The Costs of Occupational Mobility

DOI:
10.2139/ssrn.2717671

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Journal of the European Economic Association

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
The Costs of Occupational Mobility: An Aggregate Analysis

Guido Matias Cortes* Giovanni Gallipoli†
University of Manchester University of British Columbia

October 11, 2016

Abstract

We estimate the costs of occupational mobility and quantify the relative importance of differences in task content as a component of total mobility costs. We use a novel approach based on a model of occupational choice which delivers a gravity equation linking worker flows to occupation characteristics and transition costs. Using data from the Current Population Survey and the Dictionary of Occupational Titles we find that task-specific costs account for no more than 15% of the total transition cost across most occupation pairs. Transition costs vary widely across occupations and, while increasing with the dissimilarity in the mix of tasks performed, are mostly accounted for by task-independent occupation-specific factors. The fraction of transition costs that can be attributed to task-related variables appears fairly stable over the 1994-2013 period.

JEL Codes: J62, J24.

Keywords: Occupational Mobility; Tasks; Worker Flows; Mobility Costs; Gravity Model.

*Department of Economics, University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK. E-mail: matias.cortes@manchester.ac.uk. Financial support from CLSRN and SSHRC is gratefully acknowledged. We thank Dirk Krueger and four anonymous referees for extensive comments that significantly improved the paper. We are grateful to Christopher Nekarda for facilitating access to the matched CPS data and to Todd Schoellman for generously sharing his occupation licensing database. We also thank Nicole Fortin, David Green, Keith Head, Thomas Lemieux, Vadim Marmer, John Ries, Uta Schoenberg, Henry Siu, Tomasz Swiecki, Yaniv Yedid-Levi, and seminar participants at various universities and workshops for insightful comments and suggestions. Carlos Sanchez and Lijing (Emily) Wang provided valuable research assistance at different stages of this project.

†Vancouver School of Economics, University of British Columbia, 6000 Iona Drive, Vancouver, BC V6T 1L4, Canada. E-mail: gallipol@mail.ubc.ca
1 Introduction

Several contributions to the human capital literature have analyzed the costs associated with different types of employment transitions. Topel (1991) provides evidence that a typical male worker in the United States with 10 years of job tenure loses 25% of his wage if his job ends exogenously. Other papers have analyzed the extent to which human capital is transferable across jobs. Neal (1995) and Parent (2000) argue that an important component of human capital is industry-specific and, therefore, only lost when a worker switches to a different industry. Kambourov and Manovskii (2009b) and Sullivan (2010) find evidence that a major component of human capital is occupation-specific. Meanwhile, Pavan (2011) presents evidence that tenure in a given career (which is empirically identified as a combination of industry and occupation), and tenure within a given firm are both important sources of wage growth over the life cycle.

In this paper we quantify the costs of occupational mobility and the relative importance of differences in task content as a component of these costs. As argued by Lazear (2009), Poletaev and Robinson (2008), Gathmann and Schönberg (2010), and Yamaguchi (2012), occupational transitions differ vastly in the extent of task switching that they entail. In some cases a worker may completely change careers, while other transitions involve only a minor adjustment in the mix of tasks performed. If human capital built in an occupation is taskspecific, it should be partially transferable to occupations in which a similar set of tasks is performed. This paper develops a framework which allows for heterogeneity in the costs of transiting between occupation pairs according to the extent of overlap in their task content. We use this framework to estimate the size and the composition of occupational mobility costs.

The key innovation in this paper is the approach that we take in estimating transition costs. Specifically, we develop an occupational choice model inspired by the gravity framework typically used in the trade literature. In that literature, the interest is in estimating barriers to trade using data on flows of goods across countries, and proxies for trade costs that include geographical distance and whether the countries share a common border or a common language, among others. We show that this approach may be adapted to identify the costs associated with occupational mobility by using data on worker flows across occupations and proxies for mobility costs based on task data.

Previous studies of the costs of job transitions have relied primarily on wage data, particularly on the wage changes experienced by displaced workers when transiting into employment in a new firm, occupation or industry. Using this empirical approach, Gathmann and Schönberg (2010) and Poletaev and Robinson (2008) find evidence of the importance of task-specific human capital. A number of recent contributions also use wage data in combination with worker flow data to identify transition costs. Artuc et al. (2010) and Artuc and McLaren
(2015) estimate transition costs across industries and very broad occupation groups using the responsiveness of worker flows to inter-sectoral wage differences. Herz and Van Rens (2015) examine the relationship between job finding rates and wages across industries and locations to infer transition costs. Lalé (2015) identifies transition costs by linking the volatility of productivity shocks and wages to net occupational mobility.

The identification approach proposed in this paper is primarily based on worker flow data. By focusing on flows we effectively use information from occupation switchers as well as occupation stayers for identification. The approach is fairly simple and allows for worker heterogeneity in match-specific draws and for shocks to occupation-specific payoffs. A key advantage of our approach, in contrast to methods that rely directly on observed wages for identification of transition costs, is that we are able to adopt a broad notion of the costs and benefits of occupation transitions, entailing both pecuniary and non-pecuniary returns. Our procedure delivers identification of both the level and the change over time in occupational mobility costs.

Relating worker flows across occupations to the degree of skill transferability was an idea originally suggested by Shaw (1984). We explicitly test whether worker flows are related to observable measures of task content and determine how much of the total cost of changing occupations can be attributed to task-related measures. Understanding the costs associated with the reallocation of workers across tasks is particularly relevant in light of recent literature on the polarization of the labor market, which suggests that technological change has altered the demand for particular tasks (e.g. Autor et al., 2003, 2006; Goos and Manning, 2007), and induced worker reallocation (Autor and Dorn, 2009; Cortes, 2016).

