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ABSTRACT 
Mobile devices have become an integral part of our routine 

activities. Some of the activities involve the storage or access of 

sensitive data (e.g. on-line banking, paperless prescription 

services, etc.). These mobile electronic services (e-Services) 

typically require a method to securely identify and authenticate a 

claimed identity. Currently, e-Services typically use a knowledge-

based authentication method by demonstrating the knowledge of a 

secret (e.g. password), but it is vulnerable to a number of security 

attacks, e.g. shoulder spoofing and brute force attacks. To thwart 

the attacks and to make the authentication method more secure, 

this paper describes our efforts in investigating the benefits of 

integrating touch dynamics biometrics, into a PIN-based 

authentication method. It reports the collection of a 

comprehensive reference dataset from 150 subjects, the extraction 

of feature data from the dataset, and the classifications and the use 

of the feature data to identify a user. Experimental results show 

that, even when the PIN is exposed, 9 out of 10 impersonation 

attempts can be successfully detected. 

Categories and Subject Descriptors 
D.4.6 [Operating System and Protection]: Access controls, 

authentication; H.5.2 [Information Interfaces and 

Presentation]: Input devices and strategies 

General Terms 
Security, Human Factors, Verification. 

Keywords 
Touch Dynamics, Mobile Authentication, Keystroke Dynamics, 

Benchmark Dataset, Behavioral Biometrics. 

1. INTRODUCTION 
The use of mobile devices in handling our daily activities or 

carrying out daily tasks is becoming very popular. In the last 

decade, mobile devices have outgrown its initial usage as a form 

of voice and text communications to that of more advanced 

applications, such as web browsing, m-commerce and e-mail 

communications. This is particularly the case with the rapid 

growth and widespread use of smartphones and digital tablets. 

The processing capability of these devices has advanced up to the 

point that most digital activities that can be accomplished on 

workstations or laptops can also be performed on these portable 

devices. Routine activities, such as personal and corporate e-mail 

communications, on-line banking transactions, accessing 

paperless prescriptions services, route navigation, etc. can be 

carried out ubiquitously with these devices. 

The increased usage and reliance of these devices also imply that 

they increasingly handle, manage and process private and 

sensitive data. Therefore, more stringent security services (i.e. 

security measures) should be embedded in mobile devices. One of 

these services is user authentication, i.e. how to securely verify a 

claimed identity. Authentication is the first-line of defense in any 

computer system or device as it is a pre-requisite for several other 

security services such as authorization and accountability. In a 

mobile device context, authentication is typically achieved via a 

knowledge-based authentication method, and with this method, a 

user proves their identity by demonstrating the knowledge of a 

secret. This secret could be a PIN (personal identification 

number), a password, a shared secret (which is similar to 

password, but with higher entropy) or a private key corresponding 

to a public key certified in a digital certificate. The use of secrets 

is vulnerable to a number of security attacks, e.g. theft of a mobile 

device, shoulder spoofing and brute force attacks. To thwart the 

attacks or to make the attacks harder to succeed, we have been 

working on integrating biometric-based with knowledge-based 

authentication methods. 

Prior to the emergence of touch dynamics, keystroke dynamics 

(the interaction between human input and physical keyboard) on 

either workstation [3, 25] or a web-based environment [6, 31] 

have been the major topic of research. A comprehensive review of 

keystroke dynamics [33] reveals that, since 2007, there has been 

growing efforts on examining the possibility of applying the 

concept of keystroke dynamics in mobile platforms. Earlier work 

was mainly focused on mobile devices with physical keypads [4, 

7, 13, 21] and early generation smartphones [35], but recently, the 

work has been geared towards touchscreen devices [29, 27, 8]. 

Touch dynamics refers to the process of measuring and assessing 

human touch rhythm on mobile devices, such as digital tablets, 

smartphones, or touchscreen panels. When a human interacts with 

a mobile device, a digital signature is generated. The signatures 

generated from interactions by different individuals are believed 

to be rich in discriminative properties, which are fairly unique to 

each individual and hold potential as personal identifiers.  

This technology can be integrated with existing knowledge-based 

authentication to form a so-called multi-factor authentication 

mechanism, which strengthens the security of mobile device. A 

touch dynamics based authentication method can be implemented 

 

 



 

 

by employing existing sensors embedded in a mobile device 

(without the need for any additional hardware), making the 

implementation comparatively cheaper than other biometrics 

systems. The availability of higher resolution sensors in recent 

mobile devices provide added opportunities to the development of 

touch dynamics biometrics by allowing the extraction of more 

discriminative feature data types. 

Mobile devices usually operate in an on-the-go fashion, so their 

lighting and background noises may change continuously. In this 

regard, the acquisition of touch dynamics biometrics feature is 

less affected by these factors than iris (e.g. undesirable in low 

light condition) or voice biometrics (e.g. susceptible to 

background noise). Apart from that, it requires little intervention 

by the user as it is an integral part of a user’s mobile input 

activities. For these reasons, a touch dynamics biometrics system 

may be more acceptable by the general public than other 

biometrics systems. 

