Steffen and Fulton (2018). The samples include an immature Ursus arctos humerus (S-SFU 277), 156 

an Arctodus simus palatine (S-SFU 278), an Arctodus simus humerus (S-SFU 279), an Ursus 157 

arctos femur (S-SFU 280), and an Ursus arctos humerus (S-SFU 281). It was noted by Steffen and 158 

Fulton (2018) that the Arctodus simus palatine and humerus (S-SFU 278 and 279) are not 159 

exclusive elements and could potentially represent the same individual.  160 



S-SFU 272 was collected from Grey Mountain Cave in February 1990. The specimen is an 161 

Ursus arctos juvenile femur.  162 

S-SFU 276 comes from North Vancouver Island Cave (near Pellucidar cave) and was first 163 

reported by Steffen and Fulton (2018). The specimen sampled is an Ursus americanus cranium. 164 

 165 

3. Methods  166 

3.1 ZooMS 167 

 168 

 Five samples (S-SFU-269, 278, 279, 280, 281) were processed for ZooMS collagen 169 

peptide mass fingerprinting (Buckley et al. 2009). Approximately 50 mg bone chunk samples 170 

were prepared and analyzed at the Manchester Institute of Biotechnology following the 171 

procedure described by van der Sluis et al. (2014). In brief, this involved decalcification of ~25-172 

50 mg bone powder with 0.6 M hydrochloric acid for 18 hours, centrifugation at 12,400 rpm for 173 

1 minute and the acid-soluble fraction ultrafiltered on a 10 kDa molecular weight cut-off 174 

membrane (Vivaspin, UK). Following two washes in 50 mM ammonium bicarbonate (ABC), 100 175 

µL of retentate was removed and digested with 0.4 µg sequencing grade trypsin (Promega, UK) 176 

for 18 hours at 37 oC. Peptide solutions were then acidified to 0.1% trifluoroacetic acid (TFA; 177 

Sigma, UK), and purified by C18 pipette tips (OMIX, UK) eluting with 50% acetonitrile 178 

(ACN)/0.1% TFA, dried to completion and resuspended with 0.1% TFA. One tenth was then 179 

spotted with an equal volume of 10 mg/mL alpha-cyano hydroxycinnamic acid in 50% ACN/0.1 180 

% TFA onto a stainless steel Matrix Assisted Laser Desorption Ionization (MALDI) target plate 181 

and allowed to air dry. Samples were then analysed using a Bruker Autoflex II MALDI time of 182 

flight mass spectrometer with the m/z range 700-3,700 and resultant spectra compared with 183 

reference materials (see Figure S4). 184 

 185 

3.2 Radiocarbon Dating 186 

 187 

 Approximately 500 mg of bone powder was drilled from samples S-SFU-269, 270, 272, 188 

and 276, and sent to the A.E. Lalonde AMS laboratory at the University of Ottawa for 189 

radiocarbon age determination. Sample preparation included collagen extraction following a 190 

modified version of the Longin (1971) method utilizing ultrafiltration of collagen through 30kDa 191 

MWCO filters, the specific laboratory protocol for which is described as media code BU in Crann 192 

et al. (2017). 14C analysis was carried out by AMS on prepared graphite. Calibration of 193 

radiocarbon determination to calendar year was performed using OxCal 4.4 software (Bronk 194 

Ramsey 2009) according to the IntCal20 calibration curve (Reimer et al. 2020). 195 

 196 

3.3 Bulk Collagen δ13C and δ15N Stable Isotope Analysis 197 

  198 

Samples S-SFU 277-281 were prepared for carbon and nitrogen bulk stable isotope 199 

analysis (BSIA) following the protocol described in Müldner and Richards (2005) at the 200 

Archaeology Isotope Laboratory, Department of Archaeology, Simon Fraser University. To 201 

summarize, bone chunks (<1g) were demineralized in 0.5M HCl, rinsed with distilled water, 202 

then gelatinized at 75 C in pH3 HCl and filtered through 30kDa MWCO ultrafilters, with the 203 



>30kDa fraction lyophilized for analysis. Duplicate samples were encapsulated in tin capsules 204 

and sent to Iso Analytical, Crewe UK, where δ13C and δ15N values were measured in duplicate 205 

by EA-IRMS. 206 

Collagen quality standards required a collagen yield between 0.5 and 22%, C/N ratio of 207 

2.9–3.6, %C of 15.3–47%, and %N between 5.5% and 17.3% (Ambrose 1990, DeNiro 1985, van 208 

Klinken 1999). The δ13C and δ15N values presented here are the average of duplicates, reported 209 

as the ‰ difference from the international standards VPBD for carbon (13C/12C) and AIR for 210 

nitrogen (15N/14N) (Coplen, 2011).  211 

δ13C and δ15N values were calibrated to VPDB and AIR using the standard IA-RO68 (soy 212 

protein, δ13C = -25.22 ‰, δ15N = 0.99 ‰). Check standards included IA-R038 (L-alanine, δ13C = -213 

24.99 ‰, δ15N = -0.65 ‰), IA-R069 (tuna protein, δ13C = -18.88 ‰, δ15N = 11.60 ‰) and a 214 

mixture of IAEA-C7 (oxalic acid, δ13C = -14.48 ‰) and IA-R046 (ammonium sulfate, δ15N = 22.04 215 

‰). Average observed values of these check standards during analysis were δ13C = -25.05 ‰, 216 

