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Abstract. Within the scientific literature, tables are commonly used
to present factual and statistical information in a compact way, which
is easy to digest by readers. The ability to "understand" the structure
of tables is key for information extraction in many domains. However,
the complexity and variety of presentation layouts and value formats
makes it difficult to automatically extract roles and relationships of ta-
ble cells. In this paper, we present a model that structures tables in a
machine readable way and a methodology to automatically disentangle
and transform tables into the modelled data structure. The method was
tested in the domain of clinical trials: it achieved an F-score of 94.26%
for cell function identification and 94.84% for identification of inter-cell
relationships.

Keywords: table mining, text mining, data management, data mod-
elling, natural language processing

1 Introduction

Tables are used in a variety of printed and electronic documents for present-
ing large amounts of factual and/or statistical data in a structured way [1, 21,
25]. They are a frequent option in written language for presenting large, multi-
dimensional information. For example, in experimental sciences, tables are usu-
ally used to present settings and results of experiments, as well as supporting
information about previous experiments, background or definitions of terms.
Tables are, in particular, widely used in the biomedical domain. However, while
there have been numerous attempts to automatically extract information from
the main body of literature [20, 11, 27], there have been relatively few attempts
to extract information from tables.

One of the main challenges in table mining is that the existing models used
to represent tables in the literature are focused on visualisation, rather than
on content representation and mining. For example, tables in PubMedCentral
(PMC)1 are presented in XML with tags describing rows, cells, header and body
1 http://www.ncbi.nlm.nih.gov/pmc/
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of the table. However, these tags are used only for formatting and there is no
guarantee that cells labelled as headers are also semantically headers of the
table. Therefore, the table layout structure and relationships between cells make
preprocessing and decomposition necessary before machine understanding tasks
can be performed.

Hurst [10] introduced five components of table processing: graphical (a basic
graphical representation of the table, e.g. bitmap, rendered table on screen or
paper), physical (a description of the table in terms of physical relationships
between its basic elements when rendered on a page), functional (the purpose of
areas of the table with respect to the use of the table by the reader), structural
(the organisation of cells as an indication of the relationships between them), and
semantic (the meaning of the text in the cell). Following Hurst, we differentiate
five steps of table processing:

1. Table detection locates the table in document.
2. Functional analysis detects and marks functional areas of tables such as

navigational (e.g. headers, stubs, super-row) and data cells.
3. Structural analysis determines the relationships between the cells. For

each cell in the table, it finds related header(s), stub(s) and super-row cells.
4. Syntactic analysis looks at the value of the cells at the syntactic level, for

example, by identifying whether the value is a numeric expression.
5. Semantic analysis determines the meaning of data and attempts to extract

and represent specific information from tables.

In this paper, we focus on functional and structural analysis of tables in clin-
ical literature available openly in PMC. The aim is to facilitate further syntactic
and semantic processing of tables by providing a model to capture necessary
information about cells’ functions, relationships and content.

2 Background

There are three main areas of table processing in literature: (1) table detec-
tion, (2) functional analysis and (3) table mining applications, which include
information retrieval, information extraction, question answering and knowledge
discovery.

Table detection is a hard problem for graphical document formats because it
may involve visual processing of the document in order to find visual structures
recognisable as tables [2]. Other formats can be also challenging. For example, ta-
ble tags exist in HTML, but they are often used for formatting web page layout.
Previous work focused on detecting tables from PDF, HTML and ASCII doc-
uments using Optical Character Recognition [13], machine learning algorithms
such as C4.5 decision trees [17] or SVM [22, 19], and heuristics [26].

Functional analysis examines the purpose of areas of the table. The aim
here is to differentiate between cells containing data and cells containing naviga-
tional information, such as headers, stubs or super-rows (see Figure 1). To solve
this problem, several machine learning methods like C4.5 decision trees [12, 5],

2
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conditional random fields [23] and hierarchical clustering [9] were used on web
and ASCII text tables in general domain. Hurst also developed a system that
is able to perform text mining analysis according to his model [10]. His system
was composed of several components performing smaller tasks such as detection,
functional analysis and structural analysis of tables by using rule based and/or
machine learning approaches.

