Rapid discrimination of *Enterococcus faecium* strains using phenotypic analytical techniques and advanced chemometrics

Najla AlMasoud, Yun Xu, David I. Ellis, Paul Rooney, Jane F. Turton, Royston Goodacre

School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Belfast City Hospital, Belfast, 51 Lisburn Rd, BT9 7AB, UK.

Correspondence to Roy Goodacre: roy.goodacre@manchester.ac.uk

Keywords:

Enterococcus faecium, classification, MALDI-TOF-MS, FT-IR, Raman, pulsed-field gel electrophoresis, chemometrics.
Clinical isolates of glycopeptide resistant enterococci (GRE) were used to compare three rapid phenotyping and analytical techniques. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to classify 35 isolates of *Enterococcus faecium* representing 12 distinct pulsed-field gel electrophoresis (PFGE) types. The results show that the three analytical techniques provide clear discrimination among enterococci at both the strain and isolate levels. FT-IR and Raman spectroscopic data produced very similar bacterial discrimination, reflected in the Procrustes distance between the datasets (0.2125-0.2411, \(p < 0.001 \)); however, FT-IR data provided superior prediction accuracy to Raman data with correct classification rates (CCR) of 89% and 69% at the strain level, respectively. MALDI-TOF-MS produced slightly different classification of these enterococci strains also with high CCR (78%). Classification data from the three analytical techniques were consistent with PFGE data especially in the case of isolates identified as unique by PFGE. This study presents phenotypic techniques as a complementary approach to current methods with a potential for high-throughput point-of-care screening enabling rapid and reproducible classification of clinically relevant enterococci.
INTRODUCTION

Enterococcus is a highly significant genus of bacteria, which causes important clinical infections including urinary tract infections (UTIs), endocarditis, meningitis, catheter-related infections, bacteremia, wound infections, pelvic and intra-abdominal infections amongst others. Some of these Gram-positive cocci were originally classified as *Streptococcus* spp. until genomic analysis by Schleifer and Kilpper-Balz in 1984 demonstrated the requirement for a separate genus classification (1). This well-known genus is part of the normal intestinal microflora of humans and other animals (2). *Enterococcus* are also part of the lactic acid bacteria (LAB) group present in foods, and whilst they are able to spoil fresh meats (3), they are important in ripening and development of certain foods (i.e. dairy products), as well as being used as probiotics in humans (4).

The majority of human clinical isolates of enterococci belong to two species, *Enterococcus faecalis* and *Enterococcus faecium* (5). In addition to their prevalence and pathogenicity, another very important factor associated with enterococcus is the high level of antimicrobial resistance, particularly resistance to glycopeptide antibiotics (such as vancomycin, teicoplanin and telavancin); resistant strains are referred to as GRE (glycopeptide-resistant enterococci) (6, 7).

There is a constant requirement to develop analytical methods for the discrimination of bacteria, which can be used in clinical diagnostics and food quality control. These methods should ideally be rapid, reproducible, easy to use and automated, in addition to having high resolution and sensitivity (8). Over a decade ago, it was common to use methods, such as polymerase chain reaction (PCR) for identification of specific DNA sequences and recognition by antibodies via enzyme-linked immunosorbent assay (ELISA), to characterize bacteria. Although these
techniques are sensitive and specific, they are time-consuming and their use is limited by the complexity of preparation procedures and the requirement for specific primers and antibodies (9-12). Nowadays, modern analytical techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) (13-16), Fourier transform infrared (FT-IR) spectroscopy (17-21) and Raman spectroscopy (22-24) are also used for the characterization of bacteria. High dimensional and information rich datasets are produced from these techniques, which has also directly led to the requirement of robust and reliable chemometric methods to assist with data deconvolution and in-depth analysis (25). This saw the introduction, acceptance and use of chemometrics, such as discriminant function analysis (DFA) (22) and hierarchical cluster analyses (HCA) (26-28).

Previously, MALDI-TOF-MS has shown promising results for bacterial characterization (13). FT-IR and Raman spectroscopy complement each other for bacterial classification; both are robust metabolic fingerprinting techniques and need little sample preparation (29, 30). FT-IR spectroscopy is used by many researchers since it is not only rapid but also offers a high-throughput and non-destructive method, allowing the analysis of intact bacteria and producing unique, reproducible and distinct biochemical fingerprints (31). Raman spectroscopy shares similar advantages to FT-IR spectroscopy and also has the additional advantage of water being a very weak Raman scatter (32) so that samples do not need to be dried.