δ15N = -0.47 ‰ (IA-R038, n = 2); δ13C = -18.85 ‰, δ15N = 11.72 ‰ (IA-R069, n = 2); and δ13C = -217 

14.57 ‰, δ15N = 21.97 ‰ (IAEA-C7 and IA-R046, n = 2). 218 

 Samples 269, 270, 272, and 276 were prepared and analyzed at the University of Ottawa 219 

G.G. Hatch stable isotope laboratory, where a subsample of the lyophilized collagen prepared 220 

for radiocarbon dating was analyzed in duplicate by EA-IRMS for δ13C and δ15N values. δ13C and 221 

δ15N values were calibrated to VPDB and AIR using internal standards calibrated to the 222 

international standards IAEA-N1 (+0.4‰), IAEA-N2 (+20.3‰), USGS-40 (-4.52‰) and USGS-41 223 

(47.55‰) for nitrogen and IAEA-CH-6 (-10.4‰), NBS-22 (-29.91‰), USGS-40 (-26.39‰) and 224 

USGS-41 (36.55‰) for carbon. Analytical precision was determined based on the results of the 225 

internal check standard C-55 glutamic acid (expected value: δ15N = -3.98, δ13C = - 28.53; 226 

measured valued = δ15N = -4.0, δ13C = - 28.4).  227 

 228 

3.4 δ13C and δ15N Analysis of Individual Amino Acids 229 

 230 

Extracted collagen was prepared and analysed for CSIA-AA at the Memorial Applied 231 

Archaeological Science (MAAS) laboratory and Biogeochemistry of Boreal Ecosystems 232 

Laboratory at Memorial University (S-SFU-269, 276, 278, and 279) and at the Archaeology 233 

Isotope Laboratory, Department of Archaeology, Simon Fraser University (S-SFU 272, 277, and 234 

281), with the same preparation protocol followed at both labs. For each sample, 1 mg of 235 

lyophilized collagen was hydrolyzed in 6M HCl at 110 C for 20 hours, blown down at 60C 236 

under a gentle stream of pure nitrogen, and re-dissolved in 0.1M HCl. An internal standard (nor-237 

leucine) was added to each sample prior to derivatization. Due to the amide to carboxylic group 238 

conversion during acid hydrolysis, glutamine (Gln) and asparagine (Asn) are respectively 239 

converted to glutamic acid (Glu) and aspartic acid (Asp), and their δ13C and δ15N values reflect 240 

the combined contributions; these are hereafter notated as Glx and Asx (Fountoulakis and 241 

Lahm 1998). 242 

A standard, AAmix, was prepared and derivatized along with the samples containing 243 

each of the analyzed amino acids—alanine (Ala), glycine (Gly – USGS65), valine (Val – USGS74), 244 

leucine (Leu), threonine (Thr), serine (Ser), proline (Pro), aspartic acid (Asp), glutamic acid (Glu), 245 

hydroxyproline (Hyp), phenylalanine (Phe), and lysine (Lys). EA-IRMS was used to determine the 246 

δ13C and δ15N values of the individual amino acids in the standard mixture prior to their 247 



combination, except for Gly and Val, which had certified values. A quality control sample, 248 

QCmix, contained only Gly, Val, Pro and Glu. The free amino acids in the standards and samples 249 

were derivatized into N-acetyl isopropyl (NAIP) esters following the procedure described in Corr 250 

et al. (2007). 251 

GC-C-IRMS analysis for δ13C and δ15N values of derivatized amino acids was performed 252 

at the CREAIT - Stable Isotope Laboratory at Memorial University using an Agilent 6890N gas 253 

chromatograph coupled via a GC Combustion III interface to a Delta V Plus isotope ratio mass 254 

spectrometer (GC-C-IRMS). For δ13C analysis, a GC-PAL autosampler (CTC Analytics) injected 255 

samples at 250 C onto a VF-23ms GC column (60 m x 0.32 mm x 0.15 um; Agilent Technologies) 256 

following an oven temperature program of 70 ⁰C for 0.5 min; to 120 ⁰C at 15 ⁰C/min; to 180 ⁰C 257 

at 2 ⁰C/min; to 255 ⁰C at 5 ⁰C/min; hold 16 min. Separated gases then entered a Cu, Ni, and Pt 258 

wire oxidation reactor held at 940 ⁰C, followed by a reduction reactor at 640 C at a flow rate of 259 

1.5mL/min. Samples were analyzed in triplicate in a sequence with an amino acid standard and 260 

quality control (QC) sample. Each sample and standard was then blown down under nitrogen by 261 

a factor of approximately 5 for δ15N analysis. Samples were injected onto a VF-23 ms GC 262 

column (60 m x 0.32 mm x 0.50 μm; Agilent Technologies) at 250 C and subjected to an oven 263 

temperature program of 70 °C for 0.5 min; to 130 °C at 15 °C/min; to 255 °C at 6 °C/min; hold 264 

11 min. A liquid nitrogen trap was used to capture CO2 and prevent its entry into the IRMS. 265 

At the Archaeology Isotope Laboratory, Department of Archaeology, Simon Fraser 266 

University, CSIA-AA measurements followed a similar protocol, with modifications made for 267 

differences in instrument specifications. Amino acid derivatives were analyzed on a Trace 1310 268 

gas chromatograph coupled to a GC Isolink II combustion system and a Delta V Plus mass 269 

spectrometer (GC-C-IRMS; all Thermo Scientific). Separated amino acids passed through a 270 

combustion reactor (1000°C) consisting of a NiO tube containing CuO, NiO, and Pt wires, which 271 

provides quantitative oxidation and reduction of N2. An AS 1310 autosampler (Thermo 272 