As touchscreen devices only came along not long ago, there are 

still limited benchmark datasets publically available; so far, we 

are only able to find three such datasets, but only one of the 

datasets uses PIN based input and none is conducted on a 

widescreen digital tablet (to be discussed in Section 6.1). The 

creation and collection of live data is a time and resource 

consuming process, and this may be the reason for the lack of 

open datasets [10]. However, the research, design and 

performance evaluation of touch dynamic biometrics systems 

require the availability of such benchmark datasets. 

This paper reports our effort on the creation and use of a touch 

dynamics dataset to investigate the benefits of integrating touch 

dynamics with a PIN-based authentication method. It reports the 

collection of a comprehensive reference dataset consisted of two 

sets of input PINs collected from 150 subjects, the extractions of 

feature data from the dataset, and these feature data are timing, 

finger touch size and pressure feature data. Thirdly, it uses three 

light-weight algorithms to classifier these feature data types and 

used them to identify a user. Experimental results show that, with 

the integration of touch dynamics biometrics, even when the PIN 

is exposed, 9 out of 10 impersonation attempts can be successfully 

detected. 

The structure of this paper is as follows. Next section explains 

experimental setup and the methods and procedures used in the 

data acquisition phase. Section 3 describes the properties of the 

dataset. Section 4 describes potential feature data that can be 

extracted from the dataset and, for proof-of-concept, we illustrate 

how the captured feature data may be used for authentication in 

the mobile context (Section 5). Section 6 compares our dataset 

with other public datasets and critical analyses related work in the 

context. Finally, Section 7 concludes the paper and outlines our 

future work. 

2. EXPERIMENT SETUP 
Experiments should be conducted with well-defined protocols and 

procedures, as, in this case, we can minimize external factors from 

inflicting noise into the data collected [15]. In this section, we 

discuss how data collection device, environment and intervals are 

determined. 

2.1 Data Collection Device 
As mentioned above, there are different types of mobile devices, 

e.g. featured phones, smartphones, digital tablets and laptops. 

Most research works conducted in touch dynamics employed 

various mobile phones. In comparison with mobile phones, digital 

tablets have a relatively larger screen resolution, which means that 

a higher subject input variation, and therefore a better feature 

discrimination, can be captured [27]. For this reason, we have 

chosen to use a digital tablet as our data collection device. The 

device is a commercial off-the-shelf Samsung Galaxy Tab 10.1 

(GT-P7510) digital tablet. It has a 10.1” widescreen, and is 

powered by 1GHz dual-core processor and equipped with a 1-GB 

RAM. The entire data collection process was performed using this 

tablet. The justification for using a predefined device, rather than 

subject specific devices, was to remove uncontrolled variables 

such as subject preferences, program compatibility and 

functionality differences. In this way, the results obtained from 

the experiment can better reflect the discriminative power of 

touch dynamics feature data and the classification algorithm used. 

The device runs under Android 4.0.4 (Ice Cream Sandwich) and a 

data collection tool that was developed using Java and Android 

API Level 15. Majority of research works on touch dynamics are 

carried out on the Android platform. This is because Android is an 

open source mobile operating system, which gives application 

developers a greater control and customization for their 

application developments, and researchers a cheaper option to 

conduct their experiments. Figure 1 shows a screen capture of the 

data collection tool. 

2.2 Data Collection Environments 
There are three main environments in which data may be 

collected: (i) where ever subjects are while they carry out their 

activities as usual; (ii) under a controlled laboratory environment 

in a fixed location; or (iii) in multiple fixed locations. The first 

option is expensive, as due to the ubiquitous nature of mobile 

devices, subjects are likely to be on-the-move and following the 

subjects while collecting the data may not be convenient and 

could be costly. The second option is least costly in terms of 

setting up and running the experiments, but the data collected may 

not give a true reflection of real world scenarios. To balance 

costs/feasibility with real-life situations, we have chosen to use 

the third option, i.e. we let subjects to choose their preferred 

locations where their natural touch dynamics are extracted. The 

locations used included offices, homes, inside cars, classrooms, 

café, and public areas. 

2.3 Collection Method 
Data should be collected when subjects are in a stable state, i.e. 

after they are familiar with the device input facility and the data 

collection procedure, as, otherwise, data collected may not 

properly capture subjects’ input features. Improperly captured 

data may increase false positive and false negative rates when 

they are used to authenticate the subjects. According to [24], input 

patterns, styles or speeds can vary and stabilize over time. To 

ensure data are collected after the patterns, styles and speeds are 

Figure 1. Sample data collection screen 

 



 

 

stabilized, and to reduce the effect of subjects’ unfamiliarity with 

the input facility and procedure, one of the two approaches may 

be used. The first one is to divide a data collection session into 

several sub-sessions that are separated by selected time frame, e.g. 

4 sub-sessions each with 1 week apart, and the data collected in 

multiple sub-sessions are cumulatively merged into a single set. 