The theoretical setting which underpins our empirical analysis involves a partial equilibrium occupational choice model with perfect information, similar to the static framework used in a different context by Eaton and Kortum (2002). There is a continuum of workers, who differ in terms of observable characteristics, including the occupation which they start the period in. Workers make match-specific productivity (or match quality) draws from a set of extreme value distributions corresponding to each potential occupation. The extreme value assumption may be justified by thinking of workers as receiving a large set of offers from different employers within each occupation, and only considering the highest offer in each occupation. The distribution of highest offers (maxima) across employers within each occupation converges to an extreme value distribution.

Once workers observe their draws, they decide which occupation to work in during the period. There are costs to switching occupations, which depend on the particular occupation that the worker starts in, and the particular occupation that she considers switching to. Given the match-specific productivity draws and taking into account the costs and benefits

1Worker flows are also exploited in recent work by Sorkin (2015) to identify the importance of compensating differentials and rents for earnings differentials between firms.
of mobility, the worker chooses the occupation where she will receive the highest payoff. Workers’ optimal switching decisions and the properties of the extreme value distribution lead to a gravity-type equation, which relates the flow of workers between any occupation pair to a set of occupation-specific characteristics and to the cost of switching.

In this environment selection into occupations hinges on idiosyncratic match-quality draws. This occupational choice model has a long tradition in labor economics: for example, in his original taxonomy of earnings functions, Willis (1986) describes it as one of the classical models of selection. The main disadvantage of this framework is that it is not suitable to study how workers progress through hierarchically ranked occupations, commonly referred to as job ladders. However, characterizing job ladders is not an objective of our study, as we instead focus on measuring different layers of costs for all possible transitions. Various papers analyze the relevance of job ladders or focus on selection patterns into hierarchically ranked occupations (see for example Gibbons, Katz, Lemieux, and Parent, 2005; Groes, Kircher, and Manovskii, 2015; Yamaguchi, 2012). Our contribution is complementary to, but distinct from, that literature. The match-quality model provides a parsimonious method to identify occupational mobility costs between any occupation pair, and offers a natural way to quantify the relative importance of the task content of occupations as one component of these costs. Crucially, this simplicity allows us to derive a concise estimable expression without imposing strong assumptions about the life-cycle evolution of wages.

To estimate the gravity equation obtained from the model we use variables that are related to the cost of an occupational switch. Following a growing literature, we characterize occupations through a vector of task characteristics (e.g. Autor, Levy, and Murnane, 2003; Ingram and Neumann, 2006; Gathmann and Schönb erg, 2010; Poletaev and Robinson, 2008; Yamaguchi, 2012) using data from the Dictionary of Occupational Titles (DOT). We then construct a measure of distance between occupation pairs, which captures the degree of dissimilarity in the mix of tasks performed in the two occupations. If a considerable share of human capital is lost when a worker experiences a dramatic change in the set of tasks she performs, the costs of occupational mobility should be increasing in task distance. We also allow for a fixed cost of switching across occupations that belong to different major task groups (non-routine cognitive, routine cognitive, routine manual or non-routine manual), as there may be costs associated with these switches in excess of what is captured by the dis-

2 In addition to the match-quality shocks, our framework also allows for general occupation-level shocks to affect selection into occupations (as in Kambourov and Manovskii, 2009a).

3 More recently, Gottschalk et al. (2015) consider a setup with an analogous sorting mechanism (the “independent productivity shocks model” in their paper) in order to obtain bounds on the changes over time in task prices. See also Helpman et al. (2010) for a model where workers sort into firms based on idiosyncratic match-quality draws.

4 Yamaguchi (2012) develops a framework that distinguishes between task content and individual skills, and finds that “the derived policy function for occupational choice suggests that observed tasks can be interpreted as a noisy signal of unobserved skills.”
distance measure. Finally, we allow for occupation-specific entry costs, which are independent of task content. These costs partly reflect institutional barriers faced by potential entrants to an occupation, such as qualification credentials, professional training, licensing and union membership requirements.

We estimate the gravity equation using data on monthly worker flows across 2-digit occupations from the matched monthly Current Population Survey (CPS) from 1994 to 2013. This is a period during which the CPS employed dependent coding techniques, which have been shown to reduce the amount of coding error in occupational transitions (Moscarini and Thomsson, 2007; Kambourov and Manovskii, 2013).

We find that task distance is a significant component of the cost of switching occupations, suggesting a role for task-specific human capital. An increase of one standard deviation in task distance within an occupation pair is estimated to increase the cost of switching by approximately 14%. This would translate into a 43% fall in the ratio of switchers to stayers in the source occupation. If the destination is in a different major task group, the cost is increased further, between 23 and 68 percentage points, depending on the type of transition. In spite of the significant role of task content, we find that the fraction of transition costs attributable to these variables is relatively small. For the median occupation pair, task-related costs account for only around 6% of total costs. Task-related costs account for more than 15% of total costs only for 5% of our observations. The remainder is accounted for by the task-independent occupational entry costs. These task-independent entry costs are shown to be correlated with a number of empirical measures of occupational access costs, including the amount of specific vocational preparation required for average performance in the occupation and the number of states in which the occupation is subject to licensing requirements.

Through a set of counterfactual experiments we estimate the hypothetical increases in mobility rates that would be observed if transition costs were reduced. For the median occupation in our sample, we find that the hypothetical increase in mobility if task-related costs were removed is approximately 7.5 percentage points. Given that monthly occupational mobility rates in the sample range between 2% and 10%, this increase is considerable. However, this increase represents only around 11% of the total increase in mobility that would be observed if we also reduced other costs – namely, the task-independent occupational entry costs – to the lowest observed value in the sample. This implies that there is a substantial amount of heterogeneity in task-independent entry costs across occupations, and confirms our finding that the majority of the costs of occupational mobility are attributable to task-independent costs.