Here, the aim was to use these three distinct phenotypic approaches (namely MALDI-TOF-MS, FT-IR and Raman spectroscopies) in combination with rigorous chemometric analysis of the resultant datasets to classify 35 clinically relevant isolates of enterococci, which had been previously typed by pulsed-field gel electrophoresis (PFGE). This was carried out in order to compare the results from,
and determine the efficiency of, these analytical techniques for the rapid
differentiation of _E. faecium_ strains. In future, this may allow clinical diagnostic
laboratories to analyze multiple bacterial samples rapidly for infection control
purposes in point-of-care setting within hospitals, clinics, or GP surgeries which
would significantly accelerate diagnosis, and potentially ensure that the correct
antimicrobial therapies were used if required, and eliminate the delay associated with
sending strains to reference laboratories when analyzing patient samples.

MATERIALS AND METHODS

General chemicals. Trifluoroacetic acid (TFA), HPLC grade water, acetonitrile,
sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), and ferulic acid
(FA) were purchased from Sigma-Aldrich (Dorset, UK).

Enterococci strains. Isolates were from faecal samples from patients in a surgical
ward in a hospital in Belfast, UK and were collected following an increase in
enterococcal infections on the ward. They were identified as _E. faecium_ by a
VITEK® system (bioMérieux) and their identity confirmed by MALDI-ToF analysis
using a Bruker microflex instrument. The 35 isolates were typed using pulsed-field
gel electrophoresis (PFGE) of Smal-digested genomic DNA by Public Health
England’s National Reference Laboratory as described previously (33). Table S1
summarizes information on the 35 clinical isolates, which were classified into 12
groups (12 PFGE-defined types) named: EC04, EC09, EC10, EC13, EC14, EC15,
EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214, where ‘UNI’ types
describe isolates that were unique within the set.

Bacterial isolates.
The samples analyzed by the three techniques (viz. MALDI-TOF-MS, FT-IR and Raman) were collected from the same flask to avoid any variations between different preparations that may affect results obtained using the different analytical platforms. First, enterococci were cultured on nutrient agar (NA) plates for 24 h at 37°C. A single colony from the agar culture was used to inoculate 50 mL of Lysogeny broth (LB) in a 250 mL flask which was incubated overnight at 37°C with shaking at 200 rpm. This was followed by measuring the optical density (OD) at 600 nm using a Biomate 5 spectrophotometer (Thermo, Hemel Hempstead, UK) for each isolate. The volume of analyzed bacterial suspension was then normalized to account for variation in cell biomass in the different replicate cultures (4 biological replicates were prepared for each isolate) and used to inoculate a fresh flask of broth, which was incubated at 37°C for 11 h (when the bacteria reached the stationary phase). Then, 10 mL from each flask was collected and centrifuged at 4800 g for 10 min and the pellet washed three times with sterile deionized water. Figure S1 illustrates the preparation process.

For vibrational spectroscopic analysis, the collected pellets were suspended in suitable volumes of saline (0.9% (w/v) NaCl) depending on the OD (all isolates had approximately the same cell density). Then, 15 µL was spotted onto a silicon plate (Bruker Ltd., Coventry, UK) and was allowed to dry at 40°C for 45 min before analysis with FT-IR spectroscopy. For Raman spectroscopy, 4 µL of each sample was spotted onto a stainless steel plate and then allowed to dry at 40°C for 45 min.

For MALDI-TOF-MS, three different matrices were tested to find the most compatible matrix with enterococci; these matrices were: FA, SA and CHCA. In addition, 3 different deposition methods (sample-matrix) were tested as described previously (16) to find the best method for depositing the samples: mix, overlay and
underlay (data not shown). SA matrix and the mix deposition method were found to be the optimal combination for MALDI-TOF-MS analysis for these samples. On the day of analysis of the samples, the biomass was suspended in 1000 µL of 2% TFA then vortexed for 3 min. An equal volume of 10 µL of bacterial suspension and matrix were vortexed for 2 s and 2 µL of this mixture spotted onto a MALDI stainless steel plate and allowed to dry at ambient temperature.

Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectroscopy plate (Bruker Ltd., Coventry, UK) which contained 96 locations/spots was washed using 5% sodium dodecyl sulfate (SDS) solution. This was followed by washing the plate using deionized water and allowing it to dry at room temperature (34). High-throughput screening (HTS) was carried out using a Bruker Equinox 55 FT-IR spectrometer. The HTX™ module described by Winder *et al.* (35) was used with this instrument. Transmission mode was used to analyze the dried biomass to produce FT-IR spectra. The parameters used for FT-IR analysis included the following: spectra were collected in the wavenumber range between 4000 and 600 cm\(^{-1}\), resolution was 4 cm\(^{-1}\) and each spectrum was the average of 64 co-adds. Spectral acquisition and subtracting the background were achieved using Opus software (Bruker Ltd.). Four biological replicates, each in four analytical replicates, were analyzed and analysis was performed in three machine runs, resulting in 1680 FT-IR spectra.

