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Vincent Libis,†,‡ Baudoin Deleṕine,†,‡ and Jean-Loup Faulon*,†,‡,§

†Micalis Institute, INRA, AgroParisTech, Universite ́ Paris-Saclay, 78350 Jouy-en-Josas, France
‡Institute of Systems and Synthetic Biology, Genopole, CNRS, UEVE, Universite ́ Paris-Saclay, F-91030 Évry, France
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ABSTRACT: Detection of chemical signals is critical for cells in
nature as well as in synthetic biology, where they serve as inputs
for designer circuits. Important progress has been made in the
design of signal processing circuits triggering complex biological
behaviors, but the range of small molecules recognized by
sensors as inputs is limited. The ability to detect new molecules
will increase the number of synthetic biology applications, but
direct engineering of tailor-made sensors takes time. Here we
describe a way to immediately expand the range of biologically
detectable molecules by systematically designing metabolic pathways that transform nondetectable molecules into molecules for
which sensors already exist. We leveraged computer-aided design to predict such sensing-enabling metabolic pathways, and we
built several new whole-cell biosensors for molecules such as cocaine, parathion, hippuric acid, and nitroglycerin.

Engineering of circuits in cells has made fast progress since
the dawn of synthetic biology. New modular tools and

strategies regularly expand the toolbox.1 Just considering the
progress made in the last two years, signal processing in
biological systems can now rely on elements such as load
drivers,2 memory systems,3 amplifiers,4 coupling systems,5 or
bow-tie architectures,6 to name a few. Such tools enable the use
of synthetic circuits in real life applications where the
complexity of the signals encountered in the environment
was until now problematic.7 Despite these intense efforts
allowing precise control of circuit behavior, the development of
applications is slowed by the limited number of inputs available.
Usually, inputs to the genetic layer of circuits are mediated by
sensors such as transcription factors, riboswitches, or two-
component signaling pathways. Unfortunately, the number of
organic molecules detectable by well-characterized natural
sensors is relatively small.8 Rational engineering of sensors
through protein engineering or riboswitch engineering has been
accomplished,9,10 but the time and effort necessary to deploy
such approaches still limits the number of available tailor-made
sensors.
Alternative strategies of biosensing could play a role in

tackling this lack of inputs. In nature, information about a
chemical signal can be indirectly conveyed through enzymatic
transformations. A classic example can be observed in the Lac
operon where information about the quantity of lactose in the
medium is not acquired by direct interaction with a
transcription factor. Instead, a fraction of the available lactose
is transformed by β-galactosidase into allolactose, which is the
molecule detected by the transcription factor LacI. The use of

metabolic transformation to convey information to the genetic
layer has also been demonstrated in synthetic biology to detect
an aromatic and to obtain cell to cell communication.11−13

Here we explore the full potential of metabolism to enable
detection of new molecules and thus expand the scope of
chemicals that can serve as input in synthetic biology
applications. We systematically search for enzymatic ways to
transform undetectable molecules of interest into molecules
detectable by existing biosensors (Figure 1). This requires the
design of tailor-made pathways out of thousands of individual
enzymatic modules available in the pool of known biochemical
reactions, and necessitates the development of computer-aided
design (CAD) tools. As synthetic biologists developed CAD
tools to guide the engineering of genetic circuits,14,15 metabolic
engineers created powerful computational methods in the
context of small molecule production in microorganisms.16,17

Among them, mathematical abstractions have been developed
to represent and simulate biochemical reactions in silico. When
fed with entire databases of known biochemical reactions, such
a tool can extract a set of biochemical reaction rules that can
then be applied to any given substrate to generate potential
products (i.e., predicted metabolites). Retrosynthesis tools can
iteratively apply these rules to reconstruct natural or synthetic
metabolic pathways. We leveraged this expertise to build a
CAD tool exploiting 9,319 biochemical reaction rules to search
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for sensing-enabling metabolic pathways connecting molecules
of interest to the genetic layer. We first evaluated the potential
of this approach in silico by predicting sensing-enabling
metabolic pathways (SEMP) of molecules such as drugs,
biomarkers, and toxics. We then tested several predictions in E.
coli by assembling circuits made of heterologous enzymes and
transcription factors. We observed the successful fluorescent
response of E. coli to several molecules, including cocaine,
parathion, 2-chloro-4-nitrophenol, hippuric acid, and nitro-
glycerin. In synergy with ongoing efforts of biosensor
development, this strategy offers an immediate expansion of
the scope of inputs for synthetic circuits and has the potential
to open the way to new synthetic biology applications in fields
such as medicine and environment.