Our estimation allows all of the components of the transition costs to vary over time. However, we find that the fraction of transition costs that can be attributed to task-related variables remains stable over time, in the range of 10 to 14%.

We verify the robustness of our results in several ways. We use alternative task dimensions
from the DOT and from its successor, O*Net. We restrict the analysis to younger workers for whom occupational mobility rates are higher and for whom our model assumptions about the occupational choice process may be more realistic (Neal, 1999; Gervais, Jaimovich, Siu, and Yedid-Levi, 2016). We also verify robustness by performing our estimation using only college-educated workers. Finally, we confirm that our results go through under a very wide range of assumptions about the dispersion of match quality draws.

Our findings regarding the large magnitude and heterogeneity of the transition costs across occupations are in line with the results of Artuc, Chaudhuri, and McLaren (2010) and Dix-Carneiro (2014) who, using different identification strategies, find that both the mean and the standard deviation of workers' moving costs across industries are high, amounting to several times average income.\footnote{Similarly, Artuc and McLaren (2015) document high switching costs in a model featuring five broad occupation categories.}

The rest of the paper is organized as follows. Section 2 describes how a gravity model similar to the one developed by Eaton and Kortum (2002) can be used to study flows of workers across occupations and the costs of occupational mobility. Section 3 describes the empirical strategy and data sources. Section 4 presents the findings of the paper. Section 5 discusses a number of robustness checks and extensions. Section 6 presents a general discussion of our results, while Section 7 concludes.

2 Model

The economic environment is a variant of that in Eaton and Kortum (2002), modified to account for flows of workers across occupations and the costs of occupational mobility. It involves a static partial equilibrium model with perfect information. All equations in this section hold at any period \(t \), so for simplicity time subscripts are omitted.

2.1 Workers and Occupations

There is a continuum of workers of measure one indexed by \(i \), and a finite set of occupations given by \(j \in \{1, 2, ..., N\} \) with a large number of employers in each occupation. Workers differ in terms of observable characteristics and initial occupation. A worker’s occupation at the beginning of the period is predetermined and indexed by \(k \).

Workers select endogenously into occupations in order to maximize their utility payoff. The potential payoff in each occupation is individual-specific and can be interpreted as a total lifetime payoff which includes pecuniary benefits (i.e. wages), as well as non-pecuniary returns related to an individual’s preference for each particular occupation. Switching occupations is costly, so if individual \(i \) selects into an occupation other than her current occupation \(k \) she faces an iceberg cost which is occupation-pair specific. This cost may be related to the
pecuniary component of the payoff: for example, switchers may receive lower payoffs in their new occupation due to the fact that they need to learn a new set of tasks and are therefore less productive than incumbents. It may also be related to the non-pecuniary component of the payoff: for example, switchers may have to overcome certain institutional barriers in order to enter into a new occupation, some of which may not necessarily be reflected in their post-switching wages.

2.2 Payoffs

Let the potential payoff from selecting into occupation j for worker i whose initial occupation is k be denoted by $\phi_j(i|k)$. This payoff is given by:

$$
\phi_j(i|k) = p_j f \left[X(i) \right] \left(\frac{z_j(i)}{d_{kj}} \right).
$$

(1)

p_j is a single index subsuming those occupation features which affect all individuals in occupation j. It can be interpreted as a measure of the general attractiveness (in terms of utility payoff) of this occupation. $X(i)$ is a vector of individual characteristics, such as education and overall work experience, which reflect general human capital and change the returns for individual i in all potential occupations. $z_j(i)$ is a match-quality shock reflecting how well worker i is matched with occupation j in terms of productivity and preferences. The process by which individuals draw the match-specific component of payoffs is described below. d_{kj} represents the cost of switching between the worker’s initial occupation k and the potential occupation j, with $d_{kk} = 1$ (staying in the same occupation is costless) and $d_{kj} > 1$ for all $j \neq k$. Intuitively, this cost captures time and efficiency losses associated with learning and adapting to a different occupation.

$\phi_j(i|k)$ can also be interpreted as the potential wage paid to individual i if she selects into occupation j. If each occupation j produces a different final good with price given by p_j and labor is the only input in production, then Equation (1) would hold as long as wages are proportional to the marginal product of labor. The logarithm of Equation (1) is:

$$
\ln \phi_j(i|k) = \ln p_j + \ln f \left[X(i) \right] - \ln d_{kj} + \ln z_j(i)
$$

(2)

which is similar to wage specifications commonly used in the empirical literature, with $\ln p_j$ representing an occupation wage premium and $\ln f \left[X(i) \right]$ the return to a set of observable characteristics. Here the equation also includes the switching cost $\ln d_{kj}$, and has a match quality term that is extreme-value distributed as described below. It is important to emphasize that Equation (2) only represents potential rather than observed log wages, so it would not

Appendix A describes how the model can be extended to include occupation-specific human capital. This extension does not affect the empirical strategy described below.
be possible to directly estimate it.

Both interpretations of \(\phi_j(i|k) \) – as a utility payoff or as a wage – are compatible with our empirical strategy, as our estimation relies on worker flows across occupations rather than on observed wage or payoff data. We prefer the interpretation of \(\phi_j(i|k) \) as a total utility payoff because it captures the fact that occupational choices are based on both pecuniary and non-pecuniary factors, and on long-run considerations that are not necessarily reflected in current wages.