Fig. 1. Table components (PMC29053): Cell – the basic grouping within a table; Cap-
tion – a textual description of the table’s content; Footer – additionally describes data
or symbols used in the table; Column – a set of vertically aligned cells; Row – a set
of horizontally aligned cells. Header – top-most row (or set of several top-most rows)
that defines data categories of data columns; Stub or column header – typically the
left-most column of the table that categorizes the data in the rows. Super-row – groups
column headers and data by some concept.

There are several applications that use tables. For example, the BioText
Search engine [8, 6] performs information retrieval from text, abstracts, figures
and tables in biomedical documents. Wei et al. [23] created a question-answering
system that looked for answers in tables, using CRF and information retrieval
techniques. Few attempts were made to extract information using linked data
and databases [16, 24] with machine learning methods trained on a standardized
set of tables [21]. There have been several approaches to semantically annotate
columns using external resources, such as search engines [18] or linked data re-
sources [14]. WebTables used a hypothesis that tables in web documents could
be viewed as relational database tables [4]. They created a huge corpus database
that consists of 154 million distinct relational tables from the world wide web
that can be used for schema auto-complete, attribute synonym finding or joint
graph traversal in database applications. Most of these approaches restricted
themselves to simple tables because they lacked functional or structural process-
ing steps.

Doush and Pontelli [7] created an spreadsheet ontology that included a model
of table for screen reader’s purposes. Their model considered tables that can be

3
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found in spreadsheets (usually simple matrix tables). They differentiate between
data and header cells, but they do not include other possible cell roles such as
stub and super-row cells.

3 Table Model

Since current table models focus mainly on visualization for human readers, we
here propose a new model for computational processing which is comprised of
two components:

– Table types: common table structural types that determine the way of read-
ing the table;

– Data model: models the table structure and data in a way that data can be
automatically processed by the machine (including visualisation).

3.1 Table types

We define three main structural table types with several sub-types based on the
table’s dimensionality:

– One-dimensional (list) tables are described by a single label. The label is
usually placed in the header (see Figure 2 for an example). One-dimensional
tables may have multiple columns, representing the same category, where
multi-column structure is used for space saving purposes.

– Two-dimensional or matrix tables have data arranged into a matrix cat-
egorised usually by two labels: a column header and row header (stub). In
our model, these tables may have multiple layers of column or row headers
(see Figure 4 for an example).

– Multi-dimensional tables contain more than two dimensions. We identify
two types of multi-dimensional tables:
• Super-row tables contain super-rows that group row headers below

them (see example in Figure 1). A super-row table can have multiple
layers of super-rows, forming a tree-like structure. This structure is typ-
ically visually presented with an appropriate number of white spaces in
front of each stub’s label.

• Multi-tables are tables composed of multiple, usually similar tables,
merged into one table. In some cases, headers of concatenated tables
inherit some categorisation from the header of the first table.

3.2 Data Model

The proposed data model captures necessary information for semantic under-
standing of tables to facilitate further processing and knowledge gathering. We
have extended the spreadsheet ontology for tables [7] by adding entities that are

4
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Fig. 2. Example of a list table (PMC161814)

Fig. 3. Hierarchy of the proposed table model

not specific for navigation in screen readers, so it contains information that can
aid text mining from tables and visualization.

The model has article, table and cell layers (see Figure 3), which are arranged
in a tree-like instantiation, with the Article node as the top element, containing
the article information (i.e. title, reference, authors, text) and a list of tables.
The article layer also stores where tables are mentioned within the document.
Caption, footer, order of the table in the document and its structural type (di-
mensionality of the table, as defined above) are stored in the table layer. The
table node also contains a list of table’s cells. Finally, in the cell layer, the model
stores the information about each cell including its value, function and position
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in the table. In the cell layer, the model also stores information regarding struc-
tural references to the navigational cells (headers, stubs and super-rows). The
references to navigational cells are set by the ID of the closest cell in the navi-
gational area. If navigational cells contain multiple layers, we apply a cascading
style of cell referencing, where lower layers (closer to the data cell) reference the
higher order layer (see Figure 4). In this layer, the model further captures any
possible annotations of the cell content, which might be added during the table
processing. For example, annotations may be syntactic, giving information about
the type of value inside the cell, or semantic, mapping to a knowledge source
(e.g. ontology or thesauri such as UMLS [3]).For each annotation, we record the
span positions of annotated parts in content, concept names, ids in the lexicon or
ontologies with which the text was annotated, name of the annotation knowledge
source, its version, and environment description.