■ RESULTS

The scope of detectable molecules is significantly
expanded in silico via enzymatic pathways. We evaluated
the potential of this approach by predicting sensing pathways of
target molecules such as drugs, biomarkers of human diseases
and molecule with risk of toxicity for health and the
environment. We gathered data sets representative of these
types of molecules from three public databases: DrugBank,18

HMDB,19 Tox21.20 Systematic design of tailor-made SEMP for
these targets requires biochemical retrosynthesis and subse-
quent identification of inducers in the generated products. The
workflow we used consists of four steps: (i) gather the whole
trans-species Reactome (ts-Reactome) as a list of encoded
biochemical reaction rules; (ii) submit each target to the ts-

Reactome rules to generate products; (iii) iterate on the
products and generate a hypergraph around targets; and (iv)
screen the hypergraph for inducers and output putative SEMPs.
The ts-Reactome was based on 3 major biochemical databases
(BRENDA,21 Metacyc,22 and Rhea23) that were merged and
encoded in reaction signatures,24 a mathematical representation
of reactions that we developed previously. Reaction signatures
have been proven useful for metabolic pathway design in the
context of microbial production of value-added compounds.25

The ts-Reactome reached a total of 9,319 unique reaction rules.
When iteratively applying these reaction rules to the targets and
their generated products, combinatorial explosions can be
computationally demanding and we therefore limited to 3 steps
the maximum length of the pathways. Once the hypergraph was
generated it was colored with known inducers sourced from 4
databases of transcription factor effectors: BioNemo,26

RegTransBase,27 RegulonDB,28 and RegPrecise.29 An overview
of the workflow is represented in Figure 2, and the labeled
graph output from the DrugBank data set can be seen in
Supporting Information Figure S1. The pathways in the graph
linking a target molecule to a natural transcription factor
effector were automatically enumerated to allow statistical
analysis and selection of proof of concept examples for in vivo
implementation.
In each of the considered target data sets a number of

compounds were found to be naturally detectable by existing
biosensors, respectively 59, 135, and 169 for DrugBank,
HMDB, and Tox21. Through metabolism, the number of
detectable compounds grows to 123 (Drugbank), 280

Figure 1. General concept of a cell equipped with a sensing-enabling metabolic pathway (SEMP) allowing for the detection of a new chemical. A
naturally undetectable molecule is transformed by a metabolic module into an inducer molecule triggering a genetic response upon binding to a
transcription factor. While the figure illustrates the case of transcription factor working as a positive activator, the same concept can be applied with a
repressor or a riboswitch.

Figure 2. Sensing-enabling metabolic pathway (SEMP) design workflow. (a) Reactions are collected from biochemical databases and encoded as
reaction signatures. A reaction signature describes a biochemical transformation rule as a list of fragments of the molecules that are modified during
the reaction (See Methods). (b) The effect of each reaction signature is simulated on each target. If a product is predicted to form (i.e., if a target’s
fragments match the ones of a natural substrate of the reaction), the generated structure is injected back into the target list, in case it can be further
transformed. The metabolic space is extended by this iterative process until no more products are formed or if a limit is set on the number of
iteration (n = 3 in this work). (c) Finally, the extended metabolic space is represented as an oriented graph where the nodes are compounds and the
edges represent enzymatic reactions. This graph is colored by labeling the compounds that are found in the transcription factor effectors databases.
Pathways linking a target to a gene inducer can then be automatically enumerated.
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(HMDB), and 477 (Tox21). Therefore, this approach at least
doubled the number of detectable molecules that can be
considered for sensor development in each of the studied data
sets (Figure 3).
Most compounds in the data sets that remain undetectable

are products of organic chemistry that are not processed by any
known enzyme and therefore no SEMPs could be predicted by
this method. Remarkably, if a compound is processed by an
enzyme the chances are high (>66%) that at least one SEMP
will be found in 3-steps or less. Moreover, the connection with
an existing biosensor is usually possible in a small number of
enzymatic steps as the number of compounds that necessitate
long SEMP (3 steps) is significantly lower than the ones
connected through 1 and 2 step pathways. A short selection of
interesting candidates for biosensor development and asso-
ciated SEMPs is displayed in Table 1.
Implementation of SEMPs in vivo expands E. coli

