
The University of Manchester Research

Modal tableau systems with blocking and congruence
closure

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Schmidt, R. A., & Waldmann, U. (2015). Modal tableau systems with blocking and congruence closure. University
of Manchester.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:20. Apr. 2024

https://research.manchester.ac.uk/en/publications/a4b2a704-9faf-4eb1-aac8-0eed9f8f0ad0

Modal Tableau Systems with Blocking and
Congruence Closure

Renate A. Schmidt1? and Uwe Waldmann2

1 School of Computer Science, The University of Manchester, UK
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Our interest in this paper are semantic tableau approaches
closely related to bottom-up model generation methods. Using equality-
based blocking techniques these can be used to decide logics representable
in first-order logic that have the finite model property. Many common
modal and description logics have these properties and can therefore be
decided in this way. This paper integrates congruence closure, which
is probably the most powerful and efficient way to realise reasoning
with ground equations, into a modal tableau system with equality-based
blocking. The system is described for an extension of modal logic K
characterised by frames in which the accessibility relation is transitive
and every world has a distinct immediate predecessor. We show the sys-
tem is sound and complete, and discuss how various forms of blocking
such as ancestor blocking can be realised in this setting. Though the in-
vestigation is focussed on a particular modal logic, the modal logic was
chosen to show the most salient ideas and techniques for the results to
be generalised to other tableau calculi and other logics.

1 Introduction

Tableau systems provide a natural and powerful form of reasoning widely used for
non-classical logics, especially modal, description, and hybrid logics. In this paper
the focus is on semantic tableau systems closely related to bottom-up model
generation methods [4]. Using unrestricted blocking [20], which is an equality-
based blocking technique, these can decide logics with the finite model property,
representable in first-order logic [21, 22]. Many common modal and description
logics have these properties and can therefore be decided using semantic tableau
systems with equality-based blocking.

For many common modal and description logics there are ways to avoid the
explicit use of equality in the tableau system [10, 2]. For more expressive logics,
with nominals as in hybrid modal logics and description logics (nominals are
distinguished propositional variables that hold at exactly one world), it becomes
harder to avoid the explicit handling of equality (though not impossible [11]). For

? I am indebted to Christoph Weidenbach and Uwe Waldmann for hosting me at the
Max-Planck-Institut für Informatik, Saarbrücken, during 2013–2014. Partial support
from UK EPSRC research grant EP/H043748/1 is also gratefully acknowledged.

modal logics where the binary relations satisfy frame conditions expressible as
first-order formulae with equality, explicit handling of equations is the easiest and
sometimes the only known way to perform equality reasoning. Single-valuedness
of a relation is an example of a frame condition expressed using equality. Another
example is the following

∀x∃y∀z
(
R(y, x) ∧ x 6≈ y ∧

(
(R(y, z) ∧ R(z, x))→ (z ≈ x ∨ z ≈ y)

))
,(1)

where ≈ denotes equality. This formula states that in the relation R every world
has a distinct immediate predecessor. Provision for explicit equality reasoning is
also necessary for tableau systems with equality-based blocking.

In semantic tableau systems explicit equality handling has been realised in a
variety of ways. Using standard equality rules is conceptually easiest and most
general, and is often used [6, 8, 20]. This approach leads to a combinatorial ex-
plosion of derived formulae to ensure all elements in the same equivalence class
have the same information content. Many of these formulae are unneeded and
fewer formulae are derived when using paramodulation-style rules, where the
central idea is replacement of equals by equals [5, 8]. Ordered rewriting presents
a further refinement and is significantly more efficient because equations are ori-
ented by an ordering and then used to simplify the formulae. Ordered rewriting
is used, e.g., in a semantic tableau system of [16] for the description logic SHOI.
Different equality reasoning methods have also been integrated into non-ground
tableau and related approaches, e.g. [5, 8, 9].

In this paper we require efficient handling of ground equations. For this pur-
pose congruence closure algorithms provide probably the most efficient algo-
rithms [18]. The Nelson-Oppen congruence closure method [17] has been incor-
porated with Smullyan-type tableau system for first-order logic by [13]. Con-
gruence closure algorithms have also been very successfully combined with the
DPLL approach and are standardly integrated in SMT-solvers as theory reason-
ers for the theory of equations with uninterpreted function symbols [19].

The motivation of the present work is to combine congruence closure with
semantic tableau systems for modal, description, and hybrid logics. Since it
presents a general framework in which many existing congruence closure algo-
rithms can be described (and in order to achieve more generality), we combine
the abstract congruence closure system of [3] with our semantic tableau system.
Our ultimate goal is to provide a general framework with general soundness and
completeness results for developing and studying equality reasoning and blocking
in semantic tableau systems. The tableau system we consider has been obtained
in the tableau synthesis framework of [21], but in this framework equality is
accommodated by the standard equality rules. In this paper we show how these
can be replaced by abstract congruence closure rules.

The most closely related work is the aforementioned [13], because the flavour
of the tableau systems we are concerned with is similar to that of Smullyan-type
tableau systems for first-order logic. The key difference is the way in which we
use the congruence closure algorithm: In [13], the congruence closure component
is essentially a black box that is queried to check entailed equalities. In contrast,

2

we use the convergent term rewrite system produced by the abstract congruence
closure algorithm also systematically to normalise the remaining tableau formu-
lae. This means that duplication of formulae is avoided and that restrictions of
the search space that depend on normalisation can be applied easily. In addition,
we show that the ideas are not limited to a fixed set of the well-known tableau
rules for first-order logic, but can be combined with special-purpose tableau
systems of other logics having other kinds of tableau rules. Also related is [16]
and the implementation of equality reasoning in MetTeL-generated tableau
provers [24], where ordered rewriting is used. This work does however not have
the same level of generality as abstract congruence closure, and no soundness
and completeness proofs are given.

Another important difference to [13], and many modal, description, and hy-
brid logic tableau systems, is the use of Skolem terms to represent witnesses,
instead of constants. Skolem terms have significant advantages, especially when
blocking is used and/or explicit equality reasoning is needed [16]. They provide
a convenient and general-purpose technical device to keep track of existential
quantifier dependencies between witnesses. In conjunction with rewriting or con-
gruence closure fewer inferences need to be performed since, when rewriting a
term, all occurrences of the term, also in the dependency information, are rewrit-
ten. As an example consider the labelled formulae s1 : ¬2φ and s2 : ¬2φ, from
which we can derive f¬2φ(s1) : ¬φ and f¬2φ(s2) : ¬φ, where f¬2φ is the Skolem
function associated with the modal formula ¬2φ. If we later obtain the equa-
tion s1 ≈ s2, then the witnesses f¬2φ(s1) and f¬2φ(s2) also become semantically
equal. If we turn the equation s1 ≈ s2 into a rewrite rule s1 → s2 and use it
for destructive replacement of labels, then even the formulae f¬2φ(s1) : ¬φ and
f¬2φ(s2) : ¬φ become identical, so that one copy is deleted and is no longer avail-
able for tableau expansions. Without Skolem terms other forms of bookkeeping
are needed and may require reapplication of witness-creating rules which is not
needed in our setting. In the tableau synthesis framework more generality is
achieved because Skolem terms allow the encoding of arbitrary first-order prop-
erties as tableau rules [21], including properties such as (1), which otherwise
presents difficulties.

These advantages of Skolem terms carry over to tableau systems with congru-
ence closure. Skolem terms however tend to clutter derivations when the nesting
is deep, which is inconvenient when manually writing derivations. The present
work does in a sense solve this problem, because in tableau systems with con-
gruence closure the Skolem terms are abstracted away and hidden in the rewrite
rules, thus resulting in more easily consumable presentations of the derivations.
We also see how properties such as (1) can be encoded as tableau rules by using
constants and dispersing the Skolem terms into the equational component.

Though the investigation is focussed on a particular modal logic, the logic
was chosen to show the most salient ideas and techniques for the results to be
generalised to tableau systems for other logics, including those obtainable by
tableau synthesis. A presentation in its full generality would have obscured the
main ideas.