Raman Spectroscopy. This was carried out using a confocal Raman system (inVia, Renishaw plc., Wotton-Under-Edge, UK) coupled with a 785 nm wavelength laser. A power intensity of ~30 mW was applied on the samples at an exposure time of 20 s. Four biological replicates and seven different locations within each sample spot were analyzed, resulting in a total of 980 Raman spectra.
MALDI-TOF-MS. The enterococci isolates were analyzed using an AXIMA-Confidence MALDI-TOF-MS (Shimadzu Biotech, Manchester, UK), equipped with a nitrogen pulsed UV laser with a wavelength of 337 nm. The parameters of this device were set as follows: 90 mV laser power, 91 acquired profiles with each profile containing 20 shots, linear TOF, positive ionization mode, and mass-to-charge (m/z) range of 1,000-18,000. The spectra were collected using a circular raster pattern. The MALDI-TOF-MS device was calibrated using a protein mixture: insulin (5,735 Da), cytochrome c (12,362 Da), and apomyoglobin (16,952 Da) (Sigma-Aldrich). Each of 4 biological replicates from the 35 isolates was analyzed in four technical replicates on four different days; this led to the generation of a total of 560 MALDI-TOF-MS spectra (35 isolates × 4 biological replicates × 4 analytical replicates).

Data analysis

Data pre-processing. Opus software was used to export FT-IR data into ASCII format; the data were then transferred into MATLAB 2012a (The Mathworks Inc., MA, US). All FT-IR spectra were baseline corrected using standard normal variate (SNV) to remove any light scattering effect. The three analytical replicates were then averaged to reduce the number of redundant samples. Due to the large number of samples, 8 separate (96 spot silicon) sampling plates were used; therefore, it was necessary to correct for the subtle differences in signals from different silicon plates. This was achieved by using a piece-wise direct standardization (PDS) model (36). The PDS model was built on two different ‘reference’ isolates which were spotted on every plate. The pre-processed FT-IR spectra were then subjected to multivariate analysis (MVA, see below). Raman spectra were also normalized using standard normal variate (SNV) and then subjected to MVA.
MALDI-TOF-MS data were pre-processed as follows: (i) the baseline was corrected using asymmetric least squares (AsLS) (37), and (ii) spectra were normalized by dividing each individual baseline corrected spectrum by the square root of the sum of squares of the spectrum (38). The pre-processed MALDI-TOF-MS data were subjected to the same data analysis flow as Raman and FT-IR spectral data.

Multivariate data analysis. A flowchart of multivariate data analysis is provided in Figure 1. For all three datasets, two types of classification were performed: one at the strain level (i.e. 12 classes) defined by PFGE, and the other at the isolate level (i.e. 35 classes, one for each isolate).

For cluster analyses, principal components-discriminant function analysis (PC-DFA) (39-41) was applied to reduce the dimensionality of the data and discriminate samples from the designated classes. The PC-DFA scores of each class were then averaged and subjected to hierarchical cluster analysis (HCA) (42). Dendrograms from each analysis were generated to illustrate the relative relatedness of these bacteria.

Partial least squares-discriminant analysis (PLS-DA) (43), with 1,000 bootstrapping validations (44), was also applied to obtain a validated supervised classification model for discriminating different strains or isolates. In each bootstrapping process, the data were randomly split into two different sets: a training set and a test set. A PLS-DA model was trained on the training set and then applied to the test set to predict the class membership of the samples in the test set. This process was repeated 1,000 times and the results were recorded and averaged to produce a $c \times c$ confusion matrix (c is the number of designated classes, either 12 (strains) or 35 (isolates)), in which the element at the i^{th} row, j^{th} column is the
percentage of samples in class i being predicted as class j on average. In order to assess the statistical significance of the predictive performance of the PLS-DA models, a corresponding permutation test within each bootstrapping resampling was also performed. This means that in addition to building the PLS-DA model using the known class membership, another model (called the ‘null’ model) was also built using a randomly permuted class membership. The results of the null model were also recorded and from this the null distribution was obtained. An empirical p-value was calculated by counting the number of cases where the null model had obtained better predictive accuracy than the real model and dividing the obtained number by the total number of bootstrapping resampling (i.e. 1,000 in this study).

Finally, similarities between the three different datasets (FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS data) were measured using Procrustes analysis (45). Procrustes analysis is an excellent approach for assessing the differences and similarities between different ordination space from cluster analyses and has been used previously for the assessment of different analytical techniques (46). The distances were calculated based on the averaged PC-DFA scores for the biological replicates.

RESULTS AND DISCUSSION

Table S1 shows all 35 isolates belonging to 12 strains (PFGE-defined 12 types) including: EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20 UNI 156, UNI 178, UNI 191 and UNI 214. These strains were previously confirmed to belong to *E. faecium* using a VITEK® system and by MALDI-ToF analysis using a Bruker Microflex system (data not shown). The PFGE results (Fig. S2) were compared to
results obtained in this study using FT-IR spectroscopy (17, 30, 46-49), Raman spectroscopy (25, 30, 50, 51) and MALDI-TOF-MS (13, 14, 16, 52-54). We believe that these analytical techniques in combination with chemometrics offer an improvement in the classification of bacteria due to their higher biochemical resolution.

