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Abstract

In this paper, a new predictor-based consensus disturbance rejection method is pro-

posed for high-order multi-agent systems with Lipschitz nonlinearity and input delay.

First, a distributed disturbance observer for consensus control is developed for each

agent to estimate the disturbance under the delay constraint. Based on the conventional

predictor feedback approach, a non-ideal predictor based control scheme is constructed

for each agent by utilizing the estimate of the disturbance and the prediction of the rel-

ative state information. Then, rigorous analysis is carried out to ensure that the extra

terms associated with disturbances and nonlinear functions are properly considered.

Sufficient conditions for the consensus of the multi-agent systems with disturbance

rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii

functionals. A simulation example is included to demonstrate the performance of the

proposed control scheme.
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1. Introduction

In recent years, cooperative control has received considerable attention in control

community. An important problem arising from cooperative control is to coordinate

individual dynamic systems, which have the same or similar dynamics, to perform a

common control task, and this topic is commonly known as consensus control [1]. The5

early results concentrated on consensus problems of simple agent dynamics such as

single and double integrators [2, 3, 4], and then the results were extended to high-order

linear systems [5, 6, 7, 8, 9] and also nonlinear systems [10, 11, 12]. Some applications

in formation control [13, 14, 15, 16], synchronization [17, 18, 19, 20], and mechanical

systems [21, 22], have also been investigated.10

Since practical multi-agent systems often suffer from various external disturbances,

considerable effort has been placed on consensus disturbance rejection problem. Some

robust control methods, such as H∞ consensus control [23, 24], have been proved to

be effective for disturbance rejection of the multi-agent systems with external distur-

bances bounded by H2 norms. However, disturbances in real engineering problems15

are often periodic and have inherent characteristics such as harmonics and unknown

constant load [25]. For those kinds of disturbances, it is desirable by utilizing the dis-

turbance information in the design of control input to cancel the disturbances directly.

One common design method is to estimate the disturbance by using the measurements

of states or outputs and then use the disturbance estimate to compensate the influence20

of the disturbance on the system, which is referred to as disturbance observer-based

control (DOBC) [26]. Using DOBC, consensus of second-order multi-agent dynami-

cal systems with exogenous disturbances was studied in [27, 28] for matched distur-

bances and in [29] for unmatched disturbances. Disturbance observer based tracking

controllers for high-order integrator-type and general multi-agent systems were pro-25

posed in [30, 31], respectively. A systematic study on consensus disturbance rejection

via disturbance observers could be found in [32]. Note that most existing results are

limited to linear systems.

In reality, other than the external disturbances, time delays are inevitable in various

practical engineering systems including networked control systems [33]. Some recent30
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results for consensus control of multi-agent systems with delays can be found in [34,

35, 36, 37] and the references therein. It is generally recognized that the system with

input delay is more involved than the system with state delay in control theory. A

wide variety of predictor-based feedback approaches are effective for systems with

input delay (see [38] and the references therein). However, there is a lack of study35

on consensus disturbance rejection for multi-agent systems with input delay which is

more relevant from a practical point of view. The problem of consensus controller

design with input delay is more involved due to the undesirable disturbances. For

example, the model reduction method used in [36] cannot be applied for the consensus

disturbance rejection design in the presence of disturbances.40

Inspired by the previous discussions, in this paper, we consider the consensus dis-

turbance rejection problem for Lipschitz nonlinear multi-agent systems with input de-

lay based on the DOBC approach. Compared with the previous works, the key features

of this paper are as follows: (1) Input delay is taken into account for the consensus

disturbance rejection problem. Different from the conventional predictor feedback ap-45

proach, a non-ideal predictor based control scheme is constructed for each agent by

using the estimate of the disturbance and the prediction of the relative state. (2) Unlike

[31], [32], where the agent dynamics are restricted to be linear, we consider the Lip-

schitz nonlinearity in the system dynamics. Rigorous analysis within the framework

of Lyapunov-Krasovskii functionals is carried out to guarantee that the extra integral50

terms of the system state associated with nonlinear functions are properly considered.