2.3 Match Quality Draws

For each occupation \(j \), individuals draw \(z_j(i) \) from a Fréchet distribution.\(^7\) One can think of individuals as receiving job offers from several potential employers in each occupation. The only offer the individuals will consider will be the best offer in each occupation (the one that offers the highest match quality). Thus, the set of ‘relevant’ offers for each occupation is the collection of maxima across firms for each individual. The distribution of the maxima of a set of draws can converge to one of only three distributions, one of which is Fréchet (type II extreme-value).\(^8\)

The Fréchet distribution has a CDF given by:

\[
 z_j \sim F_j(z) = e^{-T_j z^{-\theta}}
\]

The occupation-specific parameter \(T_j \) governs the location of the distribution. Match quality draws are on average higher in occupations with a larger \(T_j \). The parameter \(\theta \), which is common across occupations, is related to the dispersion of the shocks, with a larger \(\theta \) implying less variability.

Individuals sample occupation match-qualities at the beginning of the period, drawing a value for each occupation including their current one. They then compare potential payoffs, based on realized draws and transition costs \(d_{kj} \), and choose whether to switch to a different occupation.\(^9\) Each draw is independent from all others and corresponds to a guaranteed job offer from an employer in an occupation, so the individual faces no uncertainty when choosing an occupation. Section 2.5 discusses a number of alternative specifications of the model, where we allow the distribution of match-quality draws to differ according to workers’ current occupation, and we discuss how the model can be re-cast in order to allow for search frictions.

\(^7\)A similar setup is used by Hsieh, Hurst, Jones, and Klenow (2013).
\(^8\)See Eaton and Kortum (2002), footnote 14, and references therein.
\(^9\)Individuals make occupational choices after observing their match quality draws and consider the costs and benefits of potential transitions. Hence, random assignment of workers to occupations would not result in the same allocation of workers nor in the same equilibrium level of output.
2.4 Flows of Workers Across Occupations

For individual i (who starts in occupation k), the probability that her payoff in occupation j is above some level ϕ is given by:

$$
Pr [\phi_j(i|k) > \phi] = 1 - F_j \left(\frac{\phi d_{kj}}{p_j f[X(i)]} \right)
$$

$$
= 1 - e^{-T_j d_{kj}^\theta (p_j f[X(i)])^\theta \phi^{-\theta}}
$$

(4)

The probability that individual i obtains a payoff below ϕ in every occupation other than j is:

$$
Pr [\phi_s(i|k) \leq \phi, \forall s \neq j] = \prod_{s \neq j} F_s \left(\frac{\phi d_{ks}}{p_s f[X(i)]} \right)
$$

$$
= \prod_{s \neq j} e^{-T_s d_{ks}^\theta (p_s f[X(i)])^\theta \phi^{-\theta}}
$$

(5)

Individual i will optimally choose to switch to occupation j, given her current occupation k, if j offers her the highest potential payoff among all possible occupations. The probability that this happens is denoted by $\pi_{kj}(i)$ and is given by:

$$
\pi_{kj}(i) \equiv Pr \left[\phi_j(i|k) \geq \max_s \{\phi_s(i|k)\} \right]
$$

$$
= \int_0^{\infty} Pr \left[\phi_s(i|k) \leq \phi, \forall s \neq j \right] \cdot dPr \left[\phi_j(i|k) \leq \phi \right]
$$

$$
= \frac{T_j d_{kj}^\theta p_j^\theta}{\sum_{s=1}^N T_s d_{ks}^\theta p_s^\theta}.
$$

(6)

Intuitively, j will be the best choice for individual i whenever j offers her a payoff ϕ while all other occupations offer her a payoff below ϕ. Integrating this over all possible values of ϕ gives the probability that i switches from k to j, $\pi_{kj}(i)$. This allows for the possibility that $j = k$, i.e. the optimal choice may involve staying in the current occupation. This probability is not individual-specific, so we can omit the i index.

Taking the ratio of π_{kj} and π_{kk}, based on Equation (6), and using the fact that $d_{kk} = 1$, we obtain

$$
\frac{\pi_{kj}}{\pi_{kk}} = \frac{T_j d_{kj}^\theta p_j^\theta}{T_k p_k^\theta}.
$$

(7)
Or in logarithms:

\[
\ln \frac{\pi_{kj}}{\pi_{kk}} = \ln T_j + \theta \ln p_j - \ln T_k - \theta \ln p_k - \theta \ln d_{kj}
\]

(8)

With a large number of individuals in each occupation making independent draws from the match quality distribution, \(\pi_{kj}\) will be equal to the fraction of \(k\)-workers who switch to \(j\), that is:

\[
\pi_{kj} = \frac{sw_{kj}}{N_k}
\]

(9)

where \(sw_{kj}\) is the total number of switchers from \(k\) to \(j\) and \(N_k\) is the size of occupation \(k\) (at the start of the period).

Therefore, Equation (8) can be rewritten in terms of worker flows, leading to a gravity-type equation:

\[
\ln \left(\frac{sw_{kj}}{sw_{kk}} \right) = \ln T_j + \theta \ln p_j - \ln T_k - \theta \ln p_k - \theta \ln d_{kj}
\]

(10)

This is the key equation of the model. It relates the flows of workers between occupations to a set of occupation-specific characteristics \((T_j, T_k, p_j, p_k)\), and to the cost of switching \((d_{kj})\). In the empirical implementation, all of the variables in the equation will be allowed to vary period by period. Note that there are no individual-specific variables such as payoffs or wages in this equation.