sensing abilities. In order to validate the concept in vivo, we
implemented in E. coli representative SEMPs from the
predictions related to each of the targets data sets (1 drug, 2
pollutants, 1 biomarker). For each SEMP, the genes coding for
the required enzymes were cloned into a metabolic module
plasmid allowing control of the enzymes’ expression level by
IPTG. In parallel the genes coding for the required
heterologous transcription factors were cloned into a sensing
module plasmid under the control of an arabinose-inducible
promoter and a red fluorescent protein (RFP) was placed
under the control of their associated promoters. The two
modules are compatible for cotransformation in the same
strain. Prior to full characterization of SEMPs we identified
optimal expression levels of the heterologous transcription
factors by varying the arabinose concentration in the presence
of the natural effectors (see Methods).
Whole-cell biosensors for illicit compound detection can

provide a cheap way to determine the presence of a molecule in
an unknown mixture. Among the predictions we obtained by
processing the DrugBank database’s section “Illicit Drugs” we
selected a SEMP providing E. coli with the ability to detect
cocaine. As shown in Table 1, the transformation of cocaine by
an esterase (CocE from Rhodococcus sp.) produces benzoate

which can be detected by the transcription factor BenR from
Pseudomonas putida. E. coli BL21(DE3) was first transformed
only with the sensing module bearing the transcription factor
BenR and a RFP under the control of pBEN promoter. This
strain emits a strong fluorescent signal in the presence of
benzoate but not in the presence of cocaine (Supporting
Information Figure S5a). Upon cotransformation with a
metabolic module containing CocE, a fluorescent response
also occurs in the presence of cocaine, indicating the expected
extension of the sensing scope of the bacteria (Figure 4a).
Comparison of the dose−response curves of the strain toward
cocaine and the natural effector benzoate suggest that the
enzymatic step have no or little impact on the biosensor
performance features. The linear range of detection and
dynamic range for cocaine stays in the same order of magnitude
as benzoate.
Another interesting application is the development of whole-

cell biosensors for monitoring chemicals in the environment.
Parathion is a major environmental threat and counts among
the “dirty dozen”, the 12 worst offenders persistent organic
pollutants according to the United Nations Environment
Programme. The transformation of parathion by a phospho-
triesterase (PTE from Pseudomonas diminuta) produces 4-
nitrophenol, which can be detected by the transcription factor
DmpR from Pseudomonas sp. (see Table 1). An E. coli strain
harboring a sensing module based on DmpR and the associated
DmpK promoter is able to detect 4-nitrophenol in a dose-
dependent fashion but not parathion (Supporting Information
Figure S5b). Upon addition of the metabolic module
containing PTE to this strain, the extension of the sensing
scope takes place and a strong fluorescent response occurs in
the presence of parathion (Figure 4b). To our surprise the
fluorescent response of this strain to parathion is higher than
for the native inducer above 100 μM. The drop in signal in
response to 4-nitrophenol at 300 μM is probably due to the
associated toxicity that diminishes growth (see Supporting
Information Figure S8). In addition to this effect on growth,
flow cytometry measurements indicate a decreased fluorescence
in individual cells at higher 4-nitrophenol concentration (See
single cell data at 1 mM in Supporting Information Figure S7).

Figure 3. In silico prediction of detectable compounds among three data sets. Compounds labeled in the “direct sensing” category (yellow) are
already present in the data set of natural transcription factor’s effectors. Compounds in other colors (orange, blue, green) are reached by sensing-
enabling metabolic pathways (SEMP). Nonprocessable compounds (hashed) are compounds that do not participate in known enzymatic reactions
(as a product or a substrate). Data sets correspond to the DrugBank sections “approved drugs” and “illicit drugs”; HMDB’s biomarker compounds
are associated with a human disease and the entire Tox21 data set of putative toxic compounds.
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In contrast, parathion is less toxic for these cells and in fact is
not toxic at these concentrations if the PTE enzyme is absent
(Supporting Information Figure S8). Moreover, despite the
decrease in growth rate associated with the intracellular
formation of 4-nitrophenol, the individual fluorescence of
these cells in response to parathion keeps increasing gradually
up to 1 mM (Supporting Information Figure S7). Partial or
delayed transformation of parathion at high concentration may
allow the cells to stay healthy longer and produce more signal.
Medical applications of synthetic biology often rely on

biosensors for biomarkers of human diseases.30 We chose to
implement a biosensor for an interesting biomarker, hippuric
acid, that is found at high concentration in the urine of a person
intoxicated with toluene. As predicted by the algorithm,
transformation of E. coli with a metabolic module harboring
hippurase HipO from Campylobacter jejuni allows degradation
of hippuric acid into benzoic acid, which is detected in a dose-
dependent fashion by the BenR-based sensing module (Figure
4c). We monitored the activation of this hippurate sensor and
the cocaine sensor in order to investigate if SEMPs have
kinetics of detection different from a regular benzoate sensor.
Comparison of the response time to target compounds or to