The remainder of this paper is organized as follows. In Section 2, the problem

formulation is introduced. Section 3 presents some notations and preliminary results.

Section 4 presents the main results on the consensus disturbance rejection design. Sim-

ulation results are given in Section 5. Section 6 concludes the paper.55

2. Problem Statement

In this paper, we consider the leader-follower consensus control of a group of N

agents. Assume that the dynamics of followers, labelled as 2, 3, . . . , N , are described

3



by

ẋi(t) = Axi(t) + φ(xi(t)) +Bui(t− h) +Dωi(t), (1)

and the leader agent is indexed by 1, whose dynamics are represented by60

ẋ1(t) = Ax1(t) + φ(x1(t)), (2)

where xi ∈ Rn denotes the state, ui ∈ Rm denotes the control input, x1 ∈ Rn is the

leader’s state, A ∈ Rn×n and B ∈ Rn×m are constant matrices with (A,B) being

controllable, h ∈ R+ is the constant and known input delay, ωi ∈ Rs is a disturbance

that is generated by a linear exogenous system

ω̇i(t) = Sωi(t), (3)

with S ∈ Rs×s being a known constant matrix, and the nonlinear function φ : Rn →65

Rn, φ(0) = 0, is assumed to satisfy the Lipschitz condition as

‖φ(α)− φ(β)‖ ≤ γ‖α− β‖,∀α, β ∈ Rn

where γ > 0 is the Lipschitz constant.

Let ξi = xi−x1, i = 2, 3, · · · , N as the tracking errors. Then, based on the system

dynamics (1) and (2), the error dynamics of the ith agent can be obtained as

ξ̇i(t) = Aξi(t) + ψi +Bui(t− h) +Dωi(t), (4)

where ψi = φ(xi(t))− φ(x1(t)).70

With the agent 1 as the leader, the control objective is to design a control input for

each agent to follow the state of the leader x1 under the disturbances. That is, under

these control inputs, the following hold for any initial conditions,

lim
t→∞

(xi (t)− x1 (t)) = lim
t→∞

ξi(t) = 0, ∀i = 2, 3, · · · , N.

We make two assumptions on the dynamics of the agents and the connections

among the agents.75

Assumption 1. The disturbance is matched. i.e., there exist a matrix F ∈ Rm×s such

that D = BF .
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Assumption 2. The communication topology G contains a directed spanning tree with

the leader as the root.

Remark 1. In this paper, the input delay under consideration is fixed and identical, and80

it is adopted for the convenience of presentation of the proposed design. The analysis

presented in this paper could be extended to the case of time-varying delay, as long as

the upper bound of the time delay is known.

Remark 2. The matching condition in Assumption 1 guarantees that the disturbance

act via the same channel as that of the control input. This assumption could be re-85

laxed in some circumstances because unmatched disturbances under uncertain condi-

tions may be converted to the matched ones based on output regulation theory [32].

Furthermore, the disturbance condition given in (3) is commonly used for disturbance

rejection and output regulation. Many kinds of disturbances in engineering can be de-

scribed by this model. For instance, unknown constant disturbances or harmonics with90

unknown amplitudes and phases, belong to the allowed class of disturbances.

3. Preliminary Results

3.1. Notations

Throughout the paper, let Rn×m and Rn represent a set of n×m real matrices and

n-dimensional column vectors, and 0n×m denotes the n ×m matrices with all zeros.95

Let 1 and I represent a column vector with all entries equal to one and the identity

matrix with appropriate dimension, respectively. Lp2 [0,∞) denotes the space of p-

dimensional square integrable functions over [0,∞). Given a real matrix X ∈ Rn×m

and vector x ∈ Rn, ‖X‖F denotes the Frobenius norm, and ‖x‖ is the Euclidean norm.

The symbol ⊗ denotes the Kronecker product of matrices, and the notation diag(πi)100

denotes a block-diagonal matrix with πi, i = 1, 2, · · · , N, on the diagonal. The matrix

inequality A > B means that A−B is positive definite.