2.5 Variations of the Benchmark Model

Equation (10) is consistent with various generalizations of the model. For example, the baseline model assumes that match-quality draws in destination occupation \(j\) are independent of source occupation \(k\). However, it is conceivable that moving from certain occupations may be generally associated with higher (or lower) payoffs. To allow for this possibility, the distribution of match-quality draws can be re-written as

\[
z_j \sim F_j(z|k) = e^{-\eta_k T_j z^{-\alpha}}.
\]

(11)

Under this specification, starting the period in occupation \(k\) offers an absolute advantage (or disadvantage) in all potential occupations \(j\). This modification has no bearing on the derivation of Equation (10), as the parameter \(\eta_k\) shifts the distribution of draws for workers who start in occupation \(k\) but does not alter the relative probability of transiting to a particular occupation \(j\).

An alternative way to recast the model is to posit no iceberg costs of switching but rather assume that the match-quality distribution in occupation \(j\), for workers currently in occupation \(k\), is:

\[
z_j \sim F_j(z|k) = e^{T_j d_{kj}^{\alpha} z^{-\alpha}}
\]
This setup is empirically equivalent to the one in the baseline model. In other words, the transition cost d_{kj} may be modeled as impacting the quality of the offers received in occupation j by workers currently in occupation k, or as reducing their payoffs in occupation j conditional on an offer quality. These alternative specifications result in the same gravity representation.

The baseline model assumes that there are no search frictions, so that workers obtain match quality draws for all potential occupations j. One could obtain a specification analogous to Equation (10) by instead positing that the probability of receiving an offer from a potential occupation j, for workers currently in occupation k, depends on characteristics of the source and destination occupation and is proportional to d_{kj}. In this alternative context worker flows across occupations would still be a function of the characteristics of the source and destination occupation and of d_{kj}; however, the driving force restricting flows between occupations k and j would be a scarcity of job offers, rather than a reduction in payoffs due to iceberg costs.

Our objective in this paper is not to distinguish whether the barriers to mobility operate through a lack of job offers or through iceberg costs, but rather to estimate the magnitude of these barriers and assess the relative importance of task content as a component of overall transition costs.

3 Data and Empirical Implementation

Our objective is to estimate Equation (10) and quantify the costs of switching between different occupation pairs, d_{kj}, and the factors that affect these costs. One such factor is the ‘task distance’ between occupations k and j. As suggested by Gathmann and Schönbegr (2010), Poletaev and Robinson (2008) and Robinson (2011), if human capital is task-specific, it should be partly transferable across occupation pairs in which a similar mix of tasks is performed. The cost of switching occupations should therefore be increasing in the degree of dissimilarity, or ‘distance’, in the task content of the two occupations.\footnote{Task distance here parallels the traditional use of geographic distance in gravity models of trade.}

To construct a measure of task distance, we follow previous literature in characterizing occupations through a vector of skill or task characteristics (e.g. Autor et al., 2003; Ingram and Neumann, 2006; Poletaev and Robinson, 2008; Peri and Sparber, 2009). We do this using data from the Revised 4th Edition of the Dictionary of Occupational Titles (ICPSR, 1991). The DOT provides precise measures of the different abilities that are required in different occupations, as well as the different work activities performed by job incumbents. The dimensions along which the DOT dataset characterizes occupations include complexity of work, General Education Development (GED), specific vocational preparation requirements, aptitudes, temperaments and physical demands, among others (ICPSR, 1981). The choice of the relevant dimensions to characterize occupations and construct a distance measure is somewhat arbitrary. We choose the three GED variables and the eleven aptitudes from the 1991
DOT as the relevant dimensions for our baseline measure, and test the robustness to different choices in Section 5.1. Table 1 provides examples of the DOT task vectors for four particular occupations.\footnote{Each DOT dimension is normalized to have mean zero and standard deviation one across the universe of standardized 3-digit occupations from Autor and Dorn (2013). More details are provided in Appendix C.}

Following Gathmann and Schönberg (2010), we construct a distance measure across occupation pairs based on angular separation. The distance measure reflects the degree of dissimilarity in the mix of tasks performed in the two occupations, and can be interpreted as an ‘intensive margin’ description of an occupational transition.\footnote{As in most existing studies, our measure of task distance assumes that all task dimensions are weighted equally. In principle one could consider alternative approaches that explore the uneven role of different tasks for the portability of task-specific human capital. This analysis would however require additional assumptions about the transferability of task-related skills.} Specifically, let x_k^a be the importance level of dimension a (one of the dimensions described above) in occupation k, and x_j^a the analogous measure for occupation j. The angular separation between the task vectors in the two occupations is given by:

$$\text{AngSep}_{kj} = \frac{\sum_{a=1}^{A} (x_k^a \times x_j^a)}{\left[\sum_{a=1}^{A} (x_k^a)^2 \times \sum_{a=1}^{A} (x_j^a)^2\right]^{1/2}}$$

where A is the total number of dimensions being considered. AngSep_{kj} ranges between -1 and 1, and is increasing in the degree of overlap between the two vectors. We transform this to a distance measure dist_{kj} which ranges between 0 and 1 and is increasing in dissimilarity:

$$\text{dist}_{kj} = (1/2) (1 - \text{AngSep}_{kj}) \quad (13)$$

In addition to the task distance between occupations, we consider the possibility that there are costs for switching between major task groups. Following the literature (e.g. Acemoglu and Autor, 2011), we group occupations into four broad task groups: non-routine cognitive, routine cognitive, routine manual, and non-routine manual. Appendix Table A.1 provides details on the occupations included in each of these broad groups. We allow for a direct cost of switching between task groups, and we let this cost differ by destination group. Specifically, we define four dummy variables, λ_{kj}^{NC}, λ_{kj}^{RC}, λ_{kj}^{RM} and λ_{kj}^{NM}, which are equal to one if occupations k and j are in different broad task groups, and destination occupation j is a non-routine cognitive, routine cognitive, routine manual, or non-routine manual occupation, respectively. These dummies reflect costs of switching between task groups that are not fully captured by the distance measure.\footnote{In the robustness analysis of Section 5.1 we estimate a specification in which the costs of transiting between broad occupation groups depend also on the broad source group.}

We also allow for a destination effect m_j, which reflects general costs of accessing occu-
pation that are not related to the task content of occupation \(k \). This access cost captures any occupation-specific (but not task-specific) factors that restrict mobility and are not transferable across occupations. For example they could reflect the fact that some occupations are difficult to access due to the use of hard-to-acquire skills, regardless of whether one comes from an occupation with a similar task mix. They may also include institutional barriers such as professional qualifications, specific training or other requirements.