This approach provides a good level of accuracy, but may suffer 

from a higher dropout rate [19], as we could not expect 

participants be obliged with multiple session time commitment 

especially on a voluntary basis. As a result, the sample size of the 

dataset may be reduced. The second approach is to collect data in 

a single session, but subjects are asked to familiarize with the 

input facility and procedure as many times as necessary before 

collecting their data. This approach is commonly used in 

experiments reported in the literature [5, 16, 18]. An entire data 

collection process takes an average of 15 to 20 minutes (in 

addition to time taken to familiarize the input device and 

procedure). In our experiments, we have taken approach two 

described above. 

3. DATASET 
This section describes the dataset in detail. It provides 

justifications in terms of how subjects are selected, what data have 

been collected and how it is stored and represented. 

3.1 Subject Size 
The subject size refers to the number of subjects from whom data 

are collected. Typically a subject size of greater than 100 subjects 

is regarded as a large subject size [33]. Using a larger subject size 

can provide more data to verify the scalability of a chosen 

classifier as mentioned in [7]. Most of the relevant works in the 

touch dynamics domain were carried out with a subject size 

smaller than this value. Only a handful published works [9, 29, 

34] uses a subject size greater than 100 subjects. However, in the 

latter group of works, the subjects involved were restricted to a 

certain population and the datasets were not made publically 

available for evaluation. To overcome these restrictions, we, at the 

time of this writing, have collected touch dynamics data from 150 

subjects. The dataset is shared in 3 different packages each 

consisted of an incremental size of 50 subjects. In this way, any 

researcher who may be interested in using the dataset has the 

option to conduct comparisons between different subject sizes 

within the same subject grouping. 

3.2 Subject Demography 
To reflect real world situations as much as possible, the 

demography of the subjects taking part in data collection should 

be as diverse as possible. In other words, people from different 

age groups, of different genders and with different device usage 

frequencies (this indirectly correlates with device familiarity) 

should be represented as much as possible. Unfortunately, more 

often than not, subjects recruited for experiments published in 

literature were confined to people within a research institute or 

academia. [17] is the only piece of work in literature we are able 

to locate, which involved the use of subjects from diverse 

population. Inspired by this work, we have made the best effort to 

reach out to the general public within our available resources. 

Table 1 summarized the demography of the subjects involved in 

our dataset. 

 

 

Table 1. Subject demography of our dataset 

Properties Details 

Subjects 150 

Population 

(groups) 

Academia 18  

Public 132 

Age (years) 

<20 28  

20-40 66 

>40 56 

Daily Usage 

Frequency 

Rare 49 

Average 32 

Often 69 

Gender 
Male 45  

Female 105 

Hand Preference 
Left-hand 14 

Right-hand 136 

3.3 Input Type 
PIN input has been the most widely used authentication method 

for mobile devices, so we first focused on a 4-digit numerical 

input (“5560”), and then a 16-digit numerical input 

(“1379666624680852”). The use of two different PIN lengths 

allows experimental evaluations of the effects of different input 

string lengths. These two predefined numbers were carefully 

chosen with the following key positioning combination strategies. 

 Apart: keys are separated by at least one key apart. 

 Repetition: reoccurrence of identical key. 

 Adjacent: keys located diagonally to each other. 

 Sequence: keys situated horizontally or vertically to each 

other. 

These positioning strategies were used to spread the variety of 

input strings. A graphical illustration of the approach is depicted 

in Figure 2.  

Predefining a universal input string across every subject offers a 

significant advantage of increasing the total number of 

impersonation samples available for our testing phase (Section 

5.2) without need for collecting additional data.  

3.4 Sample Size 
More complex data classification algorithms, such as neural 

networks and support vector machines, usually require the use of 

a large training sample size to achieve a significant performance. 

On the other hand, simpler algorithms such as k-nearest neighbor 

may work well on small sample input [13]. It is impractical to 

expect a large number of repeated inputs from subjects during the 

enrolment stage. Therefore, in this data collection process, 

subjects were only required to repeat each input string for 10 

Figure 2. Four different key positioning strategies 

 



 

 

consecutive times, resulting in 20 samples per subject (10 for 

short digit samples and 10 for long digit samples, respectively). In 

terms of error handling, any input mistake made by a subject was 

automatically discarded and the subject was prompted to repeat 

that particular input sample instance, which is a common practice 

as explained in the literature [4, 20, 26].  