Classification using FT-IR spectroscopy.

In this study, four biological replicates of bacterial isolates were analyzed in four analytical replicates and analysis was performed in three machine runs, resulting in a total of 1680 FT-IR spectra. The three machine replicate measurements were performed in order to evaluate the reproducibility of the FT-IR technique. Typical spectra based on four biological replicates of representatives of 12 strains from enterococcus (EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) are provided in Figure S3A. The infrared spectra contain different distinct regions that can be used to characterize bacterial samples. These have been well documented previously and include: wavenumbers around 3400-2850 cm\(^{-1}\) corresponding to fatty acids, at 1705-1454 cm\(^{-1}\) related to amide I and II regions attributed to peptides and proteins, and around 1085-1052 cm\(^{-1}\) corresponding to polysaccharides (19, 55, 56).

Discrimination between the strains based on visual inspection of the spectra was difficult (17) because these strains are very similar phenotypically. Therefore, in order to develop a classification model to distinguish between bacterial samples based on similarities in the spectral data, multivariate analysis was used to reduce the high dimensionality of the data. First, PC-DFA was applied using 40 principal components (PC) to the 12 strains (i.e. 12 classes) and 35 isolates (i.e. 35 classes) using the pre-processed FT-IR spectra (Fig. 2A and 3A, respectively). Figure 2A
shows a clear separation between the 12 strains, displaying 4 main clusters; Cluster 1 is a single-member cluster (SMC) containing only (EC10), Cluster 2 includes (EC20 and UNI 156), Cluster 3 (UNI 191, EC04 and EC15) and Cluster 4 formed a large group and is a combination of (EC13, EC19, EC14, EC09, UNI 214 and UNI 178). Each cluster is represented by a different color in the figure. As described above, HCA was undertaken using spectral data in order to simplify the DFA plot and to illustrate the related strains. Cluster analysis was based on averaged DFA scores (12 classes/strains), using Ward’s linkage as shown in Figure 2B. Clusters seen in Figure 2A are reflected in the HCA dendrogram plot (Fig. 2B).

PC-DFA was subsequently performed for all the 35 isolates and the results are provided in Figure 3. Clear separation between all 35 isolates was observed despite the fact that there were a much higher number of classes to be separated than the number of strains. For example, clear separation was observed between the two representatives of EC10 (139 and 151). Furthermore, results generated using PFGE correlated well with FT-IR spectroscopic data. For example, the UNI 156 and UNI 178 were seen as unique by both techniques. In addition, the three EC20 isolates (192, 198 and 204) and EC19 isolates (173, 174 and 175) clustered together and were not differentiated using FT-IR spectroscopy, which was also observed in the PFGE results, where the bands were quite similar (Fig. 3B). This implies that the isolates within each of these groups are highly similar to each other phenotypically and genetically. Finally, two more clusters were observed, with one cluster containing all the EC04, EC15 and UNI 191 strains and the remainder of the isolates forming another cluster.

The PLS-DA classification using FT-IR spectral data achieved an average correct classification rate (CCR) of 89.4% at the strain level and 54.3% at the isolate level,
both with an empirical p-value of $<$0.001, i.e. not a single case where the null model obtained better results, indicating that the predictive accuracies were highly significant. The null distributions are provided in Figure S4A and B at the two levels.

The confusion matrices of strains and isolates classification are presented in Table 1 and Table S3, respectively. Most of the 12 strains showed high prediction accuracies, for example EC04, EC10, EC13 and EC20 had accuracies of 89.9%, 99.7%, 99.8% and 99.2%, respectively. However, EC14 and UNI 214 had lower prediction accuracies of 47.3% and 58.9%, respectively. The confusion matrix showed that there was a certain level of overlap between (EC14 and EC09) and (UNI 214 and EC19).

Furthermore, in-depth analysis of the confusion matrix (Fig. 4) showed that classification of unique strains was generally in line with PFGE results. In Figure 4, high percentage class membership assignments are represented by warm colors (e.g. red), indicating agreement between predicted classes and known classes. It is also interesting to see that representatives from EC19 and EC20 formed two “squares” of “tiles” on the diagonal line, in which the colors were similar to each other. Results from Figure 4 suggest that the PLS-DA model was not able to differentiate the isolates within EC19 and EC20, yet another observation that is consistent with PFGE results. On the other hand, all representatives of EC04 and EC09 (160 and 133) were unique in the FT-IR spectroscopy profile using the PLS-DA model but had visually similar PFGE profiles. This is most likely due to PFGE providing genetic information (57, 58) while FT-IR spectroscopy describes phenotypes (27, 59). This implies that isolates from EC19 and EC20 are highly conserved phenotypically,
whereas those from EC04 and EC09 are not, and such subtle differences in phenotypes were detected by FT-IR spectroscopy. Our observations showed that FT-IR spectroscopy appears to be a very promising analytical approach for discrimination of enterococci at different levels. In line with the results presented in this study, work carried out by Guibet et al. showed that clear discrimination and classification of enterococci strains can be achieved using FT-IR spectroscopy (60, 61).