3

(cl)
s : φ, s : ¬φ

⊥ (⊥)
s : ⊥
⊥ (¬¬)

s : ¬¬φ
s : φ

Basic tableau rules:

(α)
s : ¬(φ1 ∨ . . . ∨ φk)

s : ∼φ1, . . . , s : ∼φk
(β)

s : φ ∨ Ψ
s : φ s : Ψ

(2)
s : 2φ, R(s, t)

t : φ
(¬2)

s : ¬2φ
R(s, f¬2φ(s)), f¬2φ(s) : ∼φ

(ub)
s ≈ t s 6≈ t

(rfl)
s 6≈ s
⊥ (sym)

s ≈ t
t ≈ s (prm)

s ≈ t, G[s]

G[t]

Paramodulation equality rules:

(tr)
R(s, t), R(t, u)

R(s, u)

Theory tableau rules:

(dp1)
R(g(s), s)

(dp2)
s ≈ g(s)

⊥ (dp3)
R(g(s), t), R(t, s)

t ≈ s t ≈ g(s)

Fig. 1. Tableau calculus Tab(ub) for K(tr,dp). Ψ denotes a disjunction (with at least
one disjunct). ∼ denotes complementation, i.e., ∼ψ = φ if ψ = ¬φ, and ∼ψ = ¬ψ,
otherwise. G denotes any tableau formula. G[s] means s occurs as a subterm in G, and
G[t] denotes the formula obtained by replacing one occurrence of s with t.

The paper is structured as follows. To illustrate the main ideas of combining
the abstract congruence closure system of [3] with semantic tableau systems,
we consider a semantic tableau system for an extension of basic modal logic K
characterised by frames in which the accessibility relation is transitive and where
the frame condition (1) above holds. The logic, called K(tr,dp), and its tableau
system are introduced in Section 2. In Section 3 we show how congruence closure
can be integrated into this system. We show soundness and completeness of the
system in Sections 4 and 5, and describe in Section 6 how various forms of
blocking, including ancestor blocking, can be realised.

2 Modal Logic K(tr,dp) and a Tableau System for It

We give a semantic definition of modal logic K(tr,dp). K(tr,dp) is the propo-
sitional normal modal logic characterised by the class of relational structures
(frames) (W,R), where W is a non-empty set and R is a binary relation defined
over W , which is transitive and satisfies (1) as an additional frame condition.
W represents the set of possible worlds and R is the accessibility relation over
which the semantics of the necessitation operator 2 and the possibility opera-
tor 3 are defined.

Let Tab(ub) be the tableau system given by the rules in Figure 1. The rules
operate on formulae of the form ⊥, s : φ, R(s, t), s ≈ t, s 6≈ t, where φ is a modal

4

formula, and s and t are the labels interpreted as worlds in Kripke models.
We refer to these formulae as the tableau formulae in K(tr,dp). The labels s
and t are terms of a freely generated term algebra over a signature Σ of constants
(denoted by a, b, . . .) and unary function symbols fψ and g for modal formulae ψ.
The Skolem functions fψ and g provide a technical device to uniquely name the
witnesses created in the rule (¬2) for the diamond formulae (the ¬2φ-formulae)
and the rule (dp1) for the distinct predecessor property (1).

The (ub) rule is the unrestricted blocking rule, which will ensure the tableau
system terminates for all finitely satisfiable formulae and constructs a finite
model. More restricted forms of blocking are described in Section 6.

The frame conditions in the definition of K(tr,dp) were chosen so that the
incorporation of congruence closure (in the next section) into the corresponding
tableau rules exhibits as many different interesting aspects as possible. Transi-
tivity is a common frame condition and the transitivity rule (tr) a well-known
rule. Frame condition (1) is used as an example in [23] to illustrate tableau rule
refinement techniques. The corresponding rules (dp1), (dp2) and (dp3) are in-
structive because they contain an equality predicate and Skolem terms in premise
positions, which are important, more difficult cases for the combination with
congruence closure.

Tableau systems are best suited for applications where models need to be
found for satisfiable formulae. Given a formula φ, a semantic tableau system
attempts to construct a model that realises the formula. The start state of the
derivation is then the set N0 = {a : φ}, where a denotes a fresh constant in Σ; it
represents the initial world of the model to be constructed (if this is possible). If
in every branch of the derivation ⊥ was derived then no model can exist and φ is
unsatisfiable. Else, there will be a (possibly infinite) branch from which a model
can be read off in the limit. E.g., for the formula 3> ∧ 23p the following model
may be constructed (there are others).

R(g(a), g(a)), R(g(a), a), R(a, g(a)), R(a, a), a : p

Without the unrestricted blocking rule (ub) an infinite model is constructed.

We say a tableau calculus is sound when for a satisfiable set of tableau
formulae any fully expanded tableau derivation has an open branch. A tableau
derivation is fully expanded if all branches are either closed, or open and fully
expanded. A tableau calculus is refutationally complete if for any unsatisfiable
set of tableau formulae there is a closed tableau derivation. A tableau calculus is
constructively complete, if for every open fully expanded branch a model exists,
that can be read off from the branch.

By Tab we denote the calculus without the unrestricted blocking rule. The
rules in Tab and Tab(ub) are the ones obtained by tableau synthesis and rule
refinement [21, 23] from the semantic definition of K(tr,dp), except we use
paramodulation-style rules instead of the standard equality rules. With the ap-
propriate adaptations of the proofs in [21, 23] for this, it follows that:

5

Theorem 1. The tableau calculi Tab and Tab(ub) are sound and constructively
complete for testing satisfiability of formulae (or sets of tableau formulae) in
K(tr,dp). They are also refutationally complete.

3 Modal Tableau System with Congruence Closure

Congruence closure algorithms provide an efficient way to perform reasoning
with ground equations and can be combined with DPLL algorithms, but also
with tableau systems as we show in this section. A congruence closure algorithm
transforms an arbitrary set of ground equations into an equivalent confluent and
terminating ground rewrite system.3 Checking whether two terms are semanti-
cally equivalent with respect to the original set of equations amounts to checking
whether the normal forms of the two terms with respect to the rewrite system
coincide. For efficiency reasons, it is useful to construct the rewrite system over a
signature extended by a set of new constants symbols and to restrict to a specific
form of flat rewrite rules.

Let K be a set of constant symbols (denoted by c, d, . . .) disjoint from Σ. A
D-rule with respect to Σ and K is a rewrite rule of the form h(c1, . . . , ck)→ c,
where h ∈ Σ, k ≥ 0, and ci, c ∈ K . A C-rule is a rewrite rule of the form c→ c′,
where c, c′ ∈ K .

In order to guarantee termination of the set of rewrite rules, we assume that�
is an arbitrary total and well-founded ordering on Σ ∪K with the property that
f � c for every f ∈ Σ and c ∈ K . We can extend � to an ordering �T on
arbitrary terms by defining �T as the Knuth-Bendix ordering with precedence �
and weight 1 for every function or constant symbol. The ordering �T is total
and well-founded on ground terms over Σ∪K (even if Σ and/or K are infinite);
moreover c � c′ implies c �T c′ for c, c′ ∈ K , and t �T c whenever c ∈ K and t
contains a symbol from Σ. These properties ensure that t �T t′ holds for all
generated rules t→ t′, and hence, that the set of rules terminates.

The inference rules in Figures 2 and 3 combine the tableau rules of the
previous section with the abstract congruence closure rules of [3]. The integration
is defined to be as modular as possible, to limit any problematic interactions
and present a clean separation between the modal tableau formulae and the
congruence closure rules. Let the calculus be named Tab(ub,cc).