Fig. 4. Example of cascading referencing of the header relationships (PMC270060).
The cell with the value 56 is linked to the header "Intervention", which is linked to the
super-header "Pre-intervention".

We note that spanning cells in our model are split and the content of a cell
is copied to all cells that were created in the splitting process. Column, row
numbers and cell ids are assigned after the splitting of spanning cells.

4 Methodology for automatic table disentangling

We propose a methodology that automatically performs the functional and struc-
tural analysis of tables in PMC documents. The method uses a set of heuristic
rules to disentangle tables and transform them into the previously described
table model.

4.1 Identification of functional areas

The aim of functional analysis is to identify functional areas (headers, stubs,
super-rows, data cells) within the table.

Header identification. In most PMC documents, headers are marked using a
thead XML tag. If thead tag exists, we assume that it is correctly labelled. For
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tables that do not have a header annotated, we examine syntactic similarity of
the cells over the column. This is performed by using a window that takes five
cells from the column and checks whether the content has the same syntactic
type (i.e. string, single numeric value (e.g. 13) numeric expression (e.g. 5±2), or
empty). If all cells are of the same syntactic type, we assume that the table does
not have a header. However, if the cells are syntactically different, for example,
the first 2 cells are strings while the rest are numeric, we move the window down
until it reaches the position where all cells in it have the same syntactic type.
The cells above the window are marked as header cells. The window size of five
cells is chosen based on experimental experience. We have encountered tables
that had up to four rows of headers, so the window size needs to be large enough
to capture syntactic type differences. The algorithm then marks as header only
rows with all cells marked as headers.

Another heuristic for determining header rows is to check whether some of
the first row cells spans over several columns. If they do, we assume that the
header contains the next rows, until we reach first one with no spanning cells.

Headers in multi-tables are usually placed between horizontal lines. Only the
first header is usually marked with thead tags. If multiple cells between the lines
have content, these cells are marked as header cells. However, if only one cell
has content, these cells are classified as super-rows.

Stub identification. Stubs or column headers are usually cells in the left most
column. However, if cells in the left-most columns are row-spanning, the stub
contains the next columns, until the first column with no spanning cells is iden-
tified.

Super-row identification. Super-rows are rows that group and categorise stub
labels. They can have multiple layers. In order to recognise super-rows, our
method uses the following heuristics:

– A super-row can be presented as cells that span over the whole row. If these
cells have regular content, they are labelled as super-rows.

– A tables may have multiple layers of super-rows. Authors usually present
subgroup of relationships with leading blank spaces (indentation) at the
beginning of the grouped elements. The number of blank spaces determines
the layer of categorisation (i.e. the first layer has usually one blank space, the
second has two, etc.). In other words, indentation level visually structures
the super-row and stub layers. The row with a label that has less blank
spaces than the labels in a stub below, is categorising them, and is therefore
considered their super-row. Since there can be multiple levels of super-rows,
we used a stack data structure in order to save the associated super-rows of
the currently processed cell.

– In PMC documents, it is usual for spanning cells to be presented as a column
with multiple cells where only one cell has content (usually the leading one).
Rows with only one cell with content are labelled as super-rows.
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4.2 Identification of inter-cell relationships

Once the functional areas are detected, we further attempt to identify relation-
ships between cells. Using the detected functional areas, the method classifies
tables into one of the four structural classes (one-dimensional, matrix, super-row,
multi-table). This classification is based on a set of rules about the functional
areas of the table. For example, if the table contains multiple headers, it is clas-
sified as multi-table. If it contains super-rows it is a super-row table. If table has
only one dimension, it is a list table. Otherwise, it is matrix table.