the natural inducer benzoate shows that neither the HipO- or
CocE-mediated transformation step delays the fluorescent
response (see Supporting Information Figure S2).
The engineering of transfer of matter through metabolism

has made important progress during the last 20 years. Synthetic
pathways as large as 23 enzymes long have been successfully
implemented to divert natural carbon flux toward valuable
compound production.31 We wondered if transfer of
information could as well rely on multienzymatic pathways
and we selected a target compound that necessitates two
consecutive transformations to allow detection. 2-Chloro-4-
nitrophenol (2C4NP) belongs to a family of molecule with
high toxicity for humans used in the chemical industry. Upon
monooxygenation and subsequent reduction performed by two
enzymes from a strain of Burkholderia sp., 2C4NP is
transformed into chlorohydroquinone, which can be detected
by LinR, a transcription factor found in Sphingomonas
paucimobilis (see Table 1). All three genes were cloned into
the modules and conferred E. coli the ability to detect 2C4NP
(Figure 4d), while it was not possible with the LinR-module
alone (Supporting Information Figure S5d). With our setup,
the sensing module based on LinR transcription factor and a

Table 1. Sensing-Enabling Metabolic Pathway (SEMP) Examplesa

Target Enzymes and metabolites Sensor and effectors

Cocaine* Cocaine esterase (Rhodococcus sp.) BenR (Pseudomonas putida)
illicit drug 3.1.1.84: Benzoate Benzoate
Heroin Heroin esterase (Rhodococcus sp.) NR I (Escherichia coli)
illicit drug 3.1.-.-: Acetate (2×) Acetate
Aspirin Acetylsalicylate deacetylase (Rattus norvegicus) NahR (Pseudomonas putida)
drug 3.1.1.55: Salicylate Salicylate
Caffeine Methylxanthine N1-demethylase (Pseudomonas putida) FrmR (Escherichia coli)
drug 1.14.13.178: Formaldehyde Formaldehyde
Paracetamol Aryl acylamidase (Rhodococcus erythropolis) NR I (Escherichia coli)
drug 3.5.1.13: Acetate Acetate
Barbituric acid Bar (Rhodococcus erythropolis) FapR (Bacillus subtilis)
drug 3.5.2.1: Ureidomalonate Malonate

N-malonylurea hydrolase (Rhodococcus erythropolis)
3.5.1.95: Malonate

Nitroglycerin* NemA (Escherichia coli) NarL (Escherichia coli)
drug/explosive 4.99.1.-: Nitrite (2x) Nitrite
Chlorpropham* AmpA (Paracoccus sp.) TadR (Delf tia tsuruhatensis)
pollutant 3.5.1.-: 3-Chloroaniline 3-Chloroaniline
2-chloro-4-nitrophenol* PnpA (Burkholderia sp.) LinR (Sphingomonas paucimobilis)
pollutant 1.14.13.-: Chloro-1,4-benzoquinone Chlorohydroquinone

PnpB (Burkholderia sp.)
1.6.5.-: Chlorohydroquinone

Propanil AmpA (Paracoccus sp.) PrpR (Corynebacterium glutamicum)
pollutant 3.5.1.-: Propionate Propionate
Parathion* PTE (Pseudomonas diminuta) DmpR (Pseudomonas sp.)
pollutant 3.1.8.1: 4-nitrophenol 4-nitrophenol
Hydrogen cyanide Cyanide hydratase (Gloeocercospora sorghi) FdsR (Ralstonia eutropha)
chemical warfare agent 4.2.1.66: Formamide Formate

Formamidase (Paracoccidioides brasiliensis)
3.5.1.49: Formate

Cyclosarin PTE (Pseudomonas diminuta) ChnR (Acinetobacter sp.)
chemical warfare agent 3.1.8.-: Cyclohexanol Cyclohexanone

ChnA (Acinetobacter sp.)
1.1.1.245: Cyclohexanone

Hippurate* HipO (Campylobacter jejuni) BenR (Pseudomonas putida)
biomarker 3.5.1.32: Benzoate Benzoate

a(*) indicates SEMPs implemented and tested in vivo over the course of this work (see Supporting Information Figure S3).