Scientific) was used to inject 1.0 uL for both 13C and 15N measurements. For δ13C analysis, the 273 

same GC column specifications and oven temperature program as descried above were utilized, 274 

with the exception that the final temperature of 255 °C was held for 21 minutes.  Samples were 275 

analyzed in triplicate with the AAmix and QCmix standards interspersed throughout the 276 

sequence. Following C isotope analysis, samples and standards were concentrated under a 277 

gentle flow of nitrogen by a factor of ~5 for N isotope analysis. Samples were injected onto an 278 

Agilent DB-35 GC column (60 m x 0.32 mm x 0.5 μm) at 240 °C with a 3.5 second pre-injection 279 

dwell time following a short (12 sec) seed oxidation prior to each analysis. Samples S-SFU 277 280 

and 281 were analyzed with the following GC oven program with a flow rate of 1.4 ml/min: 50 281 

°C for 2 min, to 140 °C at a rate of 13 °C/min, to 195 °C at 3°C/min and held for 7 mins, to 245°C 282 

at 8°C/min and held for 11 mins, to 280°C at 15 °C/min; this final temperature was held for 8 283 

minutes. Sample S-SFU 272 was analyzed with the following GC oven program with a flow rate 284 

of 1.3 ml/min: 40 °C for 5 min, to 120 °C at a rate of 15 °C/min, to 180 °C at 3 °C/min, to 210 °C 285 

at 1.5 °C/min, and finally to 280 °C at 5 °C/min, where this final temperature was held for 8.8 286 

minutes. A liquid nitrogen trap was used to capture CO2 and prevent its entry in to the IRMS.  287 

δ13C values were corrected for the carbon added during derivatization by applying a 288 

correction factor following Silfer et al. (1991) to the measured values. For δ15N analysis, GC-C-289 

IRMS-measured values of the AAmix were plotted against EA-IRMS-measured values for each 290 

amino acid, and the linear relationship was used to correct measured values in samples.  291 



Matrix-matched quality Control (QC) samples were also derivatized and analyzed 292 

alongside the samples. At Memorial University, this included a bovine gelatin (BGEL) standard, 293 

for which long-term data on δ13C means and standard deviations are available (Table S1). 294 

Longterm data on the δ15N values of the amino acids in these QCs are not available yet; 295 

standard deviations of measurements within runs are presented alongside δ15N data. At Simon 296 

Fraser University, both seal collagen (SRM-1) and deer collagen (SRM-2) QC samples were used; 297 

data on the δ13C means and standard deviations are presented in Table S2, and the δ15N means 298 

and standard deviations are presented in Table S3. These QC standards allow for the evaluation 299 

of the quality of derivatization and GC-C-IRMS analysis.300 



 4. Results  301 

A summary of results discussed within the text are presented in Table 1 and Table 2.  302 

 303 
Table 1. ZooMS identification and Radiocarbon results. ** = 14C age reported by Steffen and Fulton (2018); All other dates listed are from this study.  304 

S-
SFU 

Taxon Skeletal 
Element 

Context ZooMS ID 14C Lab 
Designation 

14C a BP  Calibrated μ  Median 68.3% range cal a BP 

269 Ursus 
americanus 

skull Windy 
Link Pot 
Cave 

Ursus UOC-4529 11,202±49 13125 13124 13,160-13,094  

270 Ursus 
americanus 

mandible Windy 
Link Pot 
Cave 

N/A UOC-4530 11,219±49 13135 13134 13,161-13,100 

272 Ursus arctos femur Grey 
Mtn 
Cave 

N/A UOC-4532 11,830±49 13682 13684 13,758-13,609  

276 Ursus 
americanus 

cranium North V. 
I. Cave 

N/A UOC-4535 11,913±49 13778 13773 13,981–13,611 

277 Ursus arctos humerus Pellucida
r Cave 

N/A UCIAMS-
41052** 

11,110±30 13033 13042 13,097–12,998 

278 Arctodus 
simus 

palatine Pellucida
r Cave 

Arctodus UCIAMS-
41049** 

11,615±30 13484 13480 13,571–13,453  

279 Arctodus 
simus 

humerus  Pellucida
r Cave 

Arctodus UCIAMS-
41048** 

11,775±30 13637 13638 13,741–13,520  

280 Ursus arctos femur Pellucida
r Cave 

Ursus UCIAMS-
41050** 

12,425±3 14569 14545 14,830–14,337  

281 Ursus arctos humerus Pellucida
r Cave 

Ursus UCIAMS-
41051** 

12,440±35  14599 14583 14,845–14,366  

 305 

 306 
Table 2. Summary of discussed stable isotope results reported in ‰ with measurement uncertainties for duplicate and triplicate injections. Long-term 307 
uncertainties presented in supplementary tables 1–3.  308 

S-SFU Taxon Bulk collagen 
δ13C 

Bulk collagen 
δ15N 

δ15N Glx δ15N Phe δ15N Thr δ13C Phe δ13CGly  



269 Ursus 
americanus 

-19.5 1.7 10.4 (±0.2) 11.9 (±0.3) -11.2 (±1.4) -25.8 (± 0.9) -16.7 (± 0.1) 