3.2. Graph theory

The communication topology among the agents is described by the directed graph

G , (V, E), in which V , {1, · · · , N} is the set of nodes, and E ⊆ V × V is the set105
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of edges with the ordered pair of nodes. A vertex represents an agent, and each edge

represents a connection. Associated with the communication graph is its adjacency

matrix A = [aij ] ∈ RN×N , where the element aij denotes the connection between

the agent i and agent j. aij = 1 if (j, i) ∈ E , otherwise is zero, and aii = 0 for

all nodes with the assumption that there exists no self loop. In the directed graph G,110

(i, j) ∈ E denotes that the jth agent can obtain the information from the ith agent, but

not vice versa. A directed path on the graph G from node i1 to node is is a sequence

of ordered edges as (i1, i2), (i2, i3), · · · , (is−1, is). A directed graph that contains a

spanning tree is that there exists a node called the root, and this root has a directed path

to every other node of the graph. The Laplacian matrix L = [lij ] ∈ RN×N is defined115

by lii =
∑N
j=1 aij and lij = −aij when i 6= j. For a directed graph, the Laplacian

matrix L has the following properties.

Lemma 1 ([3, 39]). The Laplacian matrixL of a directed graph G has at least one zero

eigenvalue with a corresponding right eigenvector 1 = [1, 1, . . . , 1]
T and all nonzero

eigenvalues have positive real parts. Furthermore, zero is a simple eigenvalue of L if120

and only if G has a directed spanning tree.

Because the leader has no neighbours, the Laplacian matrix L of G has the follow-

ing structure

L =


 0 01×(N−1)

L2 L1


 ,

where L1 ∈ R(N−1)×(N−1) and L2 ∈ R(N−1)×1. From Lemma 1, it is obvious that

L1 is a nonsingular M-matrix. We also have the following result for L1:

Lemma 2 ([40]). For the nonsingular M-matrix L1, there exists a positive diagonal

matrix G such that

GL1 + LT1G ≥ r0I, (5)

for some positive constant r0. It is also shown that G can be constructed by let-

ting G = diag{q2, q3, · · · , qN} = (diag(π))
−1, where π = [π2, π3, · · · , πN ]T =125

(
LT1
)−1

[1, 1, · · · , 1]T .
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3.3. Predictor-based feedback approach

In this subsection, we recall the well-known predictor-based feedback approach

[41, 42]. Consider a linear input-delayed system

ẋ(t) = Ax(t) +Bu(t− h),

where x ∈ Rn denotes the state, u ∈ Rm denotes the control input, A ∈ Rn×n and

B ∈ Rn×m are constant matrices, h ∈ R+ is input delay, which is known and constant.

We design the feedback controller as

u(t) = Kx(t+ h).

Then the finite-dimensional closed-loop system can be expressed as

ẋ(t) = (A+BK)x(t).

If we could find a possible control gain matrix K to stabilize the closed-loop system,

then the control design problem is solved. However, it is unrealistic since the state

information x at time t + h cannot be obtained with direct measurement. A feasible

way is to calculate the vector x(t+ h) as follows [41]:

x(t+ h) = eA(t+h)x(0) +

∫ t+h

0

eA(t+h−τ)Bu(τ − h)dτ

= eAhx(t) +

∫ t

t−h
eA(t−τ)Bu(τ)dτ.

Therefore we can express the controller with an ideal predictor

u(t) = K

(
eAhx(t) +

∫ t

t−h
eA(t−τ)Bu(τ)dτ

)
.

Based on the problem conditions, the multi-agent systems considered in this work are

nonlinear and subject to deterministic disturbances with unknown bounds.

Before moving into the observer and controller design, a couple of preliminary130

results are presented below for the consensus analysis.

Lemma 3 (Jensen’s Inequality, [43]). For a positive definite matrix P , and a function

x : [a, b]→ Rn, with a, b ∈ R and b > a, the following inequality holds:
(∫ b

a

xT (τ)dτ

)
P

(∫ b

a

x(τ)dτ

)
≤ (b− a)

∫ b

a

xT (τ)Px(τ)dτ. (6)
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Lemma 4 ([44, 45]). For a positive definite matrix P , the following identity holds

eA
T tPeAt − eαtP = −eαt

∫ t

0

e−ατeA
T τReAτdτ, (7)

where

R = −ATP − PA+ αP.