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.5b00225
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00225/suppl_file/sb5b00225_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00225/suppl_file/sb5b00225_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00225/suppl_file/sb5b00225_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00225/suppl_file/sb5b00225_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00225/suppl_file/sb5b00225_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.5b00225


fragment of the LinE promoter from Sphingomonas paucimobilis
had a small dynamic range in E. coli. This could probably be
overcome by directed evolution as promoter activity can be
linked to a selectable output. 2C4NP is highly toxic for E. coli,
thus limiting our measurements to a 100 μM upper limit.
Remarkably, only the strain with the metabolic module could
survive at a concentration of 2C4NP higher than 75 μM
(Supporting Information Figure S8), this is probably due to the
detoxifying effect of the two enzymes from Burkholderia sp..
This situation is the opposite to that observed in the case of the

biosensing of parathion where the intermediate metabolite was
more toxic to the cells than the initial target molecule.
Finally, an interesting case emerged from the predictions as a

sensing-enabling pathway to the vasodilator drug and explosive
nitroglycerin was identified with both metabolic module and
sensing module component already present in wild type E. coli.
Indeed, the promiscuous NemA enzyme from E. coli is known
to allow degradation of nitroglycerin into nitrites that are
naturally monitored in E. coli by the NarL regulator. This
suggests that wild type E. coli exhibits a fortuitous transcrip-
tional response to nitroglycerin through a SEMP-like circuit. In

Figure 4. In vivo characterization of sensing-enabling metabolic pathways (SEMP). Cotransformation of E. coli with both the metabolic module and
sensing module confers sensing abilities toward new molecules. The dose−response relationship of engineered E. coli strains to the natural effectors
and to the target molecules cocaine (a), parathion (b), hippurate (c), and 2C4NP (d). (e) shows the fluorescent response of three strains of E. coli
harboring a RFP fused to pYeaR promoter (controlled by NarL) in M9 medium or in M9 supplemented with 50 μM nitroglycerin. Laboratory strain
BL21 responds to nitroglycerin, but strain JW1642, which is knocked out for the NemA enzyme, does not. However, response can be restored in
JW1642 by providing a functional copy of NemA on a plasmid. Fold change represents the ratio between the fluorescence observed at a given
concentration and the fluorescence of uninduced controls of the same strain; a value of 1 represents no induction. Each data point is the mean of at
least 3 replicates, and error bars represent standard deviations. Smooth curves represent dose−response fitting of the scattered data points. Statistical
significance was determined using Student’s t test with a P value cutoff of 0.005.
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order to test this hypothesis we transformed E. coli with a
plasmid harboring a RFP fused to the native promoter pYeaR,
which is controlled by NarL. This strain successfully produces a
fluorescent response when cultivated in the presence of
nitroglycerin. To confirm the SEMP dependency of this
response we transformed the same reporter plasmid into
JW1642, an E. coli strain with a knocked-out NemA enzyme.
This strain is not anymore able to respond to nitroglycerin.
Finally, we introduced a functional copy of NemA on a second
plasmid into JW1642 and observed a restoration of the
fluorescent response to nitroglycerin (Figure 4e). This confirms
that NemA is enabling the transcriptional response to
nitroglycerin of E. coli and represents an interesting example
of a computationally elucidated naturally occurring SEMP. A
summary of all the SEMP validated experimentally in this work
is represented in Supporting Information Figure S3.

■ DISCUSSION
Biological sensors are central for synthetic biology to solve real-
world problems. Numbers of promising systems involving
biosensors have been developed for medical, environmental,
and industrial applications. The approach described here at
least doubles the number of molecules that can be considered
for sensor development in each of the studied compound
classes (toxics, biomarkers, and drugs). SEMPs can be created
without the need for time-consuming protein and riboswitch
engineering or discovery of natural sensors. Moreover, the
number of chemical candidates for such a sensing strategy
should automatically grow in time, as the number of
characterized sensors and biochemical reactions will continu-
ously increase in databases. For these reasons, we envision
SEMPs as an important new source of biosensors that will
fruitfully be integrated within the modular synthetic biology
toolbox.
Very recently a SEMP approach was used for the monitoring

of a product of interest for industrial bioproduction, 3-
hydroxypropionate.32 By increasing the number of value
added chemicals that can be monitored through fluorescent
readout, SEMPs could alleviate the bottleneck that metabolic
engineers currently face with the low throughputs of conven-
tional measurement methods.
As another example of potential application, the hippuric acid

sensor described here could be a starting point for a cheap way
of controlling urine from workers in the paint industry,
especially in the developing world, where a lot of toluene
intoxications occur due to lack of regular testing. However, this
application requires the cells to emit a signal upon reaching a
clinically relevant threshold in complex medium. Encourag-
ingly, such ability was achieved recently with a modular signal
processing strategy (digitalization and amplification) allowing
glucose detection at selected thresholds in clinical urine
samples from diabetic patients.7