Classification using Raman spectroscopy. In addition to the FT-IR spectroscopy technique used in this study, Raman spectroscopy was used as a complementary technique (17, 61-63). As expected, the two techniques generated different spectra. These two approaches are complementary due to the selection rules, whereby infrared causes a change in the net dipole moment in a particular functional group, induced by molecular vibrations, whereas Raman causes a change in the polarization of bonds within a molecule. Therefore, bonds within a molecule are generally infrared or Raman active with the result being that the two techniques can provide complementary (bio)chemical information (29, 64).

Raman spectra of the 12 *E. faecium* strains are shown in Figure S3B. Raman spectra for these types appeared almost indistinguishable and no differences were detected on visual inspection. Moreover, some specific peaks which were identified in these spectra included: peaks at around 722 cm\(^{-1}\), 783 cm\(^{-1}\), 854 cm\(^{-1}\), 1004 cm\(^{-1}\), 1098 cm\(^{-1}\), 1334 cm\(^{-1}\), 1451 cm\(^{-1}\) and 1664 cm\(^{-1}\), which correspond to adenine, cytosine/uracil, tyrosine, phenylalanine, phosphate, guanine, protein and amide I, respectively (65-67).

PC-DFA scores plot of pre-processed Raman spectra for the 12 PFGE-defined types is shown in Figure S5A. The figure shows classification results similar to those
seen with FT-IR spectroscopy data. There was an obvious overlap between the two spectroscopic techniques, especially with representatives of EC10. However, EC20 overlapped with UNI 156 in FT-IR spectroscopy data, whereas EC20 was closer to UNI 178 based on Raman spectroscopy data. These observations can be seen in the HCA dendrogram based on Raman data (Fig. S5B), which was quite similar to the HCA results generated from FT-IR data. Looking back at the dendrogram in Figure S2 based on PFGE data, visual inspection showed that there were some similarities between results generated via spectroscopic techniques and those based on PFGE; for example, EC04 and EC15 were shown to overlap in both sets of results (Fig. S2).

As with FT-IR data, Raman spectroscopy data on the 35 isolates were also analyzed using PC-DFA and HCA (Fig. S6A and B, respectively). The results suggested that Raman spectroscopy was also successful in discriminating the two representatives of EC10 (139 and 151), which was also the case using FT-IR analysis (Fig. 3). Furthermore, in order to ensure the classification is robust, the data were analyzed using a heat map based on PLS-DA (Fig. S6C). The results suggested that all the isolates indicated as unique (UNI) by PFGE were also unique in the PLS-DA model generated using Raman spectroscopy data.

In addition, chemometric-based identification was carried out using PLS-DA at both the strain and isolate levels and the predictive accuracies were calculated based on 1,000 bootstrapping resampling using Raman spectral data. The null distribution was obtained (Fig. S4C and D) at both the strain (12 classes) and isolate levels (35 classes) resulting in average CCR of 69.3% ($p<0.001$) and 21.1% ($p<0.001$), respectively. The CCR from FT-IR data was higher at both levels compared to Raman data possibly due to the higher reproducibility of FT-IR data. Confusion
matrices were also generated at both the strain level (Table S2A) and the isolate level (data not shown); these results suggested that Raman spectroscopy can also be used as a robust technique for bacterial discrimination. In-depth analysis showed that Raman spectroscopy generated around 70% prediction accuracy at the strain level which is lower than that of FT-IR spectroscopy (nearly 90%). This is most likely due to the low concentration of cells used for analysis: the infrared interrogation beam used was ca. 1 mm and passes completely through the dried bacterial film; while the Raman microscope delivers a highly focused laser beam with an interrogation volume of ~1 pL and therefore measures very few bacteria. To overcome this limitation with Raman, bacteria can be analyzed directly from the agar plates or surface-enhanced Raman spectroscopy (SERS) as an alternative technique (68-70), but this is an area for future study.

Classification using MALDI-TOF-MS. As described in the Materials and Methods section, four biological replicates were analyzed in four analytical replicates for each bacterial strain, resulting in 560 MALDI-TOF-MS spectra; both the biological and technical replicates clustered closely together ensuring good bioanalytical reproducibility (data not shown). The spectra for the 35 enterococci isolates were pre-processed before data analysis. The typical pre-processed positive ion mode MALDI-TOF-MS spectra for all 12 *Enterococcus* strains (EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) are provided in Figure S3C. In general, the MALDI-TOF-MS spectra were of high quality with high signal-to-noise ratios in the acquisition m/z range 1,000-18,000 and a high number of peaks for each studied strain were detected. There are many factors that can affect MALDI-TOF-MS results and some of these can differ from lab to another, such as the type of medium used (71), sample handling, type of matrix (72),
sample deposition method (73), solvents, instrument settings (74, 75) and the type of data analysis chosen (41, 76). These can inadvertently affect MALDI-TOF-MS results and subsequent PC-DFA and HCA.