270 Ursus 
americanus 

-19.9 0.6 ---- ---- --- --- --- 

272 Ursus arctos -17.1 10.2 11.0 (±0.4) 7.6 (±0.6) -13.9 (±0.3) -24.6 -18.3 

276 Ursus 
americanus 

-20.8 1.7 6.4 (±0.1) 7.7 (±0.2) -12.5 (±0.2) -25.8 (±0.2) -14.9 (±0.1) 

277 Ursus arctos -19.6 6.2 8.1 (±0.8) ---* -13.8** -25.9 (±0.1) -19.9 (± 0.1) 

278 Arctodus 
simus 

-19.0 5.3 12.0 (±0.0) 7.1 (±1.1) -25.6 (±0.8) -23.4 (±0.7) -11.3 (± 0.2) 

279 Arctodus 
simus 

-19.0 5.5 11.8 (±0.8) 5.6 (±1.6) -24.9 (±1.6) -25.1 (± 0.3) -13.3 (± 0.0) 

280 Ursus arctos -19.2 7.3 ---- ---- ---- ---- --- 

281 Ursus arctos -18.3 9.4 13.0 (±0.2) 5.8 (±0.5) -15.2 (±0.8) -26.4 (± 0.4) -13.2 (± 0.3) 

* excluded due to co-elution 309 
**measurement uncertainty unknown; first injection caused co-elution (no duplicate injection) 310 



 311 

4.1 ZooMS Identifications  312 

 Due to variations in morphological characteristics through time and between 313 

populations, distinguishing between different bear taxa in fragmentary Pleistocene remains 314 

based on skeletal morphology alone can present difficulties (e.g. Richards et al. 1996, Steffen 315 

and Fulton 2018). The task of distinguishing Ursus arctos from Ursus americanus can present 316 

particular challenges when considering Pleistocene remains. Although modern grizzly bears are 317 

generally larger than modern black bears, these bears may have been more similar in size 318 

during parts of the Pleistocene (Gordon 1986, Wolverton and Lyman 1998), with U. americanus 319 

adults significantly overlapping in cranial size with immature U. arctos (Nagorsen et al. 1995). 320 

The comparatively large size of Pleistocene U. americanus has been proposed as an explanation 321 

for why some relatively isolated populations of U. americanus, such as those found on pacific 322 

northwest islands today (including Vancouver Island), are unusually large (Gordon 1986), 323 

featuring larger teeth and broader skulls. Vancouver Island’s modern black bears feature such 324 

distinctly large skulls that they have been sometimes referred to as the separate subspecies 325 

Ursus americanus vancouveri (Hall 1928:231). Molar size criteria have been developed to 326 

distinguish between these species (Gordon 1977); however, molars are not always available for 327 

Pleistocene specimens consisting of only one or a few skeletal elements. More recently, 328 

geometric morphometric analyses of Pleistocene Ursus specimens has sought to reclassify 329 

several previously misidentified specimens (Kantelis 2017).  330 

 331 

Biomolecular identification methods had been previously attempted on some of the samples 332 

included in this study, with mixed results. One sample in the current study (SFU-277) was 333 

originally reported as U. americanus for radiocarbon dating (Steffen and McLaren 2008) but 334 

was later identified using aDNA as U. arctos (Steffen and Fulton 2018). Although ancient DNA 335 

analysis of S-SFU 279 was also attempted by Steffen and Fulton (2018), no endogenous DNA 336 

was recovered, and its identification as Arctodus remained solely morphological. However, the 337 

potential for collagen to survive longer in a burial environment than DNA (Nielsen-Marsh 2002, 338 

Buckley and Collins 2011) made this sample a good potential candidate for ZooMS 339 

identification, as this technique allows identification to the genus level and therefore 340 

differentiation between Arctodus and Ursus spp. Preserved collagen peptide sequences from 341 

five of our samples confirmed S-SFU-278 and 279 as Arctodus, and SFU-269, 280, and 281 as 342 

Ursus. 343 

 344 

4.2 Radiocarbon Chronology 345 

Radiocarbon dating was carried out on all specimens of unknown age and those lacking direct 346 

radiocarbon dates. We report new direct AMS dates on three Late Pleistocene Ursus individuals 347 

(S-SFU-269; S-SFU 270; S-SFU-272) along with a corroborating radiocarbon date for S-SFU-276, 348 

which is in close agreement with the radiocarbon date for this specimen recently reported by 349 

Steffen and Fulton (2018) of 11935 +/- 40 (UCIAMS 56479). Figure 2 shows calibrated 350 

radiocarbon date distributions for the bears analyzed in this study. 351 

 352 



 353 
Figure 2. Calibrated radiocarbon age distributions  354 

 355 

Previously, a composite sample of post-cranial fragments from an immature individual found on 356 

the surface of the cave floor near S-SFU 269 and 270 was radiocarbon dated to 9,760 +/- 140 357 
14C a BP (Nagorsen et al. 1995). S-SFU 269 and 270 represent mature individuals, and this 358 

composite date cannot be directly applied to other materials on the cave floor surface, as their 359 

association is unknown. The new dates given here of 13,160–13,094 cal a BP for S-SFU 269 360 

(11,202 +/-49 14C a BP) and 13,161-13100 cal a BP for S-SFU 270 (11219 +/- 49 14C YBP) show 361 

that Ursus americanus was present on Vancouver Island during the Late Pleistocene at Windy 362 