3.5 Raw Feature Representation 
A number of application programming interfaces (APIs) have 

been used to capture the subjects’ feature data. In detail, each 

single screen touch event (finger touching down or lifting up from 

the touchscreen) is detected by the onTouchListener API. The 

timestamps of each key press and release were logged by invoking 

the nanoTime() API. This API returns the most precise timer 

available on the device’s system (in nanoseconds). Usually, a 

human’s tapping speed is much lower than this pace, this value 

can be normalized to the desired resolution upon feature 

extraction. We also use the API functions under the MotionEvent 

class, getSize() and getPressure(), to retrieve the values of finger 

circumference and pressure, respectively, when a subject touches 

the screen. These functions return a normalized decimal value 

between 0 and 1. However, we have noticed that getPressure() 

always return a value of 1.0. We have tried to resolve this issue 

but no success. However, as some other devices also encounter 

the same problem, we anticipate that this problem will be resolved 

by the mobile operating system’s provider in their subsequent API 

version update. Each completed touch event on a key generates 

two timestamps (𝑡𝑝𝑟𝑒𝑠𝑠  and 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒), a finger touch size (𝑝𝑠) and 

a pressure value (𝑝𝑣). These events play a major part in the 

feature extraction and template generation process. For each 

repeated input sample (𝑟) of raw touch dynamics data, feature 

data and the particular key press (𝑘𝑝𝑟𝑒𝑠𝑠) and key release 

(𝑘𝑟𝑒𝑙𝑒𝑎𝑠𝑒) were recorded and stored in a separate file for each 

subject using the format shown below: 

{𝑟}, {𝑘𝑝𝑟𝑒𝑠𝑠}{𝑡𝑝𝑟𝑒𝑠𝑠}{𝑘𝑟𝑒𝑙𝑒𝑎𝑠𝑒}{𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒}{𝑝𝑠}{𝑝𝑣} 

4. METHODOLOGY 

4.1 Feature Extraction 
Two types of features are captured. These are timing data and 

finger touch size (𝑝𝑠), both are captured during subject 

interactions with the input keys. The acquisition of 𝑝𝑠 is straight 

forward, obtained directly from the return value of an Android 

API function without further customization. However, for timing 

data acquisition some manipulation to the touch event timestamps 

is required. The timing data extracted can be further divided into 

two categories: (1) Dwell Time (𝐷𝑇), i.e. the time duration for the 

touch action of the same key (also known as interval, press or 

hold time); (2) Flight Time (𝐹𝑇), i.e. the time interval between the 

touch actions on two successive keys (also known as latency). As 

shown in Figure 3, there are four variants of 𝐹𝑇. 

It is interesting to point out that, according to [30], there is a 

possibility that 𝐹𝑇1 may have a negative value. This case occurs 

whenever a subject presses the next key before releasing the 

previous one. This case occur when using a computer keyboard, 

but it is unlikely to occur on touchscreen inputs due to the 

physical and geometrical size of on-screen keys. It is also much 

less likely for a subject to use multiple fingers simultaneously 

when providing their inputs. As a result, the chances of pressing 

the next key before releasing the previous one is significantly 

reduced or in some cases eliminated. 

4.2 Template Generation 
Template generation is a process by which a subject’s touch 

feature samples are combined and transformed into a compact yet 

representative structure. A subject’s template should uniquely 

capture the subject’s touch feature. For each subject, we use six 

feature data types, and, for each feature data type, a template data 

is generated. This template data comprise of two items, a mean 

(𝜇) value and a standard deviation (𝜎) value. The equations below 

show how the template data for a feature data type, 𝐷𝑇, is 

calculated. For example, given a training sample set of 𝑛 number 

of 𝐷𝑇, the template data for 𝐷𝑇 is calculated as: 

𝜇 =  
1

𝑛
×∑𝐷𝑇𝑖

𝑛

𝑖=1

 

𝜎 =  √
1

𝑛
× (∑𝐷𝑇𝑖

2

𝑛

𝑖=1

−
(∑ 𝐷𝑇𝑖

𝑛
𝑖=1 )

2

𝑛
) 

The same procedure and computation are applicable to other 

feature data types. 

4.3 Classifier 
We use three matching functions to, respectively, compute and 

compare the likeliness of a test sample against a reference 

template feature. The likeliness, which is measured in terms of a 

similarity score (𝑠), is computed by feeding the test sample value 

(𝜏) of a feature vector element of position (𝑖) and the value of 𝜇 

and 𝜎 from the reference template into each function, i.e. 𝑠𝑖 =
𝑓(𝜏𝑖 , 𝜇𝑖 , 𝜎𝑖). The three matching functions used are Gaussian 

Estimation (GE), Z-Score (ZS), and Standard Deviation Drift 

(SD), as given below: 

𝑓𝐺𝐸(𝜏, 𝜇, 𝜎) = 𝑒
−
(𝜏−𝜇)2

2𝜎2  

𝑓𝑍𝑆(𝜏, 𝜇, 𝜎) =
|𝜏 − 𝜇|

𝜎
 

𝑓𝑆𝐷(𝜏, 𝜇, 𝜎) = 𝑒
−
|𝜏−𝜇|
𝜎  

We calculate a similarity score for each individual element within 

the intended feature vector. Then we compare these scores against 

an empirical threshold (𝜑) to make a partial decision (𝐷𝑖) for each 

feature data element of position (𝑖) in that feature vector, i.e.: 

𝐷𝑖 = {
0, 𝑠𝑖 ≤ 𝜑
1, 𝑠𝑖 > 𝜑

 