MALDI-TOF-MS spectra are not readily interpretable from the 35 isolates as they are similar phenotypically and MALDI-TOF-MS spectra show only two dimensions ($m/z \times$ intensity). Therefore, as is the case for the vibrational spectroscopy techniques, robust multivariate analysis methods were employed for this purpose. The results of PC-DFA using 12 classes (12 strains) in a three-dimensional plot of DF1 vs DF2 vs DF3 and a two-dimensional plot of DF2 vs DF3 are shown in Figure S7A and B, respectively. Four main clusters were observed in the PC-DFA plots; SMC (Cluster) 1 contains only UNI 178; Cluster 2 contains EC20; Cluster 3 consists of EC04, EC10, EC15 and UNI 191; and Cluster 4 formed a large group of (EC13, EC19, EC14, EC09, UNI 214 and UNI 156). Results from the HCA dendrogram (Fig. S7C) confirmed the separation between the 12 classes (i.e. 12 strains). This indicated that UNI 178 is phenotypically very different from the other strains based on MALDI-TOF-MS data.

PC-DFA was also applied to data from the 35 isolates; the results showed that isolates number 160 and 219 (both from EC09) were very different from the other isolates. Therefore, another PC-DFA was carried out with these two outliers removed and the HCA results are shown in Figure S8D. It appears that all representatives of EC20 (204, 198 and 192) overlap with each other, which was also observed in FT-IR and Raman spectroscopy data, with the exception that isolate 192 slightly differed from the other two representatives (204 and 198) in the HCA dendrogram when using Raman data (Fig. S6B). However, analysis by PFGE
showed that isolates 192 and 198 clustered more closely with each other than with isolate 204.

Furthermore, PLS-DA model applied to MALDI-TOF-MS data achieved an average CCR of 78.2% \((p<0.001) \) and 35.7% \((p<0.001) \) for the 12 (strains) and 35 (isolates) classes, respectively. When PLS-DA was undertaken with 33 isolates (with isolates 160 and 219 removed), the average CCR for the isolates increased to 53.95% \((p<0.001) \). The prediction accuracies for the 12 classes are shown in Table S2B and those for the 35 classes (isolates) are shown in Table S4. Table S2B shows that discrimination between most of the strains (12 classes) using MALDI-TOF-MS data achieved high correct classification rates, except for EC14 and UNI 191, which had rather low classification rates. Confusion matrices for the 35 classes and the 33 classes (160 and 219 isolates removed) are shown in Figure S8A and C, respectively. From these matrices, it can be seen that all the isolates identified by the reference laboratory as unique (UNI), which included isolates 156, 178, 191 and 214, were also classified as unique based on MALDI-TOF-MS data. Moreover, EC20 and EC19 were assigned the same classification in PFGE typing, and this was in agreement with MALDI-TOF-MS, FT-IR spectroscopy and Raman spectroscopy data. In addition, based on MALDI-TOF-MS data (Fig.S8A and C), representatives of EC13 (152, 154 and 155) belonged to the same cluster, and isolates 177 from EC13 was significantly different from the remaining EC13 strains; this was also observed in FT-IR and PFGE data. Looking back at Figure S8C, it can be seen that all the strains from EC04 were unique in MALDI-TOF-MS and FT-IR profiles when using PLS-DA modelling.

Procrustes distance test of the three analytical techniques. Analytical techniques such as FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS are...
currently used in clinical research studies worldwide and many reports have been published showing advantages of using such techniques (24, 54, 77, 78). Kirschner et al. (61) demonstrated accurate identification and classification of 18 strains from 6 different species belonging to enterococci using vibrational spectroscopic techniques in combination with chemometrics. This study suggested that FT-IR and Raman spectroscopies can offer potential alternatives to the conventional typing tests due to their speed and ease of use. Oliveira et al. (51) showed that Raman spectroscopy, in combination with a chemometric algorithm, can be used to discriminate between seven different colonies of Gram-positive and Gram-negative bacteria. In another previous study, it was also shown that 59 clinical bacterial strains associated with urinary tract infections (UTIs) could be identified using FT-IR and Raman spectroscopy (17). As an alternative to vibrational spectroscopic techniques, MALDI-TOF-MS is a relatively new technique which has shown very promising results for identification in agreement with methodologies carried out in microbiological laboratories, and therefore has been used for the identification and classification of bacterial species (15, 79, 80) and is appearing in many clinical microbiology testing laboratories (54, 81, 82).