Link Cave, significantly earlier than the initial date reported in association with these 363 

specimens.   364 

 365 

4.3 Bulk Collagen Stable Isotope Analysis  366 

 Carbon and nitrogen stable isotope analysis has been used to investigate the diet of 367 

extinct and extant species of bears in both modern and paleontological or archaeological 368 

contexts (e.g., Hildebrand et al. 1996, Barnes et al. 2002, Dykstra 2015, Richards et al. 2008, 369 

Hopkins et al. 2017). Hildebrand et al. (1996) conducted experiments on bears in the modern 370 

Pacific Northwest to determine the relationship between the stable carbon and nitrogen 371 

composition of bear tissues and their observed dietary inputs. The δ13C values of bear bone 372 

collagen has been observed to indicate the amount of marine versus terrestrial carbon 373 

contributed via protein ingestion (Hildebrand et al. 1996). However, such values can also be 374 



influenced by trophic level fractionation and the consumption of plants with different pathways 375 

of carbon metabolism (DeNiro and Epstein 1978). Nitrogen stable isotope composition can help 376 

determine the bear’s trophic level (Hildebrand et al. 1996, DeNiro and Epstein 1981) due to the 377 

significant enrichment in 15N that occurs with increasing trophic levels within a food web. 378 

However, δ15N values can also be affected by fluctuations in climate, such as relative aridity 379 

(Austin and Vitousek 1998, Craine et al. 2009), and the difference in climatic context between 380 

specimens of different ages should be considered when comparing these bulk tissue stable 381 

isotope results. A summary of bulk collagen carbon and nitrogen stable isotope data from the 382 

bears investigated in this study is presented in Figure 3.  383 

 384 

 385 

 386 
Figure 3. Bulk collagen carbon versus nitrogen isotope compositions of the bear specimens 387 

 388 

In the case of bears, anadromous fish such as salmon are a likely marine source that would 389 

elevate δ13C values (Hildebrand et al. 1996). In these Pleistocene Vancouver Island samples, 390 

δ13C values appear to increase stepwise with δ15N values, indicating a trophic level diet–tissue 391 



offset rather than a significant contribution of anadromous fish; however, there is some spread 392 

within both the δ13C and δ15N values of U. arctos. While the carbon and nitrogen stable isotope 393 

ratios of U. americanus converge around the expected values for a terrestrial diet at a low 394 

trophic level, the U. arctos values have a much wider range of values.  395 

Considering that bone collagen provides a signal reflective of the dietary intake across 396 

several years of an animal’s life (Stenhouse and Baxter 1979), small contributions of 397 

anadromous fish to the diets of U. arctos could be obscured in the bulk collagen isotopic signal 398 

by the consumption of 13C-depleted resources. Smaller contributions of such resources to the 399 

diet are especially obscured when overall lower quantities of protein are consumed, causing 400 

collagen formation that routes a higher percentage of carbon from non-protein (lipid and 401 

carbohydrate) sources (Howland et al. 2003).  402 

 403 

4.4 Carbon compound specific isotope analysis (CSIA) 404 

 405 

Due to the low availability of contemporary comparative paleontological samples from these 406 

contexts on Vancouver Island, it was not possible to employ the CSIA carbon isotope 407 

fingerprinting technique used by other researchers which uses different species to reconstruct 408 

food-webs and diets (e.g. Larsen et al. 2009, Corr et al. 2007, Larsen et al. 2013, Jarman et al. 409 

2017). However, several trends in individual amino acid carbon isotope composition have been 410 

observed across a variety of ecosystems and time periods, and syntheses of published CSIA 411 

carbon data (eg. Corr et al. 2005, Honch et al. 2012, Webb et al 2018) allow for broad 412 

comparisons with these trends.  413 

 The difference between the δ13C values of the nonessential amino acid Gly and the 414 

essential amino acid Phe the (Δ13CGly–Phe) has been used as a proxy for aquatic (marine and 415 

freshwater) versus terrestrial protein consumption, with higher Δ13CGly–Phe values indicating 416 

higher contributions of aquatic resources and lower Δ13CGly–Phe values indicating relatively lower 417 

contributions of such resources (Webb et al 2018:6).  418 

The Δ13CGly–Phe values do not appear to vary greatly between the difference bear species 419 

investigated here, and all samples fall below the values expected for high aquatic protein 420 

consumers (Figure 4; see Webb et al. 2018:6). Furthermore, bulk collagen δ13C values and 421 

nitrogen CSIA data (discussed below) further suggest that heavy reliance on aquatic resources 422 

was unlikely for any of these bears. 423 

It is possible that the U. arctos shown here consumed some amount of anadromous fish; 424 

however, it does not appear to have been a significant protein source. The U. americanus 425 

shown here appear to have consumed a year-round terrestrial diet at a significantly lower 426 

trophic level. The Arctodus appear to occupy a middling position between U. americanus and U. 427 

arctos. 428 

Despite popular depictions of U. arctos consuming salmon, fish are not essential to the 429 

survival of U. arctos, and when resources such as salmon are not available the bears rely on 430 

terrestrial vegetation, insects, freshwater fish, and mammals (Davis 1996). Furthermore, U. 431 

arctos can, as observed in some modern ecosystems, subsist on a completely vegetarian diet; 432 

some populations of U. arctos have been observed to subsist solely on vegetation across 433 

multiple years, despite the availability of other resources such as fish (Rode et al. 2001, 434 