Depending on the class, the method decides which relationships to search for.
For example, data cells in one-dimensional tables can contain only headers, in
matrix tables they contain relationships with stubs and headers, while in super-
row tables they contain an additional relationships with the super-rows, which
may be cascading with multiple layers. Data cells are related to header cells
above, stub cells on the left and super-rows above. Navigational cells are related
to the higher layers of navigational cells as defined in the cascading referencing
model.

Detected functions and relationships of cells can be stored in an XML file
and mySQL database according to our model.

5 Results and Evaluation

5.1 Data set

We collected a data set by filtering PMC data for clinical trial publications.
We mapped MEDLINE citations, with clinical trial publication type ("Clinical
Trial", "Clinical Trial, Phase I", "Clinical Trial, Phase II", "Clinical Trial, Phase
III" and "Clinical Trial, Phase IV"), to the PMC and extracted full text articles.
The data set contains 2,517 documents in XML format, out of which 568 (22.6%)
had no tables in XML (usually containing only reference to a scanned image).
The data set contains a total of 4,141 tables, with 80 cells per table on average.

Clinical trial publications are rich in tables, containing, on average, 2.4 tables
per article. Biomedical literature, as a whole, contains on average 1.6 tables per
article (30% less than clinical literature).

5.2 Table disentangling performance

The system was able to process 3,573 tables from the data set (86%). Table 1
presents the numbers of tables identified as belonging to different types. It is
interesting that matrix tables make over 55% of tables, along with super-row
tables (over 42%), while list and multi-table are quite rare (around 2%).

We performed the evaluation of the functional and structural analyses on a
random subset of 30 articles containing 101 tables. The evaluation sample con-
tains tables from each table type and has been evaluated manually. The detailed
information about the evaluation data set and the performance on structural
table type recognition is given in Table 1.
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Overall List tables Matrix tables Super-row tables Multi-table
Number of tables 3573 27 (0.76%) 1974 (55.24%) 1517 (42.46%) 55 (1.54%)
Number of evaluated 101 6 51 27 17
Accuracy of structural
type recognition 92.07% 100% 96% 96.3% 70.6%
Table 1. Overview of the dataset and accuracy of the recognition of structural table
types

TP FP FN Precission Recall F-Score
Cell role – header 1041 35 260 96.70% 80.00% 87.60%

List 1 0 0 100.00% 100.00% 100.00%
Matrix 469 9 0 98.10% 100.00% 99.00%
Super-row 275 18 20 93.85% 93.22% 93.53%
Multi-table 296 8 240 97.36% 55.22% 70.47%

Cell role – stub 1250 87 22 93.49% 98.27% 95.82%
List 0 0 7 N/A N/A N/A
Matrix 407 1 3 99.75% 99.26% 99.51%
Super-row 488 17 4 96.63% 99.10% 97.89%
Multi-table 355 69 8 83.72% 97.79% 90.22%

Cell role – super-row 414 102 66 80.23% 86.25% 83.13%
List 12 7 0 63.15% 100.00% 77.42%
Super-row 359 26 27 93.24% 93.00% 93.12%
Multi-table 43 63 37 40.57% 53.75% 46.24%

Cell role – data 3709 167 41 95.69% 98.91% 97.27%
List 31 7 6 81.57% 83.78% 82.66%
Matrix 1438 1 12 99.93% 99.17% 99.55%
Super-row 1517 11 21 99.28% 98.63% 98.95%
Multi-table 723 148 2 83.00% 99.72% 90.60%

Overall 6414 391 389 94.25% 94.28% 94.26%
Table 2. Evaluation of functional table analysis

TP FP FN Precission Recall F-Score
References – header 5402 768 47 87.55% 99.13% 92.98%

List 7 0 0 100.00% 100.00% 100.00%
Matrix 2076 15 3 99.30% 99.85% 99.60%
Super-row 2501 61 6 97.61% 98.63% 98.95%
Multi-table 818 692 38 54.17% 95.56% 69.15%