Figure 3. Types of timing feature data extracted 

 



 

 

Here, 1 and 0, respectively, indicate acceptance and rejection. A 

final decision is then made to determine if a test sample belongs to 

the reference template, and this is done by using the formula: 

𝐷𝑓𝑖𝑛𝑎𝑙 =

{
 

 𝑎𝑐𝑐𝑒𝑝𝑡,
∑ 𝐷𝑖
𝑛
𝑖=1

𝑛
≥ 0.5

𝑟𝑒𝑗𝑒𝑐𝑡,
∑ 𝐷𝑖
𝑛
𝑖=1

𝑛
< 0.5

 

where 𝑛 refers to the total elements in the feature vector 

considered, and 𝐷𝑓𝑖𝑛𝑎𝑙  is the final acceptance or rejection decision 

of a given test sample. 

5. PERFORMANCE ANALYSIS 

5.1 Evaluation Criteria 
Two main metrics are used to measure the accuracy level of a 

biometrics authentication system. These are the False Rejection 

Rate (FRR) and False Acceptance Rate (FAR). FRR is the 

percentage ratio of the number of legitimate subjects who are 

falsely rejected against the total number of legitimate subjects. 

FAR is the percentage ratio of the number of illegitimate subjects 

who are falsely accepted against the total number of illegitimate 

subjects. There is another performance metric, called Equal Error 

Rate (EER), which is derived from FRR and FAR. EER is 

obtained by plotting a graph for each of FRR and FAR against a 

matching threshold and the interception point between the two 

graphs is the EER value. Typically lower values of FRR and FAR 

will lead to lower value of EER, in turn, indicates a better 

accuracy performance of a biometrics authentication method. EER 

is commonly used to measure and compare the accuracies of 

different biometrics systems. 

5.2 Training and Performance Testing Setup 
For each subject recruited, 2 set of 10 input samples were 

collected; one with 4-digit input and the other with 16-digit input. 

For each input length category, 7 out of 10 were used for training 

(i.e. for subject’s template generation) while the remaining 3 for 

testing. To reduce intra-session variability effect, the 7 samples 

are selected randomly from the 10-sample set. Samples used for 

training are not reused for testing. 

In the FAR test, a subject’s template was compared against all the 

other subjects’ testing samples. This process was reiterated for all 

the subjects’ templates. As there were a total of 150 subjects 

recruited and each subject has 3 testing samples, the total number 

of illegitimate attempts conducted was  150 × (150 − 1) ×  3 =
67,050.  

In the FRR test, a subject’s template was compared against the 

subject’s own testing samples. As there were a total of 150 

subjects and each subject has 3 testing samples, the total number 

of legitimate attempts was 150 × 3 = 450. 

5.3 Results Discussion 

5.3.1 Feature Data Types 
Experiments have been conducted to investigate the accuracy 

performances (measured in terms of EER) of different feature data 

types. As shown in Figure 4, the 𝑝𝑠 feature outperforms all timing 

related feature data types. This may be due to the fact that 

𝑝𝑠 could capture more properties from a subjects touch pattern. 

For example, the amount of force used, finger arrangement, touch 

angle and finger thickness. The mixture of these properties 

establishes a distinctive pattern and was found to be greatly 

unique among different subjects. 

As for timing related feature data types, the accuracy performance 

of any variant of 𝐹𝑇 is slightly better than 𝐷𝑇. This implies that 

the time taken for subject’s finger to traverse from one key to 

another has more discriminative power than how long a key is 

hold down. Throughout the data collection process, we observed 

that there existed different input key combinations between 

different subjects even when the input strings entered are 

identical. For instance, 55_60, 5_56_0, or 556_0, where the 

underscore symbol represents minor pause or delay between 

successive key pairs. The information inhabits within the natural 

short pauses between different groupings of input keys may have 

increased the uniqueness of 𝐹𝑇. 

Although 𝑝𝑠 proved to be the best feature data type in terms of 

EER, its EER performance of 17.31% is still rather unsatisfactory. 

To improve this performance, we have combined 𝑝𝑠 with 

different combinations of timing feature data types. So, in a given 

authentication instance, multiple feature data types are used, and 

the final decision is made by combining individual decisions 

made on each chosen feature data type using the AND voting rule. 

As a result, the accuracy performance has been markedly 

improved. As shown by the results in Table 2, the more feature 

data types used, the lower the EER value, the better the accuracy 

performance. The lowest EER value is achieved when all six 

feature data types are used. In this case, the EER value is 8.50%, 

which is more than doubled the accuracy performance when 𝑝𝑠 is 

used alone. 