Furthermore, if R is positive definite, ∀t > 0,

eA
T tPeAt < eαtP. (8)

Lemma 5. For any given a, b ∈ Rn, we have

2aTSQb ≤ aTSPSTa+ bTQTP−1Qb, (9)

where P > 0, S and Q have appropriate dimensions.

4. Main Results

The disturbance rejection design consists of disturbance estimation and rejection.

The estimation is based on the relative state information obtained through the commu-

nication network. It is assumed that the ith agent collects the relative state information

of its neighbouring agents as

ζi(t) =

N∑

j=1

aij (xi(t)− xj(t)) ,∀i = 2, 3, · · · , N.

From the relationship between A and L, it is easy to see that ζi(t) =
∑N
j=2 lijξj(t).

The disturbance estimation and rejection proposed in this paper will be designed based135

on relative state information ζi(t).

4.1. Controller and observer design

The control input for disturbance rejection is designed as follows:

ui(t) = cKχi(t)− FeShω̂i(t), (10)
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where χi(t) and ω̂i(t) are generated by

χi(t) = eAhζi(t) +
N∑

j=2

lij

∫ t

t−h
eA(t−τ)cBKχj(t)dτ, (11)

ω̂i(t) = ηi(t) + Lζi(t), (12)

η̇i(t) =S (ηi(t) + Lζi(t))− LBF
N∑

j=2

lij (ηj(t) + Lζj(t))

− LAζi(t)− LB
N∑

j=2

lijuj(t− h), (13)

where c ≥ 2qmax/r0 is a positive real constant with qmax = max{q2, q3, · · · , qN}, K
and L are constant gain matrices to be designed later.

Remark 3. The integral term of χi(t) is added in the controller design to offset the140

adverse effect of the time delay. If the nonlinear and disturbance terms in (1) are ab-

sent, χi(t) is an ideal predictor of the relative state information of the ith agent. Due

to the presence of disturbance, it is a non-ideal prediction of the relative state informa-

tion. Furthermore, (12)-(13) are referred to as a distributed predictor-based consensus

disturbance observer, which is only dependent on the relative state information, and145

independent of the information of the local state.

Let zi(t) = ωi(t)− ω̂i(t). A direct evaluation gives that

żi(t) = Sωi(t)− η̇i(t)− L
N∑

j=2

lij ξ̇j(t)

= Szi(t)− L
N∑

j=2

lijψj − LBF
N∑

j=2

lijzj(t), (14)

which can be written in the compact form as

ż(t) = (IN−1 ⊗ S)z(t)− (L1 ⊗ LBF )z(t)− (L1 ⊗ L)Ψ, (15)

where Ψ =
[
ψT2 , ψ

T
3 , · · · , ψTN

]T
.
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With the control input (10), the closed-loop dynamics of each agent in (4) can be

written as

ξ̇i(t) =Aξi(t) + ψi +BFeShzi(t− h) + cBKeAh
N∑

j=2

lijξj(t− h)

+ cBK
N∑

j=2

lij

∫ t

t−h
eA(t−τ)cBKχj(τ − h)dτ, (16)

where we have used ωi(t) = eShωi(t− h) and D = BF .

From the error dynamics (4), we have

ξi(t) = eAhξi(t− h) +

∫ t

t−h
eA(t−τ) (ψi +Bui(τ − h) +Dωi(τ)) dτ. (17)

Invoking (17) into (16), we obtain

ξ̇i(t) =Aξi(t) + cBK

N∑

j=2

lijξj(t) + ψi +BFeShzi(t− h)

− cBK
N∑

j=2

lij

∫ t

t−h
eA(t−τ) (ψj +BFeShzj(τ − h)

)
dτ. (18)

Let ξ =
[
ξT2 , ξ

T
3 , · · · , ξTN

]T
, z =

[
zT2 , z

T
3 , · · · , zTN

]T
. The error dynamics of ξ(t) can

be written in the compact form as

ξ̇(t) = (I ⊗A+ cL1 ⊗BK) ξ(t) + Ψ +
(
I ⊗BFeSh

)
z(t− h) + ∆1 + ∆2, (19)

where

∆1 = − (cL1 ⊗BK)

∫ t

t−h

(
I ⊗ eA(t−τ)

)
Ψdτ,

∆2 = − (cL1 ⊗BK)

∫ t

t−h

(
I ⊗ eA(t−τ)BFeSh

)
z(τ − h)dτ.