Mychajliw 2020).  435 



 436 

 437 

 438 
Figure 4. Comparison of Δ13CGly-Phe values versus bulk δ15N values of the Vancouver Island bears. 439 

 440 

4.5 Nitrogen compound-specific isotope analysis 441 

 442 

Nitrogen CSIA was undertaken to further distinguish the trophic positions of these 443 

bears, as such data can provide a more informative comparison between individuals from 444 

different time periods or that consume foods with different environmental baseline nitrogen 445 

isotopic compositions. The difference in 15N enrichment between source and trophic amino 446 

acids has been attributed to the amino acid’s participation or lack thereof in deamination or 447 

transamination reactions as the protein from food is incorporated into consumer tissue 448 

(McMahon and McCarthy 2016, O’Connell 2017, Whiteman et al. 2019). Therefore, animals 449 

occupying higher trophic positions display a larger internal spacing between their Phe (source 450 

AA) and Glx (trophic) AA δ15N values, regardless of the level of 15N enrichment at the base of 451 

the food chain.  452 

In determining trophic positions for these samples by comparing their δ15NPhe and 453 

δ15NGlx values, some additional dietary factors should be considered. As a food source is 454 

consumed and its amino acids are incorporated into a consumer’s tissues, the difference 455 

between the value by which the source amino acid is enriched and the value by which the 456 

trophic amino acid is enriched is deemed the trophic discrimination factor (TDF). Therefore, the 457 

TDF describes the expected increase in spacing between source and trophic amino acid δ15N 458 

values with each increase in trophic position. Because the TDF of Glx-Phe has been found to 459 

vary with quality and quantity of protein in the diet among other factors (Germain et al. 2013, 460 

Chikaraishi et al. 2014, McMahon et al., 2015, McMahon and McCarthy 2016, Fuller and Petzke. 461 



2017), exact values for trophic position are not presented. Threonine δ15N values have be 462 

explored as an indicator for level of protein consumption (Styring et al. 2010). High dietary 463 

protein concentrations are thought to cause increased enzymatic activity of threonine 464 

ammonia-lyase in mammals (Hare et al. 1991, Fuller and Petzke 2017), which preferentially 465 

removes 15N over 14N and thus causes a decrease in the δ15N values of Threonine. Therefore, 466 

lower δ15N values of threonine have been proposed as a biomarker for protein consumption. As 467 

shown in table 2, the U. americanus display moderately low δ15NThr values (-11.2‰ and -468 

12.5‰); U. arctos show similar (albeit slightly lower) δ15NThr values compared to U. americanus 469 

(-13.9‰ and -15.2‰); and Arctodus display significantly lower δ15NThr values than the other 470 

two taxa (-24.9‰ and -25.6‰). This may indicate significantly higher levels of protein 471 

consumption by Arctodus compared to the other two taxa. Previous research indicates that as 472 

dietary protein quality increases, the TDF between source and trophic amino acids tends to 473 

decrease (McMahon and McCarthy 2016). Therefore, if higher levels of protein are being 474 

consumed by Arctodus compared to the other taxa examined here, a lower TDF is likely more 475 

appropriate for determining their trophic positions. If the TDF value being applied universally to 476 

all taxa here is higher than the appropriate value for the Arctodus samples, the trophic 477 

positions of Arctodus will be underestimated in this comparison.  478 

Although a custom TDF could not be calculated for these ancient samples due to a lack 479 

of direct information on protein quality, the limits of the trophic levels defined using a TDFGlx-Phe 480 

of 7.6 ‰ (Chikaraishi et al., 2014) were considered consistent enough as used in other studies 481 

on ancient bone collagen (e.g. Chikaraishi et al 2014, Ogawa et al. 2013, Naito et al. 2010, Naito 482 

et al. 2013) to usefully inform broad comparisons in a visual aid, while keeping in mind the 483 

potential underestimation of TP for the Arctodus samples (Figure 5). Because the results of both 484 

carbon CSIA and bulk collagen SIA indicate that none of the bears considered in this study show 485 

a high marine protein signal, trophic level can be considered by employing the  value (which 486 

represents the initial estimated spacing between the δ15N values of Glu and Phe at the base of 487 

the food chain) for terrestrial ecosystems. For the sake of comparison, the  value as previously 488 

determined for marine ecosystems (Chikaraishi et al., 2014) is also shown in figure 5. The 489 

unrealistically low marine trophic position that the bears would have occupied while displaying 490 

these values (< TP2) is further indication that terrestrial resources were instead the main 491 

protein source for all taxa examined here.  492 

 493 



 494 
Figure 5. Comparison of δ15N values for Glx and Phe. Estimated trophic position delineations for 495 

both marine and terrestrial consumers are defined following the equation and graphing 496 

procedure outlined by Chikaraishi et al. (2014) following a trophic discrimination factor of 7.6 497 

‰.,  value of -3.4‰ for marine,  value of 8.4‰ for terrestrial.  498 

 499 

A comparison of trophic positions using δ15N values of Glu and Phe reveals that U. 500 

americanus occupied a distinctly lower trophic level than the other taxa, while U. arctos and 501 

Arctodus show some overlap in their trophic positions, with a potential underestimation of 502 

Arctodus trophic position as discussed above (see Figure 5).  503 

An additional noteworthy source of variation in the nitrogen isotope composition of 504 

bear tissue may be sex or size. Although we were unable to reliably determine the sex of the 505 

specimens in this study based on the morphological characteristics of the fragmentary remains, 506 

Hobson et al. (2000) observe a significant difference in the δ15N values of modern female U. 507 

arctos compared to their male counterparts in areas where they coexist with U. americanus. 508 