In addition to the proof-of-principle examples described in
this work, it is interesting to note that the detection of
parathion was achieved with the phosphotriesterase variant
PTE-S5,33 which is known to have an important substrate
promiscuity against several organophosporous compounds.34

Among them are chemical warfare agents such as cyclosarin
that could also be detected through the same strategy.
Transformation of cyclosarin by PTE-S5 produces cyclo-
hexanol, a compound being subsequently transformed by
Acinetobacter sp.’s ChnA enzyme into cyclohexanone, for which
a ChnR-based biosensor has already been characterized for

metabolic engineering applications.35 While cyclosarin counts
among the most toxic substances ever created, its toxicity
comes from the inhibition of the enzyme Acetylcholinesterase
in the brain; therefore, organisms such as E. coli can detect it
without suffering the associated toxicity.
Intuitive limitations of SEMPs are common with other

intracellular biosensors, such as the need for sufficient
membrane permeability to extracellular targets and a limited
toxicity of the targets for the chassis. As a potential option to
minimize these issues, we expect SEMPs to be easily
transplanted to artificial cells that have been shown to serve
as viable chassis for both biosensors and metabolic path-
ways.36,37 Specific limitations of SEMPs reside in the need for
nontoxic metabolic intermediates and the risk of specificity
issues. These biosensors are unable to discriminate between the
presence of the target molecule in the medium and any
intermediates of the SEMP. Careful consideration should thus
be given to the risk of crosstalk if one of the intermediate is a
possible contaminant in the envisioned biosensing application.
Additionally, the potential ligand promiscuity of enzymes and
transcription factors must be kept in mind if high specificity is
required for a particular application. Potential cases of
specificity issues linked to promiscuity are depicted in
Supporting Information Figure S6. While detection of multiple
targets could be advantageous in environmental applications,
this would usually be problematic in medical applications.
Directed evolution of a SEMP guided by its fluorescent output
is an option to overcome false-positive activation. Lastly,
changes of physicochemical properties between the target
molecule and the intermediates of the pathway might result in
unexpected properties. For instance, a decrease in the
permeability coefficient of metabolites resulting from the
transformations could lead to their accumulation inside cells.
This could lower the detection limit of the sensor.
Aside from the synthetic biology tool aspect, one may

wonder if SEMPs represent a motif frequently used in nature
and why. To our knowledge, this has not been investigated yet.
Nevertheless, recent reviews suggest that the role of the
metabolic layer in integrating information about the medium or
the internal state of the cell is underestimated compared to the
role of the genetic layer.38,39 While the natural occurrence of a
response to nitroglycerin seems fortuitous, recent evidence
concerning the Lac operon shows that evolution strongly
coselected the LacI transcription factor and the side-reaction
site of β-galactosidase that leads to production of allolactose.40

The fact that LacI never evolved to directly detect lactose
suggests that this conserved SEMP motif is advantageous to the
homeostasis although the mechanism is not elucidated yet.

■ METHODS
Data source. We retrieved 9,319 distinct encoded reactions

(reaction signature diameter 12, see below) and their associated
compounds from BRENDA 2015.1,21 MetaCyc 18.5,22 and
Rhea v61.23 Targets were gathered from DrugBank 4.118 (all
approved drugs and illicit drugs data sets), the Human
Metabolomic DataBase19 (all compounds linked to a human
disease) and the Distributed Structure-Searchable Toxicity
(DSSTox) Database Network20 (all compounds). Finally, we
retrieved 505 distinct transcription factor effectors from
BioNemo,26 RegTransBase,27 RegulonDB,28 and RegPrecise.29

Molecular and reaction signatures. Molecular signa-
tures41 (MS) are graph-based descriptors that encodes the
“neighborhood” of each atom of a molecule, similarly to
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Morgan’s or ECFP fingerprints. Each kind of “neighborhood”,
or atom environment, is a feature of MS. A reaction’s signature
(RS) is computed by subtracting the MS of the substrates to
the MS of the products of the reaction,24 and takes the general
form