Table 2. Accuracy performance comparison between 

combinations of feature data type 

Feature FAR FRR EER 

𝐷𝑇 52.39 2.67 27.53 

𝐹𝑇1 44.37 8.00 26.18 

𝐹𝑇2 40.97 8.67 24.82 

𝐹𝑇3 40.97 6.00 23.48 

𝐹𝑇4 37.71 6.67 22.19 

𝑃𝑆 16.61 18.00 17.31 

𝐹𝑇4, 𝑃𝑆 16.69 5.33 11.01 

𝐹𝑇3, 𝐹𝑇4, 𝑃𝑆 15.84 5.33 10.59 

𝐹𝑇2, 𝐹𝑇3, 𝐹𝑇4, 𝑃𝑆 15.39 6.00 10.69 

𝐹𝑇1, 𝐹𝑇2, 𝐹𝑇3, 𝐹𝑇4, 𝑃𝑆 14.76 6.00 10.38 

𝐷𝑇, 𝐹𝑇1, 𝐹𝑇2, 𝐹𝑇3, 𝐹𝑇4, 𝑃𝑆 8.99 8.00 8.50 
    

5.3.2 Input String Lengths 
Input string lengths may also affect the accuracy performance of a 

biometrics authentication system. To investigate the effect, we 

have calculated the EER values using the three matching 

functions and two sets of digits with respective lengths of 4 and 

16 digits. The 4-digit set represents a short input string, while the 

16-digit set represents a long input string. These results are plotted 

Figure 4. Accuracy performances of different feature data 

types 

 



 

 

in Figure 5. As can be seen from the figure, a longer input string 

leads to a lower EER value, which indicates a better accuracy 

performance. This may be explained as follows. When the input 

strings length increases, feature data samples within each input 

string, and the number of different chunking combinations 

(breaking up longer inputs into smaller subsets for easier 

memorization [23]) also increase, and so is the ability to better 

capture a subject’s touch pattern. In addition, the number of 

illegitimate feature data samples required to match that of a 

legitimate reference template also increases. Therefore, the longer 

the input strings the better accuracy performance one could 

achieve from a biometrics authentication system.  

5.3.3 Subject Size 
We have also investigated the effects of subject sizes on the EER 

values. This experiment is based on three matching functions, GE, 

ZS, and SD. Two set of datasets are investigated; one has 50 

subjects and the other 150 subjects. For each subject set, we used 

two input digits lengths, 4-digit and 16-digit. The experimental 

results are shown in Table 3. From the table, we can observe that 

when the subject size of 50 is used, the average EER value 

decreases slightly from 7.93 to 6.81 as the input string length 

increases from 4-digits to 16-digits. However, when the subject 

size is 150, this average value decreases considerably from 8.92 to 

5.59 as the input string length increases from 4-digits to 16-digits. 

This inconsistency is likely to be caused by the lower 

discriminative ability of shorter input string length (discussed in 

the previous section). Ideally, an input string tested on larger 

subject size should achieve lower or at least comparable error 

value than when tested on smaller subject size. As shown by the 

results in the table, when the input string length is 16-digits, the 

differences in the EER values produced by different matching 

functions remains fairly constant when the subject size goes up 

from 50 to 150. This indicates that the 16-digits input string can 

provide us with more consistent experimental results.  

Table 3. EER values vs subject sizes 

Classifier 
50 Subjects 150 Subjects 

4-Digit 16-Digit 4-Digit 16-Digit 

GE 7.71 6.27 8.55 5.49 

ZS 8.51 6.70 9.30 5.54 

SD 7.57 7.45 8.92 5.74 

Average EER  7.93 6.81 8.92 5.59 
     

5.3.4 Classifier Performance 
The results in Table 4 also indicate the accuracy performance of 

the three matching functions. The EER values produced by all 

three functions are comparable. When the subject size is 150 and 

the input string length is 16-digits, the differences in the EER 

values are less than 0.25%. Gaussian Estimator (GE) produces the 

lowest EER value, i.e. 8.55% when the input string is 4 digits long 

and 5.49% when the input string is 16 digits long, both under the 

case where 150 subjects were used. This says that, even if the 

input string is known to the impersonator, 9 out of 10 

impersonation attempts can be successfully identified. As the 

input string length increases, the success rate in identifying 

impersonation attempts also increases.  These results are 

encouraging. They indicate the potential of using touch dynamics 

with knowledge-based authentication to heighten the security of 

user authentication in mobile device/service access. In addition, 

touch dynamics biometrics is cost-effective, as it does not require 

the use of additional hardware, and usable, as it is already part of 

the mobile device interface. So, it can be an attractive building 

block for a more effective authentication solution not only in a 

physical, but also a virtual environment.  

Table 4. Performance between classifiers on different input 

lengths 

Classifier 
4 Digits 16 Digits 

FAR FRR EER FAR FRR EER 

GE 12.21 4.89 8.55 9.43 1.56 5.49 

ZS 15.27 3.33 9.30 8.64 2.44 5.54 

SD 8.95 8.89 8.92 10.36 1.11 5.74 

       

5.3.5 With and Without Touch Dynamics 
One potential application area of touch dynamics biometrics is to 

integrate it into an existing authentication system to extend it into 

a so-called multi-factor authentication system. In such a system, 

an impersonator, to successfully sneak through the authentication 

verification process, would have to produce an acceptable touch 

pattern, in addition to possessing the right login credential. 