Finally, the unobservable term \(\epsilon_{kj} \) captures costs of occupational mobility between occupations \(k \) and \(j \) arising from any other factor. \(\epsilon_{kj} \) is assumed to be an independently and identically distributed random variable with a standard normal distribution.

We therefore have the following specification for \(\ln d_{kj} \):

\[
\ln d_{kj} = \beta_1 \text{dist}_{kj} + \beta_2 \lambda_{k,j}^{NC} + \beta_3 \lambda_{k,j}^{RC} + \beta_4 \lambda_{k,j}^{RM} + \beta_5 \lambda_{k,j}^{NM} + m_j + \epsilon_{kj} \tag{14}
\]

Substituting equation (14) into the gravity equation (10) and defining \(S_k \equiv \ln T_k + \theta \ln p_k \) and \(D_j \equiv S_j - \theta m_j \), we obtain:

\[
\ln \left(\frac{sw_{kj}}{sw_{kk}} \right) = D_j - S_k - \theta \beta_1 \text{dist}_{kj} - \theta \beta_2 \lambda_{k,j}^{NC} - \theta \beta_3 \lambda_{k,j}^{RC} - \theta \beta_4 \lambda_{k,j}^{RM} - \theta \beta_5 \lambda_{k,j}^{NM} - \theta \epsilon_{kj} \tag{15}
\]

This equation can be estimated period-by-period using data on worker flows across occupations. Given the assumptions above, the error term \(\theta \epsilon_{kj} \) has a normal distribution and is orthogonal to all other regressors.\(^{14}\)

3.1 Source and Destination Heterogeneity

\(S_k \) and \(D_j \) can be identified through source and destination occupation fixed effects, respectively. We impose no restrictions on the relationship between \(S_k \) and \(D_j \) in our estimation. An occupation \(k \) will be estimated to have a high \(S_k \) if outflows from that occupation are relatively low, all else equal (that is, conditional on task variables and destination fixed effects). In our setting we have that \(S_k \equiv \ln T_k + \theta \ln p_k \), so a high \(S_k \) may either be due to average match quality in that occupation being high (a high \(T_k \)) or to the characteristics of that occupation being associated with high returns (a high \(p_k \)). \(S_k \) therefore will be high in occupations with high average utility payoffs.

Meanwhile, an occupation \(j \) is estimated to have a high \(D_j \) if inflows to that occupation are relatively high, conditional on task variables and source fixed effects. The model indicates

\(^{14}\)This assumption does not rule out that occupations that are more desirable may be more costly to move into, say because of a limited number of training spaces for potential entrants. This would be reflected in the source and destination occupation fixed effects, which are discussed below.
that \(D_j \equiv S_j - \theta m_j \), so a high \(D_j \) may either be due to occupation \(j \) having a high average utility payoff (high \(S_j \)), or to occupation \(j \) being relatively easy to switch into due to low entry costs (low \(m_j \)).

We can separately identify \(S_k \) and \(D_j \) for all occupations \(k \) and \(j \), relative to a base occupation. Hence we can back out the implied value for \(\theta m_j \) and obtain an estimate of this cost for each occupation. The relationship \(\theta m_j = S_j - D_j \) illustrates that an occupation exhibits lower estimated access costs whenever \(D_j \) is large relative to \(S_j \). The intuition is straightforward: higher inflows into an occupation, all else equal, indicate that the occupation is easily accessible.

A caveat is in order, as this framework allows for an alternative interpretation. One could conceive of a scenario in which there are no costs of accessing occupations, but workers face an exit cost when leaving an occupation. For example, some occupations could generate lock-in effects due to stigma or sunk costs associated to accumulation of skills that are not valued in other jobs. In Appendix B we formalize this scenario and show that the difference \((S_j - D_j) \) still identifies the transition cost specific to occupation \(j \), but this can be interpreted as an exit cost rather than an access cost. In the Appendix we also consider a model in which both access and exit costs are present, and show through a simple empirical decomposition that access costs appear to be relatively more important. Moreover, in Section 4.2 we show that our estimates of the occupation-specific costs are correlated with a number of direct measures of access costs, including the amount of specific vocational preparation required for average performance in the occupation and the number of states in which the occupation is subject to licensing requirements. Hence, in the remainder of the paper we focus on the interpretation based on access costs.