For the convenience, let ∆1 =
[
δT2 , δ

T
3 , · · · , δTN

]T
and ∆2 =

[
δ
T

2 , δ
T

3 , · · · , δ
T

N

]T
.

Next, we will design the control gain K and the observer gain L. With the control

law shown in (10), K and L are chosen as

K = −γ1BTP, (20)

L = γ2cQ
−1DT , (21)
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where γ1, γ2 are positive parameters to be chosen, and P > 0, Q > 0 are constant150

matrices to be designed.

In order to obtain the main results, the bounds on ‖∆1‖2 and ‖∆2‖2 are given in

the following lemma.

Lemma 6. For the terms ∆1 and ∆2 in the error dynamics (19), bounds can be estab-

lished as

‖∆1‖2 ≤ ρ1
∫ t

t−h
ξT (τ)ξ(τ)dτ, (22)

‖∆2‖2 ≤ ρ2
∫ t

t−h
zT (τ − h)z(τ − h)dτ, (23)

where

ρ1 = (N − 1) c2γ21hρ
2eα2hγ2 ‖L1‖2F ,

ρ2 =(N − 1)hα1c
2γ21ρ

2e(α0+α2)h‖L1‖2F ,

with ρ, α0, α1, α2 being positive numbers such that

ρ2I ≥ PBBTBBTP, (24)

α0 > λmax(S + ST ), (25)

α1 ≥ λmax(FTBTBF ), (26)

α2 > λmax(A+AT ). (27)

PROOF. See the Appendix.

4.2. Consensus analysis155

The following theorem presents sufficient conditions to ensure that the consensus

disturbance rejection problem is solved by using the control algorithm (10) with the

control gain K and the observer gain L in (20)-(21).

Theorem 7. For multi-agent systems (1)–(2) with Assumptions 1 and 2, the consensus

disturbance rejection problem can be solved by the control algorithm (10) with (20)–

(21) if there exists positive definite matrices P,Q and constants ρ, γ1, γ2 > 0, such

11



that

ρW −BBT ≥ 0, (28)

AW +WAT − 2γ1BB

T +H W

W −ε−11


 < 0, (29)

QS + STQ− 2γ2D
TD + ε2I < 0, (30)

are satisfied with W = P−1 and

H = (κ1 + κ2 + κ3 + κ4) I,

ε1 =
(
κ−11 + cγ2κ

−1
5 σ2

max(L1)
)
γ2 + ρ1π

−1
minπmaxκ

−1
3 eh,

ε2 = πmaxπ
−1
min

(
α1κ

−1
2 e(α0+1)h + cγ2κ5λmax(DTD) + ehκ−14 ρ2

)
,

where πmin = min{π2, π3, · · · , πN}, πmax = max{π2, π3, · · · , πN}.

PROOF. To start the consensus analysis, we try a Lyapunov function candidate

V0 = ξT (G⊗ P ) ξ + zT (G⊗Q) z + σ0e
h

∫ t

t−h
eτ−tzT (τ)z(τ)dτ, (31)

where σ0 is a positive value to be chosen later.160
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The derivative of V0 along the trajectory of (15) and (19) can be obtained as

V̇0 = ξT
(
G⊗

(
PA+ATP

)
− cγ1

(
GL1 + LT1G

)
⊗ PBBTP

)
ξ

+ 2
N∑

i=2

1

πi
ξTi P

(
BFeShzi(t− h) + ψi + δi + δi

)

+ zT (t)
(
G⊗

(
QS + STQ

)
− cγ2(GL1 + LT1G)⊗DTD

)
z(t)