A tableau state is a pair N 8E of a set N of tableau formulae and a set E of
D- and C-rules. E denotes the rewrite system being built. The inference rules
have the general form:

N 8E
N1 8E1 . . . Nk 8Ek

(ρ)

with k ≥ 1. In general, the inference process constructs a derivation tree in which
the nodes are tableau states. A branch B in a tableau derivation is a sequence
of pairs N0 8E0, N1 8E1, . . . , Ni8Ei, . . ., where N0 8E0 is the start state, and

3 We refer to [1] for standard notions and notations in term rewriting.

6

(cl)
N, c : φ, c : ¬φ 8 E

⊥ 8 E (⊥)
N, c : ⊥ 8 E

⊥ 8 E (¬¬)
N, c : ¬¬φ 8 E

N, c : φ 8 E

Basic tableau rules:

(α)
N, c : ¬(φ1 ∨ . . . ∨ φk) 8 E

N, c : ∼φ1, . . . , c : ∼φk 8 E (β)
N, c : φ ∨ Ψ 8 E

N, c : φ 8 E N, c : Ψ 8 E

(2)
N, c : 2φ, R(c, d) 8 E

N, c : 2φ, R(c, d), d : φ 8 E

(¬2)
N, c : ¬2φ 8 E

N, R(c, d), d : ∼φ 8 E, f¬2φ(c)→ d
provided c is in E-normal form;
d is a new constant

(ub)
N 8 E

N, c ≈ d 8 E N, c 6≈ d 8 E
provided c and d are distinct constants in
E-normal form

(tr)
N, R(c, d), R(d, d′) 8 E

N, R(c, d), R(d, d′), R(c, d′) 8 E

Theory tableau rules:

(dp1)
N 8 E

N, R(d, c) 8 E, g(c)→ d
provided c is in E-normal form;
d is a new constant

(dp2)
N 8 E, g(c)→ d

⊥ 8 E, g(c)→ d
provided c is the E-normal form of d

(dp3)
N, R(d, c′), R(c′, c) 8 E, g(c)→ d′

N, R(d, c′), R(c′, c), c′ ≈ c 8 E, g(c)→ d′

N, R(d, c′), R(c′, c), c′ ≈ d 8 E, g(c)→ d′

provided d is the

E-normal form of d′

Fig. 2. Adapted tableau rules incorporating congruence closure.

each subsequent state Ni8Ei is obtained from Ni−1 8Ei−1 by the application
of an inference rule. A branch is regarded as closed, as soon as ⊥ is derived in
an Ni. A branch is open when it is not closed.

The start state N08E0 is obtained by a preprocessing stage from the given
set N of tableau formulae involving the exhaustive application of this rule

N [t] 8 E
N [c] 8 E, t→ c

provided c is new and t→ c is a D-ruleExtension:

and the Simplification rule in Figure 3. Thus, N0 is the flattened version of N
and E0 is the set of D-rules and C-rules defining all subterms occurring in N . If
the Simplification rule is given precedence over the Extension rule there will be
maximal sharing.

The inference rules in Figure 2 are adaptations of the basic tableau rules
and the theory rules in Figure 1 to tableau formulae in normalised form. The
rules manipulate the tableau formulae as before, one important difference though
is the way witnesses are created. In the (¬2)-rule the Skolem term f¬2φ(c) is
created and added to the rewrite system in the new D-rule f¬2φ(c)→ d, which
defines it by a new constant d from K . On the left-hand side d represents the

7

(id)
N, s 6≈ s 8 E

⊥ 8 E

Equality theory propagation rule:

Simplification:
N [t] 8 E, t→ c

N [c] 8 E, t→ c

Congruence closure tableau rules:

Orientation:
N, t ≈ c 8 E

N 8 E, t→ c
provided t �T c

Deletion:
N, t ≈ t 8 E

N 8 E

Deduction:
N 8 E, t→ c, t→ d

N, c ≈ d 8 E, t→ d
provided c �T d

Collapse:
N 8 E, s[c]→ c′, c→ d

N 8 E, s[d]→ c′, c→ d
provided c is a proper
subterm of s

Fig. 3. Congruence closure rules for equality reasoning.

newly created successor in the derived tableau formulae R(c, d) and d : ∼φ.
The other basic tableau rules and the transitivity rule do not affect the rewrite
system E, and are obvious adaptations from the rules in the previous system.

The (dp1)-rule is the other witness creating rule in the calculus and is adapted
in the same way as the (¬2)-rule. That is, a new D-rule is added that defines the
new Skolem term g(c) and its representative d in K . The rules (dp2) and (dp3)
have Skolem terms in premise position. Because in the adapted tableau system
Skolem terms can occur only in D-rules in the rewrite system the adaptations to
normalised form involve look-ups in the rewrite system, see the third and fourth
rules in Figure 2.

The paramodulation rules in Tab(ub) are replaced by the congruence closure
rules listed in Figure 3. Their purpose is to build a rewrite system, normalise
the tableau formulae via Simplification and Deletion, propagate derived equa-
tions via Deduction, and perform theory propagation steps. The only theory
propagation rule is the (id) rule.

The congruence closure rules are based on the abstract congruence closure
framework of [3]. We have added the requirement that c �T d to the Deduction
rule in order to ensure that t → c is eliminated by the rule, and not t →
d which is the smaller of the two. The Extension rule is not included since
exhaustive extension and simplification is performed at the outset. This means
only constants occur in N0 of the start state and the rules are defined in such
a way that no non-constant terms are introduced to the tableau formula part
during the derivation. We note that if the optional Composition rule

N 8 E, t→ c, c→ d
N 8 E, t→ d, c→ d

Composition:

8

is made a mandatory rule, then the side-conditions of rule (dp2) and rule (dp3)
can be simplified respectively to c = d and d = d′, because then, in general, both
sides of the rewrite rules are maximally reduced.

We assume fairness for the construction of a derivation. This is important if
branches can be infinite. The construction is fair if, when an inference is possible
forever, then it is performed eventually.

Theorem 2. The calculus Tab(ub,cc) is sound and constructively complete for
testing satisfiability of sets of tableau formulae in K(tr,dp). It is also refuta-
tionally complete.

Formal proofs are given in the next two sections.

4 Semantics and Soundness

We define the semantics of formulae in Tab(ub,cc)-rules by an interpretation
I = (U.·I), where U is a non-empty set and ·I is the interpretation function
mapping terms (labels) to elements in U , propositional variables to subsets of U ,
≈ to the identity relation over U , and R to a relation over U that is transitive
and satisfies property (1). The meaning of modal formulae in I is defined with
respect to the structure M = (U,RI , v), where v is the restriction of ·I to
propositional variables. v defines the valuation of propositional variables andM
is a Kripke structure. Satisfiability of modal formulae in M is now defined as
usual by:

M, x |= p iff x ∈ v(p) M, x 6|= ⊥ M, x |= ¬φ iff M, x 6|= φ

M, x |= φ1 ∨ . . . ∨ φk iff M, x |= φi for some i, 1 ≤ i ≤ k
M, x |= 2φ iff for all y, (x, y) ∈ RI implies M, y |= φ

Satisfiability in I of tableau formulae and rewrite rules is defined by:

I |= s : φ iff M, sI |= φ I |= R(s, t) iff (sI , tI) ∈ RI

I |= s ≈ t iff sI = tI I |= s→ t iff sI = tI I |= s 6≈ t iff sI 6= tI

It is not difficult to show that each of Tab(ub,cc)-rule is sound, i.e., when each
of the formulae in the premise N 8E of a rule (ρ) is true in an interpretation I
then all of the formulae in one of the conclusions Ni8Ei are true in I.

It immediately follows that Tab(ub,cc) is sound, i.e., for any set N of tableau
formulae for K(tr,dp), there is an open, fully expanded branch in some deriva-
tion constructed using Tab(ub,cc). In fact, an open, fully expanded branch is
found in any Tab(ub,cc)-derivation, since the calculus is proof confluent.

5 Completeness

In this section we prove that the calculus Tab(ub,cc) is constructively complete.

9

We need a condition that ensures that the tableau rules (and in particular
the theory rules) do not interfere with the congruence closure rules. Accordingly
we call a tableau rule

N 8E
N1 8E1 . . . Nk 8Ek

admissible, if for every i ≤ k, either Ni = ⊥, or the following conditions all hold:

(i) E ⊆ Ei,
(ii) {s ≈ t | s ≈ t ∈ N} ⊆ Ni,

(iii) Ei \ E consists only of D-rules, and
(iv) all terms that occur in Ni \N are constants in K .