This could be due to the female bears’ smaller range, and thus lower access to higher trophic-509 

level resources (Hobson et al. 2000). Additionally, it has been suggested via bite size ecology 510 

studies that smaller U. arctos can sustain their energy on a vegetarian diet, but very large bears 511 

cannot (Rode at al. 2001). This, considered with the sexual dimorphism of the species, could 512 

explain the sex-patterned difference in δ15N values of bear collagen, and could indicate size as a 513 

constraint on the level of herbivory possible for short-faced bears. The Arctodus specimens 514 

analyzed here were noted by Steffen at al. (2018) to be possibly female, based on their size. If 515 



not conclusively female, they were at least noted to be relatively small in comparison with 516 

other Arctodus specimens. Considering the small sample size compared here and potential size 517 

and sex influences on bear diet, conclusions drawn regarding trophic position and resource 518 

specialization should be taken as contributors to understanding Arctodus diet in a particular 519 

context, and not as representative of an entire extinct species. 520 

 521 

6. DISCUSSION 522 

 523 

6.1 Late Pleistocene Bear Sympatry 524 

As evidenced by the radiocarbon dates presented here, Ursus arctos, Ursus americanus, and 525 

Arctodus simus were present on Vancouver Island in the Terminal Late Pleistocene, with all 526 

three bear species present with the approximate range of ~13,800–13,500 cal a BP. When 527 

contemporaneous in the same area, U. americanus have been observed to occupy ranges of up 528 

to 40 km, while U. arctos have been seen to occupy ranges up to 111 km (Mowat et al. 2005); 529 

therefore, range overlap between these site locations is feasible. We surmise that these three 530 

bear species could have lived within overlapping territories during the Terminal Late 531 

Pleistocene on Vancouver Island. 532 

Examples of two bear species occupying the same region can be found in both modern 533 

and past environments, and may provide insight into the competitive pressures that could have 534 

arisen when the three species examined here were alive. U. americanus have been present in 535 

North America since at least the Middle Pleistocene and currently overlap geographically with 536 

U. arctos in certain regions, with competition sometimes causing seasonal displacement of 537 

Ursus americanus (Herrero 1972, Belant et al. 2010). It is thought that these species overlapped 538 

south of the Cordilleran and Laurentide ice sheets as early as 31,000 cal BP (Davison et al. 539 

2011). The ranges of these two species heavily overlapped through the Holocene prior to 540 

European arrival in North America (Herrero 1972). U. americanus tend to have much lower 541 

population densities in areas where U. arctos are also present (Miller et al. 1997, Mowat et al. 542 

2005). In locations where these two species coexist today, U. americanus territorial ranges are 543 

much smaller than the ranges of sympatric U. arctos (Mowat et al. 2005).  544 

U. arctos and A. simus have been found to co-occur elsewhere during the Pleistocene, 545 

including their overlap in eastern Beringia approximately 45–35 ka (Barnes et al. 2002). Barnes 546 

et al. (2002) noted an inverse correlation between the radiocarbon dates of Arctodus and Ursus 547 

in Eastern Beringia, suggesting that higher populations of Arctodus in the region from 35-21 ka 548 

had temporarily excluded large populations of Ursus from the area. More recently, Steffen and 549 

Fulton (2018) have proposed a similar effect at Pellucidar Cave on Vancouver Island, where an 550 

approximately 1300-year gap between U. arctos radiocarbon dates is bridged by two Arctodus 551 

dates (here referred to as S-SFU 278 & 279). However, incorporating new radiocarbon evidence 552 

from other montane sites on the island, it appears that the presence of A. simus did not act to 553 

exclude Ursus from the region. Despite the limited number of individuals recovered for any 554 

bear species on Vancouver Island from this time, both U. americanus (S-SFU 276 at 13,981-555 

13,611 cal BP) and U. arctos (S-SFU 272 at 13,758-13,609 cal BP) appear in close chronological 556 

association with each other and with A. simus (S-SFU 279 at 13741-13520 YBP) (see Figure 2).  557 

 558 



6.2 Pacific Northwest Coast Late Pleistocene Paleoenvironment  559 

 The geographic and temporal specifics of the Cordilleran ice sheet’s extent on 560 

Vancouver Island, as well as associated sea-level changes, are still being revealed through the 561 

accumulation of local paleofauna, paleoflora, and sedimentological data, and the presence of 562 

glacial refugia in the region has been explored. Based on a composite date from an associated 563 

juvenile specimen, Nagorsen et al. (1995) had previously reported that the bear specimens 564 

from Windy Link Pot Cave (S-SFU 269 and 270) were too young to provide insight into the 565 

Pleistocene refugium hypothesis. However, the new direct dates on these specimens reveal 566 

that they are several thousand years older than originally believed, placing them at the end of 567 

the Pleistocene. These dates add to a growing body of radiocarbon evidence for ice-free 568 

environments on Vancouver Island that were able support a variety of large terrestrial 569 

mammals, including these three species of bear, from as early as 14,000 years ago (e.g. 570 

McLaren et al. 2014, Nagorsen and Keddie 2000, Al-Suwaidi et al. 2006, Harington 2011, Steffen 571 

and Fulton 2018).  572 

6.3 Competition and Partitioning 573 

Considering the potential range overlap for some of these samples, and with their 574 

temporal overlap now confirmed through radiocarbon dating, it appears that inter-species 575 

niche partitioning within a shared geographical area, rather than long-term competitive 576 

geographical displacement, occurred on the island.  577 

The partitioning of resources between bear species in shared geographical areas has 578 

been observed in modern case studies. Observational studies (Belant et al. 2010) and isotopic 579 

investigations (Jacoby et al. 1999) have found that although U. americanus may consume large 580 

amounts of salmon and other higher trophic-level resources in environments where U. arctos 581 

are rare or absent, competition with U. arctos will influence the nature of their resource intake. 582 