− 2γ2cz
T (t)(GL1 ⊗DT )Ψ− σ0eh

∫ t

t−h
eτ−tzT (τ)z(τ)dτ

+ σ0e
hzT (t)z(t)− σ0zT (t− h)z(t− h)

≤ ξT
(
G⊗

(
PA+ATP + (κ1 + κ2 + κ3 + κ4)PP

)
− γ1cr0I ⊗ PBBTP

)
ξ

+
γ2

κ1

N∑

i=2

1

πi
ξTi ξi +

α1

κ2
eα0h

N∑

i=2

1

πi
zTi (t− h)zi(t− h) +

‖∆1‖2
κ3πmin

+
‖∆2‖2
κ4πmin

+ zT (t)

(
G⊗

(
QS + STQ+

πmax

πmin
γ2cκ5λmax(DTD)I

)
− γ2cr0I ⊗DTD

)
z(t)

− σ0zT (t− h)z(t− h) + σ0e
hzT (t)z(t) +

γ2cγ
2

κ5
σ2
max(L1)

N∑

i=2

1

πi
ξTi ξi

≤ ξT
(
G⊗

(
PA+ATP − 2γ1PBB

TP + (κ1 + κ2 + κ3 + κ4)PP + σ1I
))
ξ

+ zT (t)
(
G⊗

(
QS + STQ− 2γ2D

TD + σ11I
))
z(t) +

‖∆1‖2
κ3πmin

+
‖∆2‖2
κ4πmin

+
(
α1κ

−1
2 π−1mine

α0h − σ0
)
zT (t− h)z(t− h), (32)

where σ1 =
(
κ−11 + γ2cκ

−1
5 σ2

max(L1)
)
γ2, σ11 = σ0πmaxe

h+γ2cκ5πmaxπ
−1
minλmax(DTD).

Lemmas 2, 4 and 5 are used in above derivation.

By choosing σ0 = α1κ
−1
2 π−1mine

α0h, the derivative of V0 could be written as

V̇0 ≤ ξT
(
G⊗

(
PA+ATP − 2γ1PBB

TP + (κ1 + κ2 + κ3 + κ4)PP + σ1I
))
ξ

+ zT
(
G⊗

(
QS + STQ− 2γ2D

TD + σ2I
))
z +

ρ1
κ3πmin

∫ t

t−h
ξT (τ)ξ(τ)dτ

+
ρ2

κ4πmin

∫ t

t−h
zT (τ − h)z(τ − h)dτ, (33)

where σ2 = πmaxπ
−1
min

(
α1κ

−1
2 e(α0+1)h + γ2cκ5λmax(DTD)

)
.

To deal with the first integral term shown in (33), we consider the following Krasovskii

13



functional

V1 = eh
∫ t

t−h
eτ−tξT (τ)ξ(τ)dτ,

With the direct calculations as

V̇1 =− eh
∫ t

t−h
eτ−tξT (τ)ξ(τ)dτ + ehξT (t)ξ(t)− ξT (t− h)ξ(t− h)

≤−
∫ t

t−h
ξT (τ)ξ(τ)dτ + ehξT (t)ξ(t). (34)

Similarly, the second integral term in (33) is coped with as

V2 = eh
∫ t

t−h
zT (τ)z(τ)dτ + eh

∫ t

t−h
eτ−tzT (τ − h)z(τ − h)dτ.

With the derivative as

V̇2 =− eh
∫ t

t−h
eτ−tzT (τ − h)z(τ − h)dτ + ehzT (t)z(t)− zT (t− 2h)z(t− 2h)

≤−
∫ t

t−h
zT (τ − h)z(τ − h)dτ + ehzT (t)z(t). (35)

Let

V = V0 + ρ1π
−1
minκ

−1
3 V1 + ρ2π

−1
minκ

−1
4 V2. (36)

A direct evaluation gives that

V̇ ≤ ξT (t) (G⊗ P1) ξ(t) + zT (t) (G⊗Q1) z(t), (37)

where

P1 =PA+ATP − 2γ1PBB
TP + (κ1 + κ2 + κ3 + κ4)PP + ε1I, (38)

Q1 =QS + STQ− 2γ2D
TD + ε2I. (39)

The condition in (28) is equivalent to the condition specified in (24). With (38)

and (39), it can be shown by Schur Complement that conditions (29) and (30) are165

respectively equivalent to P1 < 0 and Q1 < 0, which further implies from (37) that

V̇ (t) < 0. Thus, the error dynamics systems (4) are globally asymptotically stable at

the origin, which implies that the consensus disturbance rejection of the multi-agent

systems (1)–(2) is achieved. This completes the proof.
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Figure 1: Communication topology.