This means that admissible tableau rules retain all positive equational formulae,
the only rules introduced during an inference step are D-rules and only constants
from K are introduced. It is easy to check that the basic tableau rules and the
theory rules are admissible.

For an open branch B = N0 8E0, N1 8E1, . . . , Ni8Ei, . . . we define the set of
all rules and equations on the branch by E∞ =

⋃
i≥0Ei∪{s ≈ t | s ≈ t ∈ Ni} and

the set of persistent rules and equations on the branch by E∗ =
⋃
i≥0
⋂
j≥i(Ej ∪

{s ≈ t | s ≈ t ∈ Nj}). (If B is finite, then E∗ equals Ei ∪ {s ≈ t | s ≈ t ∈ Ni},
where Ni8Ei is the last node of B.)

To discuss the properties of E∞ and E∗, we have to extend the ordering �T
to an ordering on equations and rewrite rules. We define the ordering �E on
equations and rewrite rules by mapping every equation s ≈ t to the multiset
{s, s, t, t}, every rewrite rule s→ t to the multiset {s, t}, and by comparing the
resulting multisets using the multiset extension of �T .

If E is a set of equations and rewrite rules and s and t are terms over Σ ∪K ,
we write s ∼E t if the equation s ≈ t is logically entailed by the equations and
rewrite rules in E (where we do not distinguish between equations and rewrite
rules). If E is a confluent and terminating set of rewrite rules, we write s↓E for
the E-normal form of s. Similarly we use the notation F↓E and N↓E for the
normalisation of a formula F or of a set N of formulae with respect to E.

Lemma 1. Let all basic and theory tableau rules be admissible. Let B be an open
branch that is fully expanded with respect to the congruence closure rules. Then,
E∞ and E∗ have the following properties:

(i) All equations in E∞ have the form c ≈ d with c, d ∈ K , and all rewrite
rules in E∞ are C-rules or D-rules.

(ii) E∗ does not contain any equations, that is, E∗ =
⋃
i≥0
⋂
j≥iEj.

(iii)
⋃
i≥0Ei and E∗ are terminating.

(iv) E∗ is confluent.
(v) If a term u is reducible by a rewrite rule in E∞, then it is reducible by E∗.

(vi) If u ∼Ei
v, then u ∼Ei+1

v.
(vii) u ∼E∞ v if and only if u ∼E∗ v if and only if u↓E∗ = v↓E∗ .

(viii) If u ∼Ei v, then u ∼E∗ v.

10

Proof. (i) This follows from the fact that all terms in N0 are constants from K ,
that no inference generates an equation s ≈ t with s /∈ K or t /∈ K , and that all
rewrite rules generated by an inference are C-rules or D-rules.

(ii) Assume that E∗ contains an equation c ≈ d. Choose i such that c ≈ d ∈⋂
j≥iNj . By fairness, there exists some j ≥ i such that the Orientation or Dele-

tion rule is applied to c ≈ d ∈ Nj . Then c ≈ d /∈ Nj+1, contradicting the
assumption.

(iii) By construction, every rewrite rule s → t ∈
⋃
i≥0Ei satisfies s �T t.

Since�T is a reduction ordering,
⋃
i≥0Ei is terminating, and since E∗ ⊆

⋃
i≥0Ei,

E∗ is terminating as well.

(iv) We show that E∗ does not have any critical pairs; this implies local
confluence and, by termination, also confluence. Assume that E∗ contains two
distinct rewrite rules s → c and t → d, where t is a (proper or non-proper)
subterm of s. Since both s → c and t → d are persistent, there exists an i such
that both rules are contained in

⋂
j≥iEj . By fairness, there exists some j ≥ i

such that either the Deduction rule (if s = t) or the Collapse rule (otherwise)
is applied to t → c and t → d. (Note that, if t is a proper subterm of s, then
s → c is a D-rule and t → d is a C-rule.) In both cases, one of the rules in not
contained in Ej+1, contradicting the assumption.

(v) Suppose that u is reducible by a rewrite rule in E∞. Since �E is well-
founded, there exists a minimal rule t → c ∈ E∞ with respect to �E such that
t is a subterm of u. We claim that t → c is a persistent rewrite rule. Assume
otherwise. Then t→ c is contained in some Ej but deleted from Ej+1. Since the
basic tableau rules and theory rules are admissible, this can only happen using
a Deduction, Collapse, or Composition inference. In each of these cases, Ej+1

contains a rule t′ → c′ such that t′ is a (proper or non-proper) subterm of t
and t→ c �E t′ → c′. So there is a smaller rule in E∞ whose left-hand side is a
subterm of u, contradicting the minimality assumption.

(vi) This follows immediately from the form of the congruence closure rules.

(vii) The second equivalence follows from Birkhoff’s theorem and from the
fact that E∗ is confluent and terminating. The “if” part of the first equivalence
follows from the fact that E∗ ⊆ E∞. For the “only if” part assume that u ∼E∞ v.
By the compactness of first-order logic, there exists a finite subset E of E∞ such
that u ∼E v. The multiset extension of �E is a well-founded ordering on all finite
subsets of E∞ with this property, so there exists a minimal finite subset E of E∞
with u ∼E v. We claim that all elements of E are persisting. Assume otherwise.
Then some equation or rewrite rule from E is contained in some Ej but deleted
from Ej+1, and by admissibility, it can only be deleted by a congruence closure
inference. If an equation t ≈ c is deleted using an Orientation inference, set
E′ = E \ {t ≈ c} ∪ {t → c}. If an equation t ≈ t is deleted using a Deletion
inference, set E′ = E \ {t ≈ t}. If a rewrite rule t → c is deleted using a
Deduction inference, set E′ = E \ {t → c} ∪ {t → d, c ≈ d}. If a rewrite rule
s[c]→ c′ is deleted using a Collapse inference, set E′ = E \{s[c]→ c′}∪{s[d]→
c′, c → d}. If a rewrite rule t → c is deleted using a Composition inference, set

11

E′ = E \ {t → c} ∪ {t → d, c → d}. In any case, E′ is a smaller subset of E∞
than E and u ∼E′ v, contradicting the minimality assumption.

(viii) Since Ei ⊆ E∞, u ∼Ei v implies u ∼E∞ v, so by (vii) u ∼E∗ v.

The limit of a branch is defined to be the tuple N∞8E∗ with N∞ =
⋃
i≥0Ni↓E∗ .

Let FB denote the set of all tableau formulae and rules on B, i.e., FB =⋃
i≥0(Ni ∪Ei). And, let TB denote the set of all terms occurring in a branch B,

i.e., TB = {s | s is a term over Σ ∪K occurring in FB}.
For the rest of the section we assume B denotes any open, fully expanded

branch in a Tab(ub,cc)-derivation.

Lemma 2. Formulae and terms have the following properties.

(i) If s : φ ∈ FB then s↓E∗ : φ ∈ N∞.
(ii) If R(s, t) ∈ FB then R(s↓E∗ , t↓E∗) ∈ N∞.

(iii) If s ≈ t ∈ FB then s↓E∗ ≈ t↓E∗ ∈ N∞.
(iv) If s 6≈ t ∈ FB then s↓E∗ 6≈ t↓E∗ ∈ N∞.

Proof. Obvious, by definition of N∞.

Lemma 3. N∞ has the following properties.

(i) Let F be a formula of the form R(s, t), s 6≈ t (where s 6= t), s : 2φ, s : p or
s : ¬p. Then, F ∈ N∞ implies there is an index i such that for all j ≥ i,
F ∈ Nj.