References – stub 4982 147 0 97.10% 100.00% 98.55%
Matrix 1788 14 0 99.22% 100.00% 99.61%
Super-row 2057 95 0 95.58% 100.00% 97.74%
Multi-table 1137 38 0 96.70% 100.00% 98.35%

References – Super-row 1663 78 269 95.52% 86.07% 90.55%
List 29 0 6 100.00% 82.85% 90.62%
Super-row 1456 66 215 95.66% 87.13% 91.12%
Multi-table 178 12 42 93.68% 80.91% 86.82%

Overall 12047 993 316 92.38% 97.44% 94.84%
Table 3. Evaluation of structural table analysis
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The results for the functional and structural analyses are presented in Tables
2 and 3. Associations to the right roles and navigational relationships (headers,
stubs, super-rows) were considered true positives (TP). Association to the non-
existing roles or relationships were considered false positives (FP), while missing
association were considered false negatives (FN). For the functional analysis,
the method archived an F-score of 94.26%, with the lowest performance on the
identification of super-row areas for the multi-tables. Our results are comparable
and better than previously reported. For example, Hurst [10] combined Naive
Bayes, heuristic rules and pattern based classification archiving F-score of around
92% for functional analysis. Similarly, Tengli et al. [21] reported F-score of 91.4%
for the table extraction task in which they recognised labels and navigational cells
, while Wei et al. [23] reported an F-measure of 90% for detecting headers using
CRF. Cafarella et al. [4] detected navigational cells with precision and recall not
exceeding 89% and Jung et al. [12] reported 82.1% accuracy in extracting table
headers.

For the task of structural analysis, the system achieved an F-score of 94.84%.
For comparison, Hurst’s system performed with 81.21% recall and 85.14% preci-
sion. It is also important to note that input data in Hurst’s system were perfectly
formatted, while the PMC data is often not. To the best of our knowledge, there
is no other system that attempted to performing the combined task of functional
and structural table analysis.

During the error analysis, we identified misleading mark-up and complex
tables unique to a specific paper in the evaluation set as the main reasons for
errors. In PMC documents, XML mark-up features such as spanning cells, head
tags, and breaking lines are often misused to make tables look visually appealing.
Although we have applied some heuristics that can overcome some of the issues,
some of the misleading XML labelling remains challenging. Furthermore, there
are tables that are not only complex in structure, but their structure is unique
to specific paper, and thus difficult to generalise. Our method made significant
number of errors on multi-tables, since it is challenging to determine whether a
row is a new header or just an emphasized row or super-row just by analysing
XML structure. Errors in wrongly recognizing headers or super-rows cause high
amount of false links in structural analysis, since relationships in the subsequent
rows will be wrongly annotated. However, multi-tables are relatively rare, so this
did not heavily affect the overall results.

6 Conclusion

In this paper we have presented a model to computationally represent tables
found in scientific literature. We also presented a domain-independent method-
ology to disentangle tables and add annotations about functional areas and re-
lationships between table cells. The evaluation has shown that the table struc-
ture can be identified with high F-scores (above 94%) which is encouraging.
Even though we performed evaluation on the PMC clinical trial documents,
the proposed approach can be extended to HTML or any other XML-like for-

10



Lecture Notes in Computer Science: NLDB 2016
6. CONCLUSION

mat. The Implementation of the method is available at https://github.com/
nikolamilosevic86/TableAnnotator.

Although the results for these steps are encouraging, there are still a number
of challenges in table mining, mainly in the semantic analysis of the cell content
and the methods to query and retrieve table data.

The proposed model can serve as a basis to support applications in informa-
tion retrieval, information extraction and question answering. We have already
performed several information extraction experiments [15] and in the future we
are planning to develop a general methodology for information extraction from
tables in biomedical literature that uses the presented approach as its basis. Our
methodology can be also used as a basis for semantic analysis and querying of
tables. In addition, the model can aid systems in accessibility domain. For ex-
ample, screen readers for visually impaired people could enable easy navigation
through tables by providing information about cell’s relationships and functions.
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