Longitudinal holograms in terahertz lasers: Electronic tuning and frequency control

DOI:
10.1109/IRMMW-THz.2012.6380274

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz|Int. Conf. Infrared, Millim., Terahertz Waves, IRMMW-THz

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Longitudinal Holograms in Terahertz Lasers: Electronic Tuning and Frequency Control

M. Khairuzzaman¹, S. Chakraborty¹, O. Marshall¹, C.-W. Hsin¹, H. Beere², and D. Ritchie²
¹School of Electrical and Electronic Engineering, University of Manchester, UK
²Cavendish Laboratory, Department of Physics, University of Cambridge, UK
Email: s.chakraborty@manchester.ac.uk

Abstract—A longitudinal computer-generated hologram is incorporated into the Fabry-Pérot cavity of a terahertz quantum cascade laser which displays two distinct spectral gain peaks. The combined cavity and hologram feedback mechanisms lead to digitally selective dual-mode emission with a difference frequency which may be electronically tuned from 190 GHz to 267 GHz.

I. INTRODUCTION

Dual frequency emission from a semiconductor laser has huge potential benefits for applications such as radio frequency (millimetre and sub-millimetre wave) generation and dense wavelength division multiplexing (DWDM) for high-speed wireless communication systems. Difference frequency generation leading to a beat signal usually requires two independent single-mode lasers, but this approach suffers from temperature drifts and demands precise control of power and polarization of both beams for signal maximization. A single THz quantum cascade laser (QCL) with two distinct gain peaks, when combined with a simultaneously dual-mode selection mechanism, offers an alternative to multiple laser sources. Multi-peaked THz QCL gain and coarse tuning are possible through active region design. To date, however, achieving user-defined, dual-mode selection with an electronically tuned frequency separation has proven difficult in a single THz QCL. Here we achieve mode selection with a longitudinal computer-generated hologram (LCGH). These photonic structures can provide flexible, high-resolution digital mode selection at user defined frequencies by breaking a grating periodicity in a deterministic and systematic way.

In this paper, we demonstrate QCLs simultaneously lasing at two digitally selected THz frequencies by incorporating an LCGH into a pre-existing Fabry-Pérot (FP) QCL cavity (e.g. Fig. 1a). In principle, an LCGH may be designed to give almost any target spectral response. Here, the LCGH was designed to give multiple, finely spaced Bragg resonances (Fig. 1b). This structure, when combined with a two-colour QCL active region with a bias-controllable gain movement, allows simultaneous digital frequency selection on LCGH Bragg resonances (reflection bands). Electronic switching between these digitally selected modes is possible due to both the current (i.e. gain-) dependent longitudinal effective refractive index profile along the FP-LCGH (causing phase shifts between LCGH and non-LCGH waveguide sections), and the bias dependent gain movement.

This work was supported by EPSRC First Grant EP/G064504/1 and partly supported by HMGCC.

Fig. 1. (a) Schematic of an FP-LCGH cavity with two resultant distributed Bragg reflector (DBR) sub-cavities. (b) LCGH spectral power reflectivity response. (c) Measured FP laser spectra from QCL1 (6.02 mm long, 160 µm wide) in pulsed operation at 10 K. Dashed lines are estimates of gain peak positions. (d) Calculated LCGH reflectivity in the spectral region of interest (using $\Lambda = 14.60 \mu m$ and $n_{eff} = 3.68$, f_B is calculated as 2.789 THz). (e) QCL1 spectra after introduction of the LCGH. The static mode frequency is 2.660 THz, the four switchable 2.849, 2.881, 2.901 and 2.926 THz, (average spacing ~ 26 GHz). Inset: FP (top) and FP-LCGH (bottom) spectra at 171 A/cm², plotted on a logarithmic intensity scale.

II. FABRICATION AND MEASUREMENT

Devices were fabricated from a single molecular beam epitaxially grown GaAs/Al₀.₁₅Ga₀.₈₅ wafer, with two heterogeneous bound-to-continuum active regions (ARs), each containing 45 repeat periods, similar to reference 2. Semi-insulating surface plasmon (SI-SP) ridge waveguides (160 µm wide) were cleaved to ~6 mm-long FP cavities and fully characterized prior to the incorporation of the LCGH. LCGH gratings were introduced by milling narrow, sub-wavelength slits (0.6 µm by 100 µm) into the upper metallic layers of the SI-SP waveguides using an FEI Nova...
Nanolab 600 focused ion beam (FIB) system (30 keV Ga ions, 50 nm nominal spot diameter, 1 nA beam current). These slits followed the LCGH design, with a minimum separation of Λ, and served to perturb the complex refractive index, \(n_{\text{eff}} \), of the guided mode. The value of Λ was adjusted so that the Bragg frequency \(f_0 \) (\(f_0 = c/2n_{\text{eff}}\Lambda \), \(c \) is the speed of light in vacuum) and the QCL gain were appropriately aligned. After milling devices were once again fully characterized.

III. RESULTS AND DISCUSSION

Figure 1c shows emission spectra from a 6.02 mm long, 160 μm wide, FP QCL (QCL1). Multiple cavity modes are observed, with a frequency spacing of ~6.50 GHz, from which a group refractive index, \(n_g \), of 3.83 was calculated. The FP modes correspond to two distinct gain peaks, one centered at ~2.66 THz, the second tuning with driving currents from ~2.80 to 2.92 THz. In contrast, after LCGH milling (using \(\Lambda = 14.60 \mu m \)) only two simultaneous modes are observed at almost all driving currents (Fig. 1e). As expected, low frequency mode remains stationary while the high frequency mode switches between four positions under different electrical driving conditions, the tuning resolution dictated by the LCGH reflection bands shown in Fig. 1d. Dual-mode side mode suppression ratios (SMSR) are ~20dB (inset Fig. 1).

To ascertain the reproducibility of dual-mode FP-LCGH operation, a second device was chosen (QCL2) with very similar FP performance characteristics to QCL1. A nominally identical LCGH (i.e. \(\Lambda = 14.60 \mu m \)) was introduced to QCL2. Once again, simultaneous dual-mode lasing was achieved with four possible frequency separations. However, in QCL2 only three high frequency modes were present, though an additional low frequency mode was recorded. Fig. 2a displays the LCGH spectra for QCL1 and QCL2 on a normalized frequency scale. At higher driving currents the dual-mode pairs are closely matched in frequency. Lower driving currents produced lasing pairs with a relative frequency shift of one LCGH band (shaded bars). During FIB milling, neither the facet phase nor the precise value of complex refractive index contrast was Carnot. The FP-LCGH QCLs, all lasing modes do follow the LCGH response, with a minimum separation of \(\Delta f \), can be varied from 190 to 267 GHz for QCL1 (blue) and from 202 to 267 GHz for QCL2 (red). Figure 2b also displays the driving current spans over which the dual mode pairs are observed. It should be noted that one can target a desired \(\Delta f \) by tailoring the LCGH design to vary the Bragg resonance separation. This freedom of choice is one of the novelties of LCGH design.

IV. CONCLUSION

Combining a longitudinal hologram with a two-colour gain medium, purely electronic tunable simultaneous dual-mode lasing in a single-section THz QCL was achieved. SMSR of better than ~20 dB for both modes was maintained over a wide tuning current range. This stable lasing behavior is suitable for various applications where dual frequency operation is needed. Furthermore, the demonstration of such tunable frequency differences opens new possibilities for the generation and measurement of tunable beat signals and thereby becomes a promising alternative to existing difference frequency generation techniques.

REFERENCES