3.2 Measuring Flows

We measure flows of workers across occupations using matched monthly data from the Current Population Survey (CPS). The CPS is a monthly survey of approximately 50,000 households conducted by the Bureau of the Census for the Bureau of Labor Statistics. It is the main source of labor market statistics in the United States. We make use of the fact that the CPS has a rotating sample structure: households included in the CPS are sampled for four consecutive months, then leave the sample for eight months, and then return for another four months. Given this sampling structure, up to 75\% of households are potentially matched across consecutive months. In practice, the fraction of households that can be matched is slightly lower (around 70\%), primarily due to the fact that the CPS is an address-based survey, so households that move to a new address are not followed. Also, in certain months the CPS made changes to household identifiers, making it impossible to match households
across these modifications.\footnote{This affects the period between June and September of 1995.} Details about the algorithm used to match individuals across months can be found in Nekarda (2009).\footnote{We thank Christopher Nekarda for facilitating access to the matched CPS data. Additional variables were obtained from Flood et al. (2015).}

The main advantage of the CPS relative to other longitudinal datasets such as the Panel Study of Income Dynamics (PSID) is its large sample size and the fact that it is explicitly designed to be representative of the entire US population at each point in time. An additional benefit of the CPS is that, in January 1994, dependent coding techniques were introduced in order to reduce the interview burden and the possibility of occupation and industry misclassification.\footnote{See http://www.census.gov/cps/methodology/collecting.html.} These techniques substantially reduce the amount of spurious transitions across occupations (see Kambourov and Manovskii (2013) and Moscarini and Thomsson (2007)) and hence allow us to measure flows across occupations in a more reliable manner.\footnote{We take advantage of dependent coding by focusing our analysis on occupation transitions that occur over consecutive months of employment. Naturally, other transitions may instead involve an intervening period of unemployment or inactivity. Unfortunately, dependent coding procedures are not applied when workers transition to employment from unemployment (or non-participation), nor when measuring flows over longer time horizons (which would effectively allow for intervening periods of non-employment). Section 5.4 provides a discussion of potential misclassification concerns, while Appendix G reports results obtained when considering transitions over 12-month horizons.}

To take advantage of the dependent coding techniques, we use data starting in 1994 for our analysis. The most recent period available in our dataset is December 2013. The sample is restricted to adults aged 18 to 65 who are not in farming occupations or in the military.

We perform our analysis at the 2-digit occupation code level. Finer occupational groupings (i.e. 3-digit codes) provide a level of aggregation that is too low to observe significant flows of workers across particular occupation pairs. Meanwhile, a higher level of aggregation (1-digit level) creates groups that are too coarse. Our 2-digit occupations are an aggregation of the harmonized occupation codes from Autor and Dorn (2013), which are adapted from Meyer and Osborne (2005). The full universe of occupations is listed in Appendix Table A.1.\footnote{Potential discontinuities induced in the occupational categories by changes in the occupation coding system used by the CPS in 2003 and 2011 are not of concern for our purposes given that we perform our estimation separately for each year and hence identification is obtained solely from variation across occupation pairs in worker flows at a given point in time.}

Appendix C provides details on the procedure followed to merge the CPS and the DOT data. Using 2-digit occupation codes for matched individuals who are observed across consecutive months, we construct monthly flows of workers across occupation pairs. The flow of switchers from occupation \(k \) to occupation \(j \) is defined as the number of respondents (weighted using CPS sample weights) who are employed in occupation \(k \) in month \(t \) and employed in occupation \(j \) in month \(t + 1 \). To reduce noise, monthly flows are aggregated at an annual level. The annual flows constitute our measure of switchers \(sw_{kj} \).
4 Results

4.1 Gravity Equation Estimation

This section presents the results of the estimation of Equation (15) using CPS data on worker flows and the proxies for mobility costs described above. We estimate Equation (15) separately for each year in our sample. One issue that we need to address is the fact that there are occupation pairs for which flows are zero in specific years. This occurs for approximately 10% of our occupation pair-year observations.\(^{20}\)

We deal with the issue of zero-flows in several ways. Column (1) of Table 2 shows the results from the estimation of Equation (15) for the year 2012 when observations with zero flows are dropped from the sample. In Column (2), we replace the zeros with the smallest value observed in the sample for the left-hand-side variable in Equation (15), and estimate the regression using OLS. Finally, in Column (3) the same replacement of zeros is done as in Column (2) but, following Eaton and Kortum (2001), a Tobit-style regression is estimated instead of using OLS.\(^{21}\) All specifications include source and destination occupation fixed effects.

The table shows that the effect of task distance on worker flows is negative and significant, suggesting that task distance is an important component of the cost of occupational mobility. The estimate in Column (3) implies that, all else equal, a one standard deviation increase in distance leads to a 43% fall in the ratio of switchers to stayers. Meanwhile, the negative and significant coefficient estimates on the task switching dummies imply that switching into a different broad task group is costly, and more so when switching towards routine manual occupations.\(^{22}\)

The estimated coefficients in the table provide information on the responsiveness of relative workers flows to the task variables. As Equation (15) shows, these coefficients correspond to \(-\theta \beta\), implying that the findings discussed so far – such as the fact that higher distances are associated with lower flows of workers – could be driven either by high-distance switches being very costly (i.e. a high \(\beta\)) or by match quality shocks having a low level of dispersion (i.e. a high \(\theta\)). We disentangle these two components in Section 4.3.

4.2 Occupation Access Costs

The estimated source and destination occupation fixed effects are also of interest. The omitted category, for both source and destination, is “Executives, administrators and managers.”\(^{23}\)

\(\text{\(^{20}\)}\)The issue of zeros in gravity equations is discussed in the trade literature; see Head and Mayer (2013) for an overview.

\(\text{\(^{21}\)}\)See Head and Mayer (2013) for a discussion of the advantages of using this method.

\(\text{\(^{22}\)}\)Appendix Figure A.1 illustrates goodness of fit for the specification in Column (3) by plotting the fitted values against the true values.
Figure 1 plots the estimated source and destination fixed effects for each occupation \(j\) in the year 2012, obtained from the Tobit-type specification in Column (3) of Table 2. Note that the source fixed effects plotted on the x-axis correspond to our estimates of \(-S_j\). Each circle represents a 2-digit occupation and its size. The numbers within each circle correspond to the 2-digit occupation codes reported in Appendix Table A.1.