Previous studies have generally focussed on the application of just one or two analytical techniques for the classification of Enterococcus spp. However, to generate complementary data and more comprehensive analysis, this study combines three different analytical techniques – FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS – to analyze whole bacterial cells. Successful classification was demonstrated at the strain (i.e. 12 classes) and isolate (i.e. 35 classes) levels based on data generated by the three analytical platforms. In order to assess the overall information content in the spectra that has been revealed by the cluster analysis from
the scores plots, Procrustes analysis was employed to assess the overall similarity
between the patterns detected by these three platforms. The results are presented in
terms of Procrustes distance (Table 2A and B), where the Procrustes distance varies
from 0 to 1; the lower the distance, the higher the similarity between the results. The
comparisons were made using averaged PC-DFA scores. For each dataset, there
were two sets of PC-DFA scores, one at the strain level (12 classes) and another for
isolates classification (33 classes). For each set of PC-DFA scores, the scores were
then averaged according to their strain label and isolate label to give two sets of
averaged PC-DFA scores.

The findings in Table 2 can be summarized as follows:

(i) The patterns in the PC-DFA scores at strain and isolate levels were highly
similar to each other for all the three analytical platforms. The Procrustes
distances varied from 0.0681 to 0.1812. This suggested that the variation
originating from different bacteria is the main factor in PC-DFA, i.e. the
differences between different bacterial genotypes were significantly higher
than those between different isolates.

(ii) The two vibrational spectroscopic techniques (FT-IR and Raman) generated
highly similar results both at the strain and isolate classification levels, with
the corresponding Procrustes distances varying from 0.2112 to 0.3187.

(iii) However, the results generated by MALDI-TOF-MS were significantly
different from those generated by the two spectroscopic techniques, and the
corresponding Procrustes distances were all above 0.8. Such differences can
be mainly attributed to data on isolate UNI 178, which appeared to be very
different to other strains in the MALDI-TOF-MS dataset.
Table S5 shows a summative comparison of the 4 main clusters identified based on the three analytical techniques using PC-DFA plots of the 12 *E. faecium* strains (12 classes). It can be seen from this table that despite the large Procrustes distances between data generated by MALDI-TOF-MS and those generated by the other two techniques, the main identified clusters patterns observed in all three datasets were still largely consistent.

CONCLUSIONS

The results obtained from the two vibrational spectroscopic techniques demonstrated that good discrimination can be achieved at both the strain and isolate levels and the detected patterns from the two techniques were highly similar. In addition, bacterial classification results from MALDI-TOF-MS were generally consistent with these vibrational spectroscopic techniques. However, UNI 178 was detected to be very different in MALDI-TOF-MS data, which differed from the other two analytical techniques employed in this study.

The results obtained using these spectroscopic phenotyping approaches were mostly consistent with previous results obtained from experiments carried out using the genotypic classification method, PFGE. Some of the results differed when directly comparing our analytical approach with results from the molecular approach and these differences may be due to comparing phenotypic differences from whole-organism fingerprinting with genotypic differences using PFGE.

In conclusion, we have assessed multiple analytical phenotypic as complementary approaches to current molecular methods. All methods provided excellent clustering which was in general agreement with genotypic baseline
methods, as well as allowing excellent discrimination to the strain level and good resolution at the sub-strain level. We believe that these three different physicochemical techniques have excellent potential as high-throughput point-of-care screening tools, and for the rapid and reproducible classification of clinically relevant bacteria, such as *E. faecium*.

ACKNOWLEDGMENTS

NM thanks The Saudi Ministry of Higher Education and Princess Nora bint Abdul Rahman University for funding. YX thanks Cancer Research UK (including Experimental Cancer Medicine Centre award) and Wolfson Foundation, DIE and RG thank BBSRC (BB/L014823/1) for support for Raman spectroscopy.
REFERENCES

47. **Naumann D.** 1984. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR. Infrared Phys. **24**:233-238.

FIGURE LEGENDS

FIG 1. Workflow of data analysis undertaken for FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS. The data were first pre-processed then multivariate analysis MVA was applied using PC-DFA at both the (ST) strain (12 classes) and (IS) isolate (35 classes) levels. This was followed by PLS-DA.

FIG 2. (A) Discriminant function analysis (DFA) scores plot from FT-IR data after pre-processing, illustrating the relationship between the 12 enterococci. (B) Cluster analysis on averaged PC-DFA scores (12 classes/strains) using Ward’s linkage.

FIG 3. (A) PC-DFA plot from FT-IR data after pre-processing which illustrates the relationship between the 35 enterococcus isolates. (B) Hierarchical cluster analysis on averaged PC-DFA scores (35 classes/isolates) using Ward’s linkage (right) and PFGE results (left). Each isolate is represented by the same color in both the boxes around the PFGE images and the FT-IR dendrogram.