∑ ∑σ σ σ= −R P S( ) ( ) ( )d
n

i

d
i

j

d
j

where dσ (Pi) and dσ (Sj) are the molecular signatures of
substrate Sj and product Pi at diameter d. The variable diameter
(d) of a molecular signature determines the size of the scope of
the neighborhood that will be described around each atom.
When this diameter is set to a small value, structurally similar
molecules will share a lot of atoms with identical neighbor-
hoods. This will allow a reaction signature to be applied to
substrates that are close but different to the ones originally
described in biochemical reaction databases. While small
diameters allows to simulate promiscuous activities of enzymes
and predict more products, it arbitrarily assumes a certain level
of promiscuity from enzymes and thus lead to the generation of
a higher number of incorrect predictions.. In this work we used
molecular and reaction signature at a large diameter (d = 12) to
encode compounds and biochemical reactions, we thus
consider enzymes largely nonpromiscuous (unless several
distinct reactions are reported in the databases for the same
enzyme). See Carbonell et al.17 for detailed informations about
metabolic pathway design at lower diameter (d < 12).
Compounds and reactions preprocessing. The reac-

tions were filtered in order to gather only biochemical reactions
with a structure available for all involved compounds. The
compounds were filtered using ChemAxon’s Checker and
Standardizer tools (JChem v.15.4.27, 2015). We let aside
compounds with R-groups and the associated reactions. We
performed the necessary treatments to standardize the
compounds such that their molecular signature would be
comparable. This involved an aromatization step and the
removal of explicit hydrogens. The resulting compounds and
reactions were processed to generate molecular (MS) and
reaction signatures (RS). In the end, we gathered 9,319 unique
RS involving more than 18000 unique MS. Target compounds
were pretreated the same way and were encoded as MS.
SEMP prediction. Our previous work focused on the

development of a synthetic pathway retrosynthesis algorithm
named Retropath.17 We built further on this basis by
developing a Python pipeline adapted to predict SEMP. In
our implementation, each target compound is successively used
in-place of each substrate of each reaction R. If the resulting
putative reaction R′ has the same reaction signature as R, then
we accept R′ as a pathway step. In order to extend the pathway,
the products of R′ are then considered themselves as targets.
We generated pathways with up to three steps. The result is a
graph where the nodes represent compounds, and edges
represent reactions. Compounds are then matched to the list
transcription factor effectors compounds (Jaccard-Tanimoto
coefficient42 over 0.99). Finally, the sensing pathways are
extracted from the graph with NetworkX graph library v.1.11.43

Frequently a target can be sensed through several SEMPs
leading to different sensable compounds, with different pathway
lengths. For the analysis of the predictions, detectable targets
were counted only once even if several SEMP were predicted.
Request for predictions on custom list of compounds can be

addressed to jean-loup.faulon@jouy.inra.fr.

Chemicals and reagents. Benzoic acid, cocaine hydro-
chloride, hippuric acid, 2-chloro-4-nitrophenol, chlorohydro-
quinone, parathion-ethyl and 4-nitrophenol were purchased
from Sigma (St. Louis, MO, USA). Permission to purchase
cocaine hydrochloride was given by the French drug regulatory
agency (Agence Nationale de Sećurite ́ du Med́icament et des
Produits de Sante)́ to allow development of a new biosensor.
Nitroglycerin was purchased from AccuStandard Europe
(Niederbipp, Switzerland). Enzymes for cloning procedures
(BsaI and DNA polymerase Q5) were purchased from New
England BioLabs (Evry, France) and primers were purchased
from Eurofins Genomics (Ebersberg, Germany).