Assume that a two-factor authentication system is used; one factor 

is PIN-based authentication and the other factor is touch dynamics 

authentication. As shown in Table 5, in the case where the PIN is 

exposed, the chances for an impersonator to be successfully 

authenticated is drastically reduced from 100% (if only PIN is 

used) to 9.43% (if both PIN and touch dynamics are used). 

However, the weakness of using the touch dynamics based 

authentication system is that there is a 1.56% increase in the 

chances of rejecting a legitimate subject incorrectly. 

Table 5. The comparison between FAR and FRR with the 

presence of touch dynamics 

Feature FAR FRR 

PIN 100 0 

PIN + Touch Dynamics 9.43 1.56 

6. RELATED WORK 

6.1 Public Dataset 
The data collection process conducted by [1] involved 51 subjects 

inputting a fixed password “rhu.university” on a virtual keyboard 

of a window touchscreen phone (Nokia Lumia 920). Subjects 

were required to attend 3 different sessions with an average of 5 

days between each of them. However, the actual data collection 

did not commence until the second session as the first was used as 

a practice session. A total of 15 samples were collected from each 

subject divided between the second and third session. Only the 

timing feature was captured in this dataset, whereas our dataset 

also captures finger touch size and pressure feature. 

 

 

Figure 5. The effects of the input string lengths on the 

EER values 



 

 

Table 6. Comparison of public datasets 

Dataset Subject Population Sample Input Feature Setting Platform 

[1] 51 Restricted 15 “rhu.university” T Confined Phone 

[2] 42 Restricted 51 “.tie5Roanl” T,S,P Confined Phone 

[32] 100 Restricted 5 6 to 8 digits T,S,P Confined Phone 

This Paper 150 Diversified 10 “5560”, “1379666624680852” T,S,P Flexible Tablet 

Another related effort on collecting and sharing datasets 

publically was made by [2]. This work differs from ours in a 

number of ways. Firstly, the number of subjects involved is more 

than 3 times smaller than the number involved in our case. Also 

the entire subject populations were students, which is different 

from our case where the population consists of both members of 

the university and general public. In addition, different from our 

case where all the data were collected via the use of the same type 

of device, data collection in [2] was done via the use of two types 

of devices. 37 subjects provided their input on a Nexus 7 while 

the remaining 5 via the use of a LG Optimus L7 P700 

smartphone. The paper did not explain if two different device 

types would have any performance implications. To allow 

subjects’ sample data be used in EER estimations, the input string 

was predefined (“.tie5Roanl”), which is also the case in our data 

collection. Also, in this work, the touch events captured include 

not only the input string but also shift key (toggle between lower 

and uppercase characters) and keyboard switch key (toggle 

between characters and numerical keys). These secondary key 

events may capture valuable and distinctive information about a 

subject. Inspired by this idea, in addition to capturing touch events 

on digit input, we have also recorded the Enter key event (pressed 

upon completion of a PIN input) in our dataset. Also in this 

related work, most of the subjects provided their passwords for 30 

times each on 2 isolated sessions in a period of two weeks 

(duration in between was unknown). However, some invalid 

inputs were removed, so the dataset were unified to only 51 input 

samples per subject (instead of 60 from both sessions).  

[32] has reported a collection of dataset based on numerical 

inputs. In this data collection process, the device used was an 

early generation smartphone with a physical keypad running on 

Android 2.0.1 (Éclair) API level 6, which was released in 

December 2009. By contrast, we adopted a more recent high 

resolution digital tablet with a later version of a mobile operating 

system. Subjects were only required to provide 2 samples per 

session and 5 sessions were used with an interval of at least 1 

week apart for each session to eliminate intra-session typing 

variations. Different from our case where data were acquired in a 

nonrestrictive environment, their data were acquired in a rather 

confined environment (i.e. in a classroom). Subjects may feel 

uncomfortable in a confined environment and may cause subjects 

to provide their input unnaturally or inconsistently. This 

inconsistency may have negative impact to accuracy performance. 

Although the paper did not explicitly give the detail of the subject 

population, according to the age distribution data (i.e. a bias of up 

to 85% of the total subjects has the age of 25 or younger), we 

could infer that the subject population were likely to be centered 

on university students. This is different from our case, where our 

dataset were collected from a diversified population and with 

different age groups and backgrounds. Also in [32], subjects were 

allowed to freely choose a PIN, and most of the chosen PINs have 

a length of 4 to 8 digits long. However, the actual PIN selections 

by each subject were not recorded in the shared dataset. Also, in 

this dataset, raw finger touch size and pressure data have been 

recorded, and the timing feature was only recorded in a post 

processed format (duration and latency). In other words, raw 

timing values were not recorded. This missing information may 

hinder the usability of the dataset in a wider context. Finally, 

different from the usual practice, test samples collected for the 

FRR test were collected separately from those for FAR test. 10 

subjects are randomly chosen to act as impersonators. These 

impersonators were given the PINs of every other subjects and 

were asked to impersonate the subjects by providing 5 samples for 

each subject. This way may significantly reduce the number of 

impersonation test samples as compared to reusing the samples 

used for FAR test for FRR test. An overview of presently 

available public datasets is summarized in Table 6, where T, S 

and P indicate timing, finger touch size and pressure values, 

respectively. 