Remark 4. It is observed that (29) and (30) are more likely to be satisfied if the val-170

ues of ρ, γ1, γ2, κi, i = 1, 2, · · · , 5 are small. Therefore, the step by step algorithm

designed in [46] for finding a feasible solution of the conditions may also be applied

here. Furthermore, since the values of h and γ are fixed and they are not the decision

variables of the LMIs, a feasible solution may not exist if the values of h and γ are too

large.175

5. Simulation

In this section, we will demonstrate the consensus disturbance rejection method

under the leader-follower setup of five subsystems subject to the connection topology

specified by the following adjacency matrix

A =




0 0 0 0 0

1 0 0 1 0

0 1 0 0 0

0 0 1 0 1

1 1 0 0 0




.

Note that the first row all are zeros, as the agent indexed by 1 is taken as the leader. The

communication graph is shown in Figure 1, from which it shows that only the follow-

ers indexed by 2 and 5 can get access to the leader and the communication topology

contains a directed spanning tree. The dynamics of the ith agent are described by (1),
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with

A =




−0.2 −2 2.4 1

0 −1.4 0.8 0.2

0 −1.3 −0.8 −2

0.2 0 1 −0.3



, B =




0

0

0

0.1



, φ(xi) = g




sin(xi1)

0

0

0



.

In this scenario, it is supposed that external disturbance and time delay exist in the

control channel. The external disturbance wi(t) is generated by (3) with

S =


 0 0.1

−0.1 0


 , F =

[
1 0

]
,

which represents an external periodic disturbance with known frequency but without

any information of its magnitude and phase. The input delay of each agent is 0.03s,

and the Lipschitz constant is γ = g = 0.01. It can be checked that both Assumptions

1 and 2 are satisfied.180

The Laplacian matrix L1 associated with A is that

L1 =




2 0 −1 0

−1 1 0 0

0 −1 2 −1

−1 0 0 2



.

Following Lemma 2, we obtain that G = diag{0.3846 0.3571 0.5556 0.7143} and

r0 = 0.2573. With pmax = 0.7143 and 2pmax/r0 = 5.5523, we set c = 6 in the

control input (10).

The initial states of agents are chosen randomly within [−5, 5], and u(θ) = 0, ∀θ ∈
[−h, 0]. With ρ = 0.01, γ1 = 10, γ2 = 100, feasible solutions of the feedback gain K

and the observer gain L are found to be

K =
[

0.0059 −0.024 −0.0016 −0.026
]
, L =


 0 0 0 9.5836

0 0 0 5.8656


 .

Simulation study has been carried out with different disturbances for agents. Fig-185

ures 2–5 show the tracking errors between the four followers and the leader. The dis-

turbance observation errors are shown in Figure 6. From the results shown in these
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Figure 6: The estimation errors of the disturbance observers.

figures, it can be seen clearly that all the five agents reach consensus although they

are under different disturbances. Therefore, the conditions specified in Theorem 7 are

sufficient to guarantee the consensus disturbance rejection.190

Moreover, as only the Lipschitz constant γ is used for the disturbance observer

design and the exact information of the nonlinear functions is not required, this leads

to conservatism in the presented conditions. With the same control gain, the consensus

disturbance rejection is still achieved for the multi-agent systems with a larger Lipschitz

constant.195

6. Conclusion

In this paper, we have addressed the consensus disturbance rejection problem for

Lipschitz nonlinear multi-agent systems with input delay under the directed communi-

cation graph. The input delay may represent some delays in the network communica-

tion or in the actuators. Based on the conventional predictor-based feedback approach,200

a non-ideal predictor-based control scheme is constructed for each subsystem by using

the estimate of the disturbance and the information of the relative state. By exploring

certain features of the Laplacian matrix, global consensus analysis is put in the frame-
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6. Conclusion