Genetic constructs. Two custom plamids were assembled
to serve as vector for each module. Metabolic module vector is
based on BioBrick standard vector pSB4T5 with pSC101 origin
of replication and Tetracycline resistance marker, modified to
harbor (i) type IIs restriction sites BsaI flanking cloning site and
(ii) LacI transcription factor. Sensing module vector is based on
BioBrick standard vector pSB1K3 with pMB1 origin of
replication and Kanamycin resistance marker, modified to
harbor (i) AraC transcription factor, (ii) pBAD promoter, (iii)
type IIs restriction sites BsaI and (vi) a promoterless RFP.
Coding sequences of genes BenR, CocE, HipO, were codon-
optimized for E. coli with Jcat44 and natural BsaI sites were
removed. These genes were synthesized by Genscript (Piscat-
away, NJ, USA). Coding sequence of PTE-S5, LinR, pnpA,
pnpB and DmpR were extracted by PCR from plasmids
pMaIc2x-PTE-S5,33 pMEU2R,45 pET-pnpA, pET-pnpB,46 and
bba_k1413001 from the registry of standard biological parts
(http://parts.igem.org), kind gifts from Prof Dan TAWFIK,
Prof. Yuji NAGATA, Prof Ning-Yi ZHOU, and iGEM team
EVRY 2014. Concerning sensing modules, LinR, BenR and
DmpR sequences were followed by transcription terminator
BBa_0015 from the registry of standard biological parts,
followed respectively with sequence of the LinE gene promoter
(i.e., the 153 base pairs in front of LinE CDS on the
Sphingomonas paucimobilis UT26 chromosome), pBEN
promoter (i.e., the 150 base pairs in front of BenA CDS on
Pseudomonas putida KT2440 chromosome) or sequence of the
Pu promoter (i.e., the 189 base pairs in front of DmpK CDS on
Pseudomonas sp. CF600 plasmid pVI150). Concerning meta-
bolic modules, T7 promoter with LacO operator and a
ribosome binding site were placed in front of CocE, HipO,
PTE-S5 and pnpA-pnpB CDS. All genes were amplified by
PCR to add appropriate BsaI restriction sites and they were
inserted in either metabolic or sensing module vectors using
one-step GoldenGate assembly method.47 In this setup the
one-step assembly places the heterologous transcription factor
under control of pBAD promoter and the promoterless RFP is
placed under control of the heterologous promoter (see
Supporting Information Figure S4 for a detailed map of
metabolic and sensing modules). Annotated sequences for all
constructs were deposited on GenBank (accession numbers
KU746628, KU746629, KU746630, KU746631, KU746632,
KU746633, KU746634, KU746635, and KU746636) and are
available in Supporting Information Data File S2. Cloning of
individual modules was done in DH5alpha and dose−response
characterizations were carried out in BL21(DE3) after
transformation with either sensing module only or both
modules.

Biosensor dose−response characterization. For each
biosensor strain, an isolated colony of BL21(DE3) harboring
the appropriate plasmid(s) was inoculated in 2 mL of selective
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LB and grown overnight at 37 °C. The overnight culture was
diluted 1:100 in fresh selective LB and grown for 90 min under
agitation at 37 °C. Cells were then induced with IPTG 1 mM
and arabinose and further grown until OD600 reached 0.1 for
parathion, 4-nitrophenol, benzoic acid, hippuric acid and
cocaine sensors. For 2C4NP and chlorohydroquinone, sensor
cells were grown until OD600 reached 0.4 to minimize artifacts
on the signal due to the high toxicity of 2C4NP. In our setup,
optimal induction levels of transcription factors were found to
be obtained with arabinose levels of 0.001% (BenR) 0.1%
(LinR) and none (DmpR). Candidate chemicals for biosensing
were dissolved in ethanol and 2 μL of different concentrations
were mixed with samples of 200 μL of cell culture. 2 μL of pure
ethanol was mixed with negative control cell samples. Cocaine
sensor cells and associated control cells lacking metabolic
module were grown in Eppendorf 1.5 mL microtubes with
vigorous agitation for 18 h hours at 30 °C, thus following
optimal conditions described in the literature for CocE activity.
All other sensor cells were grown for 18 h with agitation at 37
°C in microplate reader TECAN Infinite 500. Absorbance at
OD600 and fluorescence (Exc: 580 nm/Em: 610 nm) was
measured with microplate reader TECAN Infinite 500. All
experiments were repeated at least 3 times on different days
with similar results.
Characterization of the transcriptional response to

nitroglycerin of different E. coli strains. pYeaR promoter
(i.e., 146 base pairs in front of YeaR CDS on E. coli MG1655
chromosome) was amplified by PCR from purified chromo-
some and fused through GoldenGate assembly with a
promoterless RFP into a pACYC plasmid backbone. The
resulting plasmid pYeaR-pACYC was transformed into BL21-
(DE3) or JW1642 from the Keio collection.48 The coding
sequence of NemA was extracted by PCR from a BL21(DE3)
strain and cloned under the control of constitutive promoter
J23100 into a pCDF plasmid backbone. A strain of JW1642 was
cotransformed with plasmids pYeaR-pACYC and NemA-pCDF
to investigate if it would restore the response to nitroglycerin.
Cells were grown at 37 °C in selective M9 minimal medium
with 0.5% glucose. Overnight cultures of each strain were
diluted 1:100 and grown until OD600 reached 0.1. 2 μL of
nitroglycerin diluted in ethanol was added to 200 μL of cell
samples to a reach a final concentration of 50 μM. 2 μL of pure
ethanol was added to control samples. Cells were grown for 18
h with agitation at 37 °C and absorbance at OD600 and
fluorescence (Exc: 580 nm/Em: 610 nm) was measured in
microplate reader TECAN Infinite 500.
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