FIG 4. PLS-DA trained on 35 classes (i.e. 35 isolates) from FT-IR spectral data. High percentage class membership assignments are represented by warm colors (e.g. red) whilst the cold colors (e.g. blue) represent low percentage class membership assignments. The diagonal “tiles” are much warmer than off-diagonal “tiles”, which indicates agreement between predicted classes and known classes.
Figure 1

Raw Data (FT-IR, Raman and MALDI)

Preprocessing

Multivariate analysis

Supervised analysis (DFA)

PLS-DA

ST (12 classes) IS (35 classes)

ST (12 classes) IS (35 classes)
Figure 2
Figure 3

PC-DFA, FT-IR, 35 classes

Dendrogram of FT-IR isolates
Figure 4
Table 1. The prediction accuracies of the 12 enterococci strains using FT-IR spectroscopy data.

<table>
<thead>
<tr>
<th>Class Known/Predicted</th>
<th>EC04</th>
<th>EC09</th>
<th>EC10</th>
<th>EC13</th>
<th>EC14</th>
<th>EC15</th>
<th>EC19</th>
<th>EC20</th>
<th>UNI 156</th>
<th>UNI 178</th>
<th>UNI 191</th>
<th>UNI 214</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC04</td>
<td>89.9%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>8.3%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.7%</td>
<td>0.1%</td>
</tr>
<tr>
<td>EC09</td>
<td>0.1%</td>
<td>90.3%</td>
<td>0.0%</td>
<td>1.3%</td>
<td>4.8%</td>
<td>0.0%</td>
<td>3.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>EC10</td>
<td>0.0%</td>
<td>0.1%</td>
<td>99.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>EC13</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>99.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>EC14</td>
<td>0.1%</td>
<td>48.9%</td>
<td>0.0%</td>
<td>1.1%</td>
<td>47.3%</td>
<td>1.0%</td>
<td>1.4%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>EC15</td>
<td>6.8%</td>
<td>1.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.5%</td>
<td>91.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>EC19</td>
<td>1.6%</td>
<td>9.3%</td>
<td>0.0%</td>
<td>0.2%</td>
<td>3.6%</td>
<td>0.0%</td>
<td>83.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.8%</td>
</tr>
<tr>
<td>EC20</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.7%</td>
<td>0.0%</td>
<td>99.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>UNI 156</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.9%</td>
<td>98.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>UNI 178</td>
<td>0.0%</td>
<td>5.3%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>93.9%</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>UNI 191</td>
<td>6.5%</td>
<td>0.9%</td>
<td>0.0%</td>
<td>25.2%</td>
<td>0.0%</td>
<td>1.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>66.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>UNI 214</td>
<td>1.9%</td>
<td>13.4%</td>
<td>0.0%</td>
<td>1.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>20.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>4.2%</td>
<td>58.9%</td>
</tr>
</tbody>
</table>

Table 2. The similarity between three different datasets using Procrustes distance.

(A) PC-DFA at the strain level

<table>
<thead>
<tr>
<th>Averaging on ST level</th>
<th>FT-IR (IS)</th>
<th>FT-IR (ST)</th>
<th>Raman (IS)</th>
<th>Raman (ST)</th>
<th>MALDI (IS)</th>
<th>MALDI (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-IR (IS)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT-IR (ST)</td>
<td>0.0858</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (IS)</td>
<td>0.2125</td>
<td>0.2933</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (ST)</td>
<td>0.2314</td>
<td>0.3187</td>
<td>0.1502</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALDI (IS)</td>
<td>0.8602</td>
<td>0.889</td>
<td>0.899</td>
<td>0.8202</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MALDI (ST)</td>
<td>0.9125</td>
<td>0.8846</td>
<td>0.9149</td>
<td>0.8988</td>
<td>0.1812</td>
<td>-</td>
</tr>
</tbody>
</table>

(B) PC-DFA at the isolate level

<table>
<thead>
<tr>
<th>Averaging on IS level</th>
<th>FT-IR (IS)</th>
<th>FT-IR (ST)</th>
<th>Raman (IS)</th>
<th>Raman (ST)</th>
<th>MALDI (IS)</th>
<th>MALDI (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-IR (IS)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT-IR (ST)</td>
<td>0.1085</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (IS)</td>
<td>0.2112</td>
<td>0.2446</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (ST)</td>
<td>0.2411</td>
<td>0.3168</td>
<td>0.1132</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALDI (IS)</td>
<td>0.8593</td>
<td>0.8719</td>
<td>0.8196</td>
<td>0.8001</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MALDI (ST)</td>
<td>0.8975</td>
<td>0.8608</td>
<td>0.8841</td>
<td>0.8703</td>
<td>0.0681</td>
<td>-</td>
</tr>
</tbody>
</table>

(ST) and (IS) indicate the PC-DFA was calculated at the strain (12 classes, PFGE-defined 12 types) and isolate (33 classes) levels, respectively.