In this paper, we have addressed the consensus disturbance rejection problem for

Lipschitz nonlinear multi-agent systems with input delay under the directed communi-

cation graph. The input delay may represent some delays in the network communica-

tion or in the actuators. Based on the conventional predictor-based feedback approach,200

a non-ideal predictor-based control scheme is constructed for each subsystem by using

the estimate of the disturbance and the information of the relative state. By exploring

certain features of the Laplacian matrix, global consensus analysis is put in the frame-

work of Lyapunov analysis. The proposed analysis ensures that the integral terms of
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the system state are carefully considered by using Krasovskii functionals. Sufficient205

conditions are derived for the Lipschitz nonlinear systems with input delay to guaran-

tee consensus with disturbance rejection in the time domain. Finally, an example is

employed to demonstrate the validity of the theoretical results.

Appendix

PROOF OF LEMMA 6. From the definition of ∆1 in (19), we have ‖∆1‖2 =
∑N
i=2 ‖δi‖

2.

With (20), we can get

δi = cγ1BB
TP

N∑

j=2

lij

∫ t

t−h
eA(t−τ)ψjdτ,

and

‖δi‖2 = c2γ21

∫ t

t−h




N∑

j=2

lijψ
T
j


 eA

T (t−τ)dτPBBT

BBTP

∫ t

t−h
eA(t−τ)




N∑

j=2

lijψj


dτ.

Based on Lemma 3 and the condition (24), one obtains

‖δi‖2 ≤ c2γ21hρ2
∫ t

t−h

N∑

j=2

lijψ
T
j e

(AT+A)(t−τ)
N∑

j=2

lijψjdτ.

In light of Lemma 4 and the condition (27), one gets that

‖δi‖2 ≤ (N − 1) c2γ21hρ
2eα2h

N∑

j=2

l2ij

∫ t

t−h
‖φ(xj)− φ(x1)‖2 dτ

≤ (N − 1) c2γ21hρ
2eα2hγ2

N∑

j=2

l2ij

∫ t

t−h
ξTj (τ)ξj(τ)dτ

≤ (N − 1) c2γ21hρ
2eα2hγ2 ‖li‖2

∫ t

t−h
ξT (τ)ξ(τ)dτ.

Consequently,

‖∆1‖2 ≤ (N − 1) c2γ21hρ
2eα2hγ2

N∑

i=2

‖li‖2
∫ t

t−h
ξT (τ)ξ(τ)dτ

≤ (N − 1) c2γ21hρ
2eα2hγ2 ‖L1‖2F

∫ t

t−h
ξT (τ)ξ(τ)dτ.

19



In a similar way, we have

δ̄i = cγ1BB
TP

N∑

j=2

lij

∫ t

t−h
eA(t−τ)BFeShzj(τ − h)dτ.

It follows that

∥∥δ̄i
∥∥2 ≤ c2γ21ρ2h

∫ t

t−h




N∑

j=2

lijz
T
j (τ − h)


 eS

ThFTBT eA
T (t−τ)

× eA(t−τ)BFeSh




N∑

j=2

lijzj(τ − h)


dτ

≤ hα1c
2γ21ρ

2e(α0+α2)h

∫ t

t−h

N∑

j=2

lijz
T
j (τ − h)

N∑

j=2

lijzj(τ − h)dτ

≤ (N − 1)hα1c
2γ21ρ

2e(α0+α2)h
N∑

j=2

l2ij

∫ t

t−h
zTj (τ − h)zj(τ − h)dτ.

Consequently,

‖∆2‖2 ≤ (N − 1)hα1c
2γ21ρ

2e(α0+α2)h
N∑

i=2

‖li‖2
∫ t

t−h
zT (τ − h)z(τ − h)dτ

≤ (N − 1)hα1c
2γ21ρ

2e(α0+α2)h‖L1‖2F
∫ t

t−h
zT (τ − h)z(τ − h)dτ.

This completes the proof.210
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