The figure shows a strong correlation between estimated source and destination fixed effects. This implies that occupations that are larger sources of worker flows (those from which relatively more workers leave) also tend to be larger destinations (they attract relatively more workers). This pattern is indicative of heterogeneous levels of churn across occupations, with those in the top-right corner of the graph exhibiting higher levels of churn.

The model associates high churn occupations to lower access costs. The intuition for this result – under our baseline interpretation and subject to the caveat discussed in Section 3.1 – is as follows: many people exit from these occupations, so it must be the case that they are relatively unattractive. Nonetheless, these occupations also experience large inflows of workers. Hence, it must also be the case that their access costs \(m_j\) are relatively low. An example of one such set of jobs is “Other administrative support occupations, including clerical” (occupation code 25).

At the opposite end, occupations in the bottom-left area of Figure 1 feature low churn and are interpreted as being relatively attractive due to the fact that few people leave. They also experience relatively low inflows, which indicates that it must be the case that they are difficult to access for outsiders (high \(m_j\)). Note that these occupations also tend to be populated by smaller numbers of workers. An example of one such set of jobs is “Health assessment and treating occupations” (occupation code 8).

These findings are consistent with results in Caines, Hoffmann, and Kambourov (2015) who, using German microdata, also find evidence of significant differences in access costs across occupations, with the most desirable ones having steep barriers to entry.

Below we show that the task-independent occupation access costs \(m_j\) are a very large component of total transition costs. To provide further economic content to the interpretation of these costs, we present evidence of their correlation with a number of direct measures of occupational access costs. Panel A of Figure 2 plots the estimated access cost \(\theta m_j\) for each occupation (averaged across all years in our sample) against a measure of Specific Vocational Preparation (SVP) obtained from the Dictionary of Occupational Titles. This measure reflects the amount of training, in months, required to learn the techniques, acquire the information, and develop the facility needed for average performance in a specific occupation. It captures job-specific training only. Higher levels of the SVP measure are correlated with higher oc-

\(^{23}\)This implies the normalization \(S_2 = 0\), and therefore \(T_2 = p_2 = 1\), in each period. The constant is an estimate of \(D_2 = -\theta m_2\), and is part of the destination fixed effects for all \(j\).

\(^{24}\)Recall that \(\theta m_j = S_j - D_j\), so the sum of the estimated source fixed effect \((-S_j)\) and the estimated destination fixed effects \((D_j)\) for each occupation provides an estimate of \(-\theta m_j\).
cupational access costs. Panel B of Figure 2 shows that the average estimated access costs also tend to increase with the average fraction of workers with a college degree in each 2-digit occupation. Thus, occupations with high estimated m_j may require more specific training, possibly not transferable to other occupations, even if they share a similar task content. Panel C provides some evidence of a positive relationship between access costs and rates of union membership by occupation. This suggests that unionization may also contribute to restricting access to an occupation, even for workers coming from jobs with similar task content.

Finally, and perhaps most notably, Panel D uses a measure of occupational licensing intensity. As discussed by Schoellman (2012), licensure is the strongest form of occupational access restriction, because workers are legally required to obtain a license from the government to practice their profession. To measure these requirements, Schoellman collects data on occupational licensing, at both federal and state level as of March 2010 using the CareerOne-Stop database, sponsored by the U.S. Department of Labor.25 Although some occupations are federally licensed, most licensure is done at the state level. The database includes a list of 9,308 data points, each consisting of a license-occupation pair. Following Schoellman (2012) we consider several alternative ways to separate heavily licensed from more easily accessible occupations. Panel D of Figure 2 uses a measure which reports the number of states in which each 2-digit occupation is licensed.26 The figure documents that occupations with higher estimated access costs tend to be licensed in a larger number of states.

A broad overview of the four panels in Figure 2 illustrates how access costs are associated with different institutional features in different occupations: for example, licensing and education restrictions appear to be important for access to medical, legal and university teaching occupations, whereas unionization is key for access to protective service jobs as well as office machine operation, mail distribution and school teaching jobs. Given this observation, and as further evidence for the interpretation of m_j as access costs, we combine the four empirical measures of access costs presented in Figure 2 into a single composite index. Panel A of Figure 3 uses a weighted average of the four measures (specific vocational preparation, fraction of workers with college degree, union membership rate, and state licensing requirements), where each measure is standardized to have mean zero and standard deviation one, and all four measures are equally weighted. We also perform a Principal Component Analysis (PCA) using the four empirical access cost measures and extract the first factor, which accounts for roughly 56% of the total variance of the four proxies. We then use the predicted score of the first factor in each occupation as a composite proxy of access costs. Results are plotted in

25We thank Todd Schoellman for generously sharing his licensing database. Licenses may cover a portion of an occupation or multiple occupations. The data are reported by state but not all states participate, and participating states may not report all licenses.

26We measure the number of states in which a 2-digit occupation is licensed as the employment-weighted average of the number of states in which each corresponding 3-digit occupation is licensed, where the employment weights are generated from the CPS data for the year 2010.
Panel B of Figure 3 and display a clear positive correlation with the access costs obtained from our estimation.

4.3 Match Quality Dispersion or Switching Costs? Estimating θ

The effect of the task variables on observed worker flows depends on the effect of these variables on transition costs but also on the dispersion of match quality shocks. As shown in Equation (15), the coefficients obtained from the estimation of the gravity equation correspond to $-\theta\beta$. To disentangle these two components, and to obtain an estimate