6.2 Performance Investigation 
Another stream of related work on touch dynamics biometrics is 

to investigate and compare its accuracy performance [22, 28, 32, 

36]. The paper [28] reported their experimental work on testing 

the viability of identifying subjects based on numerical input 

string. In this experiment, only 10 subjects were recruited and 

each subject was asked to input a predefine PIN (“1593”) on a 

HTC Nexus-One smartphone. To investigate if an impersonator 

could imitate another subject’s touch pattern in the event if the 

subject’s PIN is known to the impersonator, the author designed a 

visualization tool to facilitate a separate set of attackers to imitate 

a genuine subject’s input pattern. Even by deliberately exposing 

the PIN, timing and pressure feature information via the 

visualization tool to the attackers, the authors were still able to 

archive an FAR of 16%. Though some interesting results were 

obtained from this experiment, the number of subjects used was 

too small to draw any conclusive remark.  

The accuracy performance of touch dynamics applied on 4-digit 

PIN was also investigated by the authors in [22]. They extracted 

data with regard to timing, finger touch size and pressure by using 

build-in touchscreen sensor, and in addition, they also extracted 

linear and angular acceleration as feature vectors using 

accelerometers and gyroscopes sensors. As the size of data 

collected from these two sensors is large, they applied 

preprocessing technique to reduce the size of data. As a result, the 

computation resource needed for classification reduces. However, 

the dataset in this experiment was collected in a quite constrained 

setting, where subjects had to hold the mobile phone in a fixed 

position. By using on Euclidean distances based classifier, they 

obtained a performance of 20% EER on a 4-digit PIN input. The 

performance comparisons among individual features were not 

given. 

The experiment reported in [32] involved a larger number of 

subjects with the use of input PINs ranging from 4 to 8 digits 

long. An EER of 8.4% was obtained by using simple statistical 

classifier. In addition, the authors studied the time required to 

perform the classification and verification of different PIN lengths 

and feature combinations; both consumed an average of 12ms. 

This experimental discovery is useful for potential deployment of 

touch dynamics biometrics on power limited mobile devices. By 

far, the most competitive performance was achieved by [36]. The 



 

 

work employed a statistical one-class learning classifier and 

obtained an average EER of 3.65% tested on a set of given PIN 

input combinations. An EER of 6.96% and 7.34% were obtained 

on PIN numbers of “1111” and “5555”, respectively. More work 

may be necessary to see if the performance is scalable with a 

larger subject size. 

There were also experiments [8, 11, 12, 14] carried out on 

character-based passwords. However, as the scope of our work in 

this paper is on numerical PIN inputs, we will not discuss 

character-based experiments any further. A summary of the 

comparison between our work and the related works is given in 

Table 7. 

Table 7. Comparison to existing work with PIN input 

Paper Length Subjects Device EER 

[28] 4 10 HTC Nexus-One 15.2 

[36] 4-8 80 Samsung Galaxy Nexus 3.65 

[22] 4 80 - 20 

[32] 4 100 Motorola Milestone 8.4 

This 

Paper 

4 
150 

Samsung Galaxy Tab 

10.1 

8.55 

16 5.49 

7. CONCLUSION AND FUTURE WORK 
Touch dynamics based authentication may provide us with a 

number of benefits, such as it is an inherent feature of a majority 

of mobile devices already in use and it is readily deployable as an 

additional authentication factor to strengthen e-authentication 

assurance levels. This paper has investigated the feasibility and 

benefits of adopting a touch dynamics based authentication 

method or integrate it with the PIN based authentication method. 

To evaluate the effectiveness of this integrated approach, a proper 

dataset is required. We first reported a comprehensive dataset, 

with the intention of also serving further research on various 

issues in this context, such as further investigation and 

comparison of classification methods or the potential use of touch 

dynamics for authentication purposes. The dataset is available at 

https://goo.gl/sNACU8. We then implemented and applied three 

light-weighted matching functions to the dataset to study its 

accuracy performance. These matching functions imposes lower 

computational complexity, offers faster authentication speed and 

incurs less battery consumption, which could be a desirable 

additional authentication facility for mobile devices. We also 

showed that accuracy performance can be increased by combining 

different feature data types.  

There are a number of issues that requires further study. These 

include conducting an even larger subject study to validate the 

scalability of the proposed methods, and enriching the feature 

vectors with other feature data types (e.g. touch position or touch 

motion feature). In addition, what would be the most appropriate 

method to tackle subject touch pattern changes over time, and 

evaluating the proposed methods in terms of other evaluation 

metrics (e.g. actual computational time on mobile device). 
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