(ii) a. If s : ¬¬φ ∈ N∞, then there is an index i and an s′ ∈ TB such that
s′ : ¬¬φ ∈ Ni, s′ : φ ∈ Ni+1, and s′↓E∗ = s.

b. If s : ¬(φ1 ∨ . . . ∨ φk) ∈ N∞, then there is an index i and an s′ ∈ TB
such that s′ : ¬(φ1 ∨ . . . ∨ φk) ∈ Ni, {s′ : ∼φ1, . . . , s′ : ∼φk} ⊆ Ni+1,
and s′↓E∗ = s.

c. If s : φ1 ∨ . . . ∨ φk ∈ N∞, then there is an index i, an l with 1 ≤ l ≤ k
and an s′ ∈ TB such that s′ : φ1 ∨ . . . ∨ φk ∈ Ni, s′ : φl ∈ Ni+1, and
s′↓E∗ = s.

d. If s : ¬2φ ∈ N∞, then there is an index i, a d ∈ K and an s′ ∈ TB such
that s′ : ¬2φ ∈ Ni, {R(s′, d), d : ∼φ} ⊆ Ni+1, f¬2φ(s′) → d ∈ Ei+1,
and s′↓E∗ = s.

Proof. (i) Let s : 2φ be a formula in N∞. By definition of N∞, there exists
an s′ ∈ TB such that s = s′↓E∗ and s′ : 2φ ∈ Ni for some i, and since �T is
well-founded, we can choose a minimal s′ with this property. The formula s′ : 2φ
cannot be eliminated using any of the basic tableau rules, and since s′ is chosen
minimally, it also cannot be eliminated using a Simplification inference, hence
there is an index j′ such that it is contained in Nj for all j ≥ j′. We claim
that s′ = s. Otherwise, s′ must be reducible with respect to E∗, which means
that there is an index i′ and a rule s′ → d that is contained in every Ni for
i ≥ i′. This means that the Simplification rule is applicable in every node l with
l ≥ max(i′, j′). By fairness, the Simplification rule must be applied, yielding
d : 2φ with s′ �T d, which contradicts the minimal choice of s′.

12

Formulas of the form R(s, t), s 6≈ t (with s 6= t), s : p, and s : ¬p are handled
analogously (in the first two cases we consider the minimal multiset {s, t} with
respect to the multiset extension of �T).

(ii) For subcase (a), let s : ¬¬φ be a formula in N∞. By definition of N∞,
there exists an s′ ∈ TB such that s = s′↓E∗ and s′ : ¬¬φ ∈ Nj for some j, and
since �T is well-founded, we can choose a minimal s′ with this property. By
minimality of s′, the formula s′ : ¬¬φ cannot be eliminated using a Simplifica-
tion inference, so the (¬¬)-rule must be applied to it somewhere on the branch
(otherwise fairness would be violated). Consequently, there is an index i ≥ j
such that s′ : ¬¬φ ∈ Ni and s′ : φ ∈ Ni+1. The subcases (b), (c), (d) are again
handled analogously.

Properties (i) and (ii) can be combined to show N∞ is a kind of Hintikka set:

Lemma 4. (i) If s : ¬¬φ ∈ N∞ then s : φ ∈ N∞.
(ii) If s : ¬(φ1 ∨ . . . ∨ φk) ∈ N∞ then {s : ∼φ1, . . . , s : ∼φk} ⊆ N∞.

(iii) If s : φ1 ∨ . . . ∨ φk ∈ N∞ then s : φl ∈ N∞ for some l, 1 ≤ l ≤ k.
(iv) If s : ¬2φ ∈ N∞ then {R(s, d), d : ∼φ} ⊆ N∞ for some d such that

f¬2φ(s) ∼E∗ d.
(v) If s : 2φ ∈ N∞ and R(s, t) ∈ N∞ then t : φ ∈ FB and t : φ ∈ N∞.

Proof. (i) If s : ¬¬φ ∈ N∞, then by Lemma 3 there is an index i and a formula
s′ : φ ∈ Ni+1 such that s′↓E∗ = s, hence s : φ ∈ N∞. Cases (ii) and (iii) are
proved analogously.

(iv) If s : ¬2φ ∈ N∞ then by Lemma 3 there is an index i, a d′ ∈ K and
an s′ ∈ TB such that {R(s′, d′), d′ : ∼φ} ⊆ Ni+1, f¬2φ(s′) → d′ ∈ Ei+1, and
s′↓E∗ = s. Let d = d′↓E∗ , then {R(s, d), d : ∼φ} ⊆ N∞, and since f¬2φ(s) ∼E∗
f¬2φ(s′) ∼Ei+1 d

′ ∼E∗ d we have f¬2φ(s) ∼E∗ d.
(v) Suppose s : 2φ ∈ N∞ and R(s, t) ∈ N∞. Then, using Lemma 3(i) we

know
∃i′ ∀i ≥ i′ : R(s, t) ∈ Ni and ∃j′ ∀j ≥ j′ : s : 2φ ∈ Nj .

Let k′ be the larger of i′ and j′, then for all k ≥ k′ both R(s, t) and s : 2φ belong
to Nk. By fairness this means there is a node l where the (2)-rule is applied and
t : φ ∈ Nl ⊆ FB. Since t is reduced with respect to E∗, t : φ ∈ N∞.

Lemma 5. If {R(c, d), R(d, d′)} ⊆ N∞ then R(c, d′) ∈ N∞.

Proof. Let k′ be the smallest index such that {R(c, d), R(d, d′)} ⊆ Nk for all
k ≥ k′. Such an index exists by Lemma 3(i). By fairness the transitivity rule is
applicable and there is an index in the branch where R(c, d′) ∈ Nl. This implies
R(c, d′) ∈ N∞ by the definition of N∞.

Next we show any open, fully expanded branch B induces a certain canon-
ical interpretation, denoted by I(B). We define I(B) to be the interpretation
(UI(B), ·I(B)) with UI(B) = {s↓E∗ | s ∈ TB} and ·I(B) the homomorphic exten-
sion of the following.

sI(B) = s↓E∗ if s ∈ TB pI(B) = {s↓E∗ | s : p ∈ FB}
RI(B) = {(s↓E∗ , t↓E∗) | R(s, t) ∈ FB} ≈I(B) = {(s↓E∗ , s↓E∗) | s ∈ TB}

13

UI(B) is not empty, since every input set is non-empty and contains at least
one term. We have that:

x ∈ (¬φ)I(B) iff x ∈ UI(B) \φI(B)

x ∈ (φ1 ∨ . . . ∨ φk)I(B) iff x ∈ φI(B)1 ∪ . . . ∪ φI(B)k

x ∈ (2φ)I(B) iff for all y ∈ UI(B) if (x, y) ∈ RI(B) then y ∈ φI(B)

and

I(B) |= s : φ iff s↓E∗ ∈ φ
I(B) I(B) |= s ≈ t iff (s↓E∗ , t↓E∗) ∈ ≈

I(B)

I(B) |= R(s, t) iff (s↓E∗ , t↓E∗) ∈ R
I(B) I(B) |= s 6≈ t iff (s↓E∗ , t↓E∗) 6∈ ≈

I(B).

I(B) is thus an interpretation. Our aim now is to show I(B) is a K(tr,dp)-
model for each tableau formula on an open, fully expanded branch B.

Lemma 6. (i) If R(s, t) ∈ FB then (s↓E∗ , t↓E∗) ∈ R
I(B).

(ii) If (s↓E∗ , t) ∈ R
I(B) and s : 2φ ∈ FB then t : φ ∈ FB.

Proof. (i) By definition of RI(B).
(ii) Suppose that (s↓E∗ , t) ∈ RI(B) and s : 2φ ∈ FB. If (s↓E∗ , t) ∈ RI(B),

then (s↓E∗ , t) ∈ N∞ by the definitions of RI(B) and N∞. On the other hand,
s : 2φ ∈ FB implies s↓E∗ : 2φ ∈ N∞. By Lemma 4, we obtain t : φ ∈ FB.

Lemma 7. If s : φ ∈ FB then s↓E∗ ∈ φ
I(B).

Proof. The proof is by induction on the structure of formulae. We use the nota-

tion ψI(B) for UI(B) \ψI(B).
Case φ = p. s : p ∈ FB implies that s↓E∗ ∈ p

I(B) by the definition of I(B)
for propositional variables.

Case φ = ¬ψ. We distinguish different cases for ψ. Subcase ψ = p. If s : ¬p ∈
FB then s↓E∗ : ¬p ∈ N∞ by Lemma 2. This implies

∃i′∀i > i′, s↓E∗ : ¬p ∈ Ni

by Lemma 3(i). We need to prove s↓E∗ ∈ (¬p)I(B) or s↓E∗ 6∈ pI(B). Suppose

not, suppose s↓E∗ ∈ pI(B). By the definitions of pI(B) and N∞, this implies
s↓E∗ : p ∈ N∞ and by Lemma 3(i) we get

∃j′∀j > j′, s↓E∗ : p ∈ Nj .

Hence there must be a k′ such that for all k > k′ both s↓E∗ : ¬p ∈ Nk and
s↓E∗ : p ∈ Nk. By fairness there is a node j where the closure rule is applied.
This closes the branch, which is a contradiction.

Subcase ψ = ¬ψ1. If s : ¬¬ψ1 ∈ FB then s↓E∗ : ¬¬ψ1 ∈ N∞, by Lemma 2. By
Lemma 3 there is anNj where the (¬¬)-rule has applied to an equivalent formula,
s′ : ¬¬ψ1 for some s′ ∼ s, and s′ : ψ1 ∈ Nj . This means that s′ : ψ1 ∈ FB.

14

By the induction hypothesis s↓E∗ = s′↓E∗ ∈ ψ
I(B)
1 . By the definition of I(B),

s↓E∗ 6∈ ψ
I(B)
1 = (¬ψ1)I(B). This implies s↓E∗ ∈ (¬ψ1)I(B) = (¬¬ψ1)I(B).

Subcase ψ = ψ1 ∨ . . . ∨ ψk. The argument is similar to the previous case.
Suppose s : ¬(ψ1 ∨ . . . ∨ ψk) ∈ FB. Then s↓E∗ : ¬(ψ1 ∨ . . . ∨ ψk) ∈ N∞, and
there is an Nj where the (α)-rule has been applied to an equivalent formula, say
s′ : ¬(ψ1 ∨ . . . ∨ ψk), and s′ : ∼ψl ∈ Nj for all l, 1 ≤ l ≤ k by Lemma 3. That is,
s′ : ∼ψl ∈ FB and hence by the inductive hypothesis and since s′ ∼ s we obtain

s↓E∗ ∈ (∼ψl)I(B), for all l, 1 ≤ l ≤ k. Consequently, s↓E∗ ∈ (∼ψ1)
I(B) ∩ . . . ∩

(∼ψk)
I(B)

= ψ
I(B)
1 ∩ . . .∩ψI(B)k = ψ

I(B)
1 ∪ . . . ∪ ψI(B)k = (¬(ψ1 ∨ . . . ∨ ψk))I(B).

Subcase ψ = 2ψ1. If s : ¬2ψ1 ∈ FB then s↓E∗ : ¬2ψ1 ∈ N∞. By Lemma 4,
this implies that R(s↓E∗ , d) ∈ N∞ and d : ∼ψ1 ∈ N∞ for some d. Hence

(s↓E∗ , d) ∈ RI(B) and d ∈ (∼ψ1)I(B) by the inductive hypothesis. In gen-

eral, x ∈ (¬2ψ)I(B) iff there exists a y ∈ UI(B) such that (x, y) ∈ RI(B) and

y ∈ (∼ψ)
I(B)

. Therefore, we can conclude s↓E∗ ∈ (¬2ψ1)I(B).
Case ψ = ψ1 ∨ . . . ∨ ψk. Suppose s : ψ1 ∨ . . . ∨ ψk ∈ FB. Then s↓E∗ :

ψ1 ∨ . . . ∨ ψk ∈ N∞, and there is an Nj where the (β)-rule has been applied
to an equivalent formula, s′ : ψ1 ∨ . . . ∨ ψk say, and s′ : ψl ∈ Nj for some l,
1 ≤ l ≤ k (by Lemma 2 and Lemma 3). That is, s′ : ψl ∈ FB and hence by

the inductive hypothesis and since s′ ∼ s we obtain s↓E∗ ∈ ψ
I(B)
l . This implies

s↓E∗ ∈ ψ
I(B)
1 ∪ . . . ∪ ψI(B)k = (ψ1 ∨ . . . ∨ ψk)

I(B)
.

Case ψ = 2ψ1. Suppose s : 2ψ1 ∈ FB. Then s↓E∗ : 2ψ1 ∈ N∞, by Lemma 2.

We distinguish two cases: a. There is no d such that (s↓E∗ , d) ∈ RI(B). Then

vacuously s↓E∗ ∈ (2ψ1)I(B) by the definition of the semantics of 2 in I(B).

b. Let d be a constant such that (s↓E∗ , d) ∈ RI(B). By Lemma 6(ii) we have

that d : ψ1 ∈ FB. This implies d ∈ ψ
I(B)
1 . Since d was arbitrary this implies

s↓E∗ ∈ (2ψ1)I(B).

Lemma 6(i) and Lemma 7 imply that every tableau formula of the form R(s, t)
and s : φ occurring on an open, fully expanded branch B is reflected in I(B),
i.e., holds in I(B). Next we show that all equations and inequations on B are
reflected in I(B).

Lemma 8. (i) If s ≈ t ∈ FB or s→ t ∈ FB then (s↓E∗ , t↓E∗) ∈ ≈
I(B).

(ii) If s 6≈ t ∈ FB then (s↓E∗ , t↓E∗) 6∈ ≈
I(B).

Proof. (i) If s ≈ t ∈ FB or s → t ∈ FB, then there exists some index i such
that s ∼Ei t. By Lemma 1, we obtain s ∼E∗ t, so s↓E∗ = t↓E∗ . Consequently,

(s↓E∗ , t↓E∗) ∈ ≈
I(B).

(ii) If s 6≈ t ∈ FB, then s↓E∗ 6≈ t↓E∗ ∈ N∞, and by Lemma 3(i), there is an
index i such that for all j ≥ i, s↓E∗ 6≈ t↓E∗ ∈ Nj . Assume that (s↓E∗ , t↓E∗) ∈
≈I(B). Then s↓E∗ = t↓E∗ , so s↓E∗ 6≈ s↓E∗ ∈ Nj for all j ≥ i. By fairness, ⊥ must
have been derived using the (id)-rule, so the branch is closed, contradicting the
assumption.

It remains to show:

15

Lemma 9. (i) If (x, y) ∈ RI(B) and (y, z) ∈ RI(B) then (x, z) ∈ RI(B).
(ii) RI(B) satisfies the frame condition (1).

Proof. (i) (x, y) ∈ RI(B) and (y, z) ∈ RI(B) implies that R(x, y) ∈ N∞ and
R(y, z) ∈ N∞. By Lemma 5, R(x, z) ∈ N∞. Then, by Lemma 3(i), R(x, z) ∈ FB
and using the definition of RI(B), we get R(x, z) ∈ RI(B).

(ii) Let x ∈ UI(B) be chosen arbitrarily. We will show that the frame condi-
tion (1) holds when we define y := g(x)↓E∗ .

First, x ∈ UI(B) implies that x ∈ TB. By fairness, there is an index i in
the branch where the (dp1) rule has been applied, so there is some d ∈ K with
R(d, x) ∈ Ni and g(x) → d ∈ Ei. Since g(x)↓E∗ = d↓E∗ and (d↓E∗ , x) ∈ RI(B),
the first part of condition (1) holds for x and y.

For the second part of the condition, assume that x = y. Then x = g(x)↓E∗
which implies that g(x) →+

E∗
x. Since x is in E∗-normal form, this derivation

must start with the application of a D-rule g(x) → d′ ∈ E∗. Consequently,
g(x) →E∗ d

′ →∗E∗ x. By the definition of E∗, there is an index i such that
g(x) → d′ ∈ Ej and d′ →∗Ej

x for all j ≥ i. By fairness, the (dp2) rule must be
applied. This contradicts the assumption that B is an open branch, so x must
be different from y.

For the third part, assume that {(y, z), (z, x)} ⊆ RI(B) for some z ∈ UI(B).
Consequently, {R(y, z), R(z, x)} ⊆ N∞. Moreover, we know that y := g(x)↓E∗ ,
so g(x) →+

E∗
y. Since x is in E∗-normal form, this derivation must start with

the application of a D-rule g(x) → d′ ∈ E∗. Consequently, g(x) →E∗ d
′ →∗E∗ y.

By Lemma 3 and by the definition of E∗, there is an index i such that for all
j ≥ i, {R(y, z), R(z, x)} ⊆ Nj and g(x) → d′ ∈ Ej and d′ →∗Ej

y for all j ≥ i.

By fairness, the (dp3) rule must be applied. So B contains either z ≈ x or z ≈ y,
and since x, y, z are in E∗-normal form, this implies z = x or z = y.

Finally, we can conclude:

Lemma 10. I(B) is a K(tr,dp)-model for each tableau formula on the branch B.

Consequently, if for a finite set of tableau formulae an open, fully expanded
branch B can be constructed, then the input set is satisfiable, because the canon-
ical interpretation I(B) is a K(tr,dp)-model. This means the tableau calculus
Tab(ub,cc) is constructively complete, from which it immediately follows that it
is also refutationally complete. This completes the proof of Theorem 2.

6 Ancestor Blocking and Other Forms of Blocking

For many modal, description and hybrid logics that have the finite model prop-
erty, termination of a tableau calculus can be enforced by using blocking. The
unrestricted blocking rule (ub) (in Fig. 1) permits to introduce a case analysis
for arbitrary pairs of terms s and t that are identified and merged. It is obvious
that this rule can also be used together with congruence closure, see Fig. 2; in
fact, since any relevant term is represented by some constant in K in E-normal

16

Table 1. Side-conditions for restricted forms of blocking. τ(s) = {ψ | s : ψ ∈ Ni},
where Ni denotes the set of tableau formulae in the current state.

Name Suffix Restriction

ancestor s is a proper subterm of t
predecessor t = fψ(s) for some ψ, or t = g(s)
equality τ(s) = τ(t)
subset τ(s) ⊆ τ(t)
noS {s, t} 6⊆ S, where S is a finite set of terms
exists s : 3ψ, t : 3ψ
δ∗ the leading symbol of t is a function symbol and

occurs in the rules (i.e., fφ and g)

form, it is sufficient to consider such constants. For many modal logics, however,
more restricted forms of blocking are sufficient to guarantee termination. The
question is how these restrictions can be checked in our setting.

Common restricted forms of blocking are equality (or subset) predecessor
blocking, equality (or subset) ancestor blocking, anywhere blocking, dynamic
blocking, pair-wise blocking and pattern-based blocking (c.f. e.g. [2, 12]). These
can be emulated by imposing restrictions on the application of the (ub) rule and
using appropriate search strategies [15, 16, 14]. Table 1 gives examples of some
restrictions that may sensibly be imposed on the (ub)-rule in tableau systems
without congruence closure. Restricting the application of the (ub)-rule by the
ancestor condition is what is known as sound ancestor blocking, restricting it by
both the ancestor and the equality conditions is what is known as sound ancestor
equality blocking [15]. In this way each combination of conditions in the table
defines a blocking rule. The (ub-noS)-rule excludes the terms in S (a fixed, finite
set of terms) from involvement in any blocking steps. If S is taken to be the set
of terms occurring in the initially given set of tableau formulae, then blocking
is applied only to terms created during the inference process. An alternative
way of achieving this is to use the (ub-δ∗)-rule. If this rule is applied eagerly
immediately after the application of a witness-creating rule, then this emulates
the use of the (δ∗)-rule of [7]. E.g., the (δ∗)-version of the (¬2)-rule is:

s : ¬2φ
R(s, t0), t0 : ∼φ . . . R(s, tn), tn : ∼φ R(s, f¬2φ(s)), f¬2φ(s) : ∼φ

,

where t0, . . . , tn are all the terms occurring in the current state.
The rules for tableau systems combined with congruence closure correspond-

ing to these restricted forms of blocking are appropriate restrictions of the (ub)-
rule in Figure 2. In all cases the adaptation is routine.

We only consider the adaptation for the case of ancestor blocking explicitly.
In our framework, the only terms that occur in the left-hand side N of a tableau
state N 8E are constants from K . The syntactical subterm test must therefore
be replaced by checking whether some terms represented by these constants are
subterms of each other. The following lemma shows how this property can be
tested efficiently. We assume that the Deduction rule and Collapse rule have

17

been applied exhaustively, so that E is left-reduced (that is, no left-hand side of
a rewrite rule is a subterm of the left-hand side of another rewrite rule); moreover
we know that E is terminating by construction.

Lemma 11. Let E be a set of C- and D-rules that is terminating and left-
reduced. Let GE = (V, E) be a directed graph, such that the vertex set V equals K ,
and such that there is an edge from c to c′ in E whenever E contains a D-rule
h(. . . , c′, . . .) → c or a C-rule c′ → c. Let cs and ct be two distinct constants
in K in E-normal form. Then, the following two properties are equivalent:

(i) There exist terms s and t such that s is a proper subterm of t, and cs and ct
are the E-normal forms of s and t.

(ii) cs is reachable from ct in GE.

Proof. First we note that the termination of E implies that every term has an E-
normal form and that left-reducedness implies that this normal form is unique.
For the “only if” part assume that s is a proper subterm of t = t[s]. Since
s→∗E cs and t[s]→∗E ct, we know that there is a rewrite derivation ct ↔∗E t[cs].
Without loss of generality, we assume that this derivation contains no trivial
back-and-forth steps of the form u ←E v →E u. Since ct is an E-normal form,
the derivation can only start with a ←E-step, and since E is left-reduced, any
further step must also be a ←E-step (otherwise there would be either a trivial
back-and-forth step or a contradiction to left-reducedness). Hence ct ←∗E t[cs]
and each step in this derivation has the form u[c] ←E u[h(. . . , c′, . . .)] for a D-
rule h(. . . , c′, . . .) → c or u[c] ←E u[c′] for a C-rule c′ → c. From the definition
of GE it is obvious that cs is reachable from ct.

For the “if” part assume that cs is reachable from ct in GE . If is clear that
for every edge from c to c′ in E there is a term u[c′] that has c′ as a subterm
and satisfies u[c′]→E c. By induction, it follows that for every (possibly empty)
path in GE from c to c′ there is a term v[c′] that has c′ as a subterm and satisfies
v[c′]→∗E c. Hence there is a term v[cs] such that v[cs]→∗E ct. Since cs is different
from ct, this derivation cannot be empty. Moreover, the derivation cannot use
D-rules only, since otherwise v[cs] = cs →+

E ct, contradicting the fact that cs is
an E-normal form. So the derivation must use at least one C-rule, which implies
that cs occurs in v[cs] below the top. Choose s = cs and t = v[cs], then cs and
ct are the E-normal forms of s and t, and s is a proper subterm of t as desired.

The adapted ancestor blocking rule is:

(ub-ancestor)
N 8 E

N, cs ≈ ct 8 E N, cs 6≈ ct 8 E

provided cs and ct are distinct constants from K in E-normal form; N does
not contain an inequation cs 6≈ ct; and cs is reachable from ct in GE .

Computing the set of all reachable vertices in a directed graph for some given
initial node can be done in linear time, for instance by using breadth-first search.
To find an arbitrary pair cs, ct that satisfies all the side conditions of the ancestor

18

blocking rule, we could naively repeat breadth-first search for each potential
initial node and test the remaining properties for every pair until we find a pair
that satisfies all properties. This gives a quadratic time algorithm.

Lemma 11 shows that every pair of terms s, t such that s is a subterm of t cor-
responds to a pair of constants cs, ct in E-normal form such that cs is reachable
from ct in GE , and vice versa. This correspondence, however, is not one-to-one.
In general, several pairs of terms are mapped to the same pair of constants, so
that the number of constant pairs that could be considered in a tableau deriva-
tion is usually smaller than the number of term pairs.

We note that for the logic K(tr,dp) it would not make sense to use prede-
cessor blocking.

7 Conclusion

This paper has presented an abstract semantic tableau system with abstract
ways of handling both blocking and equality. The focus has been on showing
how the abstract congruence closure system of [3] can be combined with a se-
mantic tableau system for a modal logic. In contrast to earlier work, we use
a “white box” integration, so that the abstract congruence closure is not only
used to check entailed equalities, but also to normalize tableau formulae, so that
logically equivalent formulae are eliminated. The particular modal tableau sys-
tem was chosen to illustrate the most important ideas of integrating congruence
closure so that the integration can be extended to other tableau systems for
other modal, description, and hybrid logics. We believe the case study is gen-
eral enough to work out how to combine congruence closure with Smullyan-type
tableau rules for first-order logic, or incorporate it into bottom-up model genera-
tion and hypertableau methods. The ideas are also applicable in tableau systems
obtained in the tableau synthesis framework of [21]. The only case that we have
not considered is tableau rules with inequalities in premise position; for first-
order representable logics this is without loss of generality, because equivalent
tableau systems always exist without such occurrences. It remains to generalise
the proofs for all these cases, which will be future work.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

3. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. J. Automat.
Reason., 31(2):129–168, 2003.

4. P. Baumgartner and R. A. Schmidt. Blocking and other enhancements for bottom-
up model generation methods. In Proc. IJCAR’06, LNAI 4130, pp. 125–139.
Springer, 2006.

5. B. Beckert. Semantic tableaux with equality. J. Logic Comput., 7(1):39–58, 1997.

19

6. T. Bolander and P. Blackburn. Termination for hybrid tableaus. J. Logic Comput.,
17(3):517–554, 2007.

7. F. Bry and R. Manthey. Proving finite satisfiability of deductive databases. In
Proc. CSL’87, LNCS 329, pp. 44–55. Springer, 1988.

8. A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi. In
J. A. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning, pp.
611–706. Elsevier, 2001.

9. M. Giese. Superposition-based equality handling for analytic tableaux. J. Automat.
Reason., 38(1-3):127–153, 2007.

10. R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino,
D. Gabbay, R. Hähnle, and J. Posegga, eds., Handbook of Tableau Methods, pp.
297–396. Kluwer, 1999.

11. M. Kaminski. Incremental Decision Procedures for Modal Logics with Nominals
and Eventualities. PhD thesis, Universität des Saarlandes, Germany, 2012.

12. M. Kaminski and G. Smolka. Hybrid tableaux for the difference modality. Electr.
Notes Theoret. Comput. Sci., 231:241–257, 2009.

13. T. Käufl and N. Zabel. Cooperation of decision procedures in a tableau-based
theorem prover. Revue d’Intelligence Artificielle, 4(3):99–126, 1990.

14. M. Khodadadi. Exploration of Variations of Unrestricted Blocking for Description
Logics. PhD thesis, The University of Manchester, UK, 2015.

15. M. Khodadadi, R. A. Schmidt, and D. Tishkovsky. An abstract tableau calculus
for the description logic SHOI using unrestricted blocking and rewriting. In Proc.
DL’12, CEUR Workshop Proc. 846. CEUR-WS.org, 2012.

16. M. Khodadadi, R. A. Schmidt, and D. Tishkovsky. A refined tableau calculus with
controlled blocking for the description logic SHOI. In Proc. TABLEAUX’13,
LNCS 8123, pp. 188–202. Springer, 2013.

17. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356–364, 1980.

18. R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Inform.
and Computat., 205(4):557–580, 2007.

19. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

20. R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In Proc. ISWC’07 + ASWC’07, LNCS 4825, pp. 438–451.
Springer, 2007.

21. R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Logical
Methods in Comput. Sci., 7(2):1–32, 2011.

22. R. A. Schmidt and D. Tishkovsky. Using tableau to decide description logics with
full role negation and identity. ACM Trans. Comput. Log., 15(1), 2014.

23. D. Tishkovsky and R. A. Schmidt. Refinement in the tableau synthesis framework,
2013. arXiv e-Print 1305.3131v1 [cs.LO].

24. D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. The tableau prover generator
MetTeL2. In Proc. JELIA’12, LNCS 7519, pp. 492–495. Springer, 2012.

20

A An Example

As an example to illustrate the difference in behaviour of the different versions of
the tableau systems we consider the satisfiability of 3> ∧ 23p in the logic K4.
The following are derivations in the tableau systems Tab and Tab(ub), without
and with unrestricted blocking.

1. a : 3>
Without blocking:

2. a : 23p

3. R(a, f3>(a))

4. f3>(a) : 3p

5. R(f3>(a), f3p(f3>(a)))

6. f3p(f3>(a)) : p

7. R(a, f3p(f3>(a)))

8. f3p(f3>(a)) : 3p

9. R(f3p(f3>(a)), f3p(f3p(f3>(a)),3p)

10. f3p(f3p(f3>(a))) : p

. . .

1. a : 3>
With blocking:

2. a : 23p

3. R(a, f3>(a))

4. f3>(a) : 3p

5. f3>(a) ≈ a
6. R(a, a)

7. a : 3p

8. f3p(a) : p

9. R(a, f3p(a))

10. f3p(a) ≈ a
11. a : p

12. R(a, a)

The corresponding derivation using the tableau system Tab(ub,cc) with un-
restricted blocking and congruence closure is:

1. c0 : 3> 1′. a→ c0 given

2. c0 : 23p given

3. R(c0, c1) 3′. f3>(c0)→ c1 1,¬2
4. c1 : 3p 2, 3,2

5. c1 ≈ c0 5′. c1 → c0 ub & Orientation

6. R(c0, c0) 3, 5′,Simplification

7. c0 : 3p 4, 5′,Simplification

8. c2 : p 8′. f3p(c0)→ c2 7,¬2
9. R(c0, c2) 7,¬2

10. c2 ≈ c0 10′. c2 → c0 ub & Orientation

11. c0 : p 8, 10′,Simplification

12. R(c0, c0) 9, 10′,Simplification

21

Using ancestor blocking the derivation looks like this. The tuples in the right-
most column define the graph GE , i.e., denotes the edge relation in GE .

1. c0 : 3> 1′. a→ c0 given

2. c0 : 23p given

3. R(c0, c1) 3′. f3>(c0)→ c1 1,¬2 c1 c0

4. c1 : 3p 2, 3,2

5. c1 ≈ c0 5′. c1 → c0 ub-ancestor & Orientation c0 c1

6. R(c0, c0) 3, 5′,Simplification

7. c0 : 3p 4, 5′,Simplification

8. c2 : p 8′. f3p(c0)→ c2 7,¬2 c2 c0

9. R(c0, c2) 7,¬2
10. c2 ≈ c0 10′. c2 → c0 ub-ancestor & Orientation c0 c2

11. c0 : p 8, 10′,Simplification

12. R(c0, c0) 9, 10′,Simplification

B Abstract Congruence Closure

Figure 4 gives the transition rules of the abstract congruence closure framework
of [3]. N denotes a set of equations and E denotes a set of D- and C-rules.

N [t], E

N [c], E ∪ {t→ c}Extension

provided c is new and t→ c is a D-rule

N [t], E ∪ {t→ c}
N [c], E ∪ {t→ c}Simplification

N ∪ {t ≈ c}, E
N, E ∪ {t→ c}Orientation

provided t �T c and c is an introduced constant

N ∪ {t ≈ t}, E
N, E

Deletion

N, E ∪ {t→ c, t→ d}
N ∪ {c ≈ d}, E ∪ {t→ d}Deduction

N, E ∪ {s[c]→ c′, c→ d}
N, E ∪ {s[d]→ c′, c→ d}Collapse

provided c is a proper subterm of s

N, E ∪ {t→ c, c→ d}
N, E ∪ {t→ d, c→ d}Composition (optional)

Fig. 4. Abstract Congruence Closure System.

22