In environments where these two bear species overlap, U. arctos are observed to take over the 583 

higher trophic niche, create avoidance at the population level, and seasonally displace the local 584 

U. americanus.  585 

Such a pattern of niche partitioning seems apparent in the isotopic evidence reported 586 

by Fedje et al. (2011) from the most temporally and geographically similar data from U. 587 

americanus and U. arctos—an assemblage from Haida Gwaii, a large island to the north of 588 

Vancouver Island, dated to ~1000-2000 years later than the bears studied here. The bears from 589 

the Younger Dryas interval on Haida Gwaii show very distinct differentiation in the carbon and 590 

nitrogen isotope composition of U. americanus and U. arctos collagen, with U. arctos displaying 591 

δ13C and δ15N values up to 5.2 and 17.5 ‰ higher, respectively, than those of U. americanus. 592 

This can likely be attributed to differences in salmon consumption, and the isotopic 593 

composition of contextually associated salmon remains from the site supports this attribution 594 

(Fedje et al. 2011).  595 

Compared to this data, our Vancouver Island Ursus specimens show much less 596 

differentiation. Although the smaller sample size in the current dataset should not be ignored, 597 

the largest differences between bulk collagen δ13C and δ15N values of our samples are 3.7‰ 598 

and 10.0 ‰, respectively, showing a much narrower difference between these species. 599 



However, results of CSIA do suggest that U. americanus occupied a distinctly lower trophic level 600 

than both U. arctos and Arctodus, and the smaller range of isotopic values could be due to the 601 

lack of aquatic resource consumption by the higher trophic level taxa. 602 

Although these samples show potential range overlap between species, it is possible 603 

that the different taxa were specialized to different environmental settings, which vary greatly 604 

across small geographical areas on the mountainous island. It has been noted that U. arctos are 605 

more open-adapted, while U. americanus are forest-adapted (Herrero 1972); however, this 606 

distinction may have been complicated by competition from A. simus, another potentially 607 

open-adapted species.  608 

In a comparison of the bulk collagen carbon and nitrogen isotopes of Arctodus and U. 609 

arctos from sympatric contexts in Beringia, Matheus (1995) found that Arctodus in the Yukon 610 

and Alaska cluster tightly in terms of their high δ15N values, while U. arctos display a broader 611 

range of values. They suggest that the U. arctos out-competed Arctodus because they were able 612 

to be more flexible and use vegetation supplements, while Arctodus could not. They also argue 613 

that their data supports Arctodus as being strict carnivores in Beringia, and that morphological 614 

data suggest that they were specialized scavengers of large mammal carcasses (such as 615 

mammoths), while U. arctos were more generalized consumers. However, Hobson et al. (2000) 616 

caution against interpreting high δ15N values in bears as the consumption of large terrestrial 617 

mammal prey, because modern studies utilizing bulk CN measurements have shown that bears 618 

that feed heavily on insect prey (such as ants) are isotopically indistinguishable from bears that 619 

gain most of their protein from large ungulates. On Vancouver Island, similar trophic positions 620 

are indicated for U. arctos and Arctodus; however, the resources exploited by the two taxa 621 

likely differed in protein content (as indicated by the difference in δ15NThr), indicating a 622 

differentiation in prey choice within the same trophic level (i.e. insects versus terrestrial, plant-623 

consuming mammals).  624 

Considering the potential effects of competition on the resource exploitation patterns of 625 

all cotemporaneous bear taxa, rather than simply assigning designations such as “specialized 626 

scavenger” to an extinct taxon like Arctodus, may provide a more context-specific 627 

understanding of the ecological roles of these taxa. For example, Barnes et al. (2002) report 628 

bulk collagen stable isotope data from Arctodus and U. arctos in Beringia that show an increase 629 

in δ15N values for U. arctos after the extirpation of Arctodus from the region, demonstrating the 630 

effects of competition between the taxa on their diets. In addition, recent isotopic data from 631 

Arctodus from a specimen found on the California Channel Islands points to a greater degree of 632 

omnivory than previously seen in isotopic data for the taxon, which the authors suggest may 633 

have been caused by inter-species competition (Mychajliw et al. 2020).  634 

 635 

7. Conclusions  636 

 637 

We have measured the isotope values to determine diet of three temporally overlapping bear 638 

species—Ursus americanus, Ursus arctos, and Arctodus simus—from Terminal Pleistocene 639 

Canada (Vancouver Island). The island was sufficiently deglaciated by approximately 14,500 640 

years ago to have a diverse and productive environment that could support populations of 641 

several large, omnivorous taxa. According to our bulk collagen and compound-specific isotope 642 

analysis results, these bear species appear to occupy distinct ecological niches on the island, 643 



with U. americanus occupying a distinctly lower trophic position, and U. arctos and A. simus 644 

occupying higher trophic positions with contributions of different specialized resources. As the 645 

body of CSIA data on extinct Pleistocene species grows, additional high-resolution dietary 646 

comparisons across different regions and time periods will add to our understanding of how 647 

these animals lived and interacted.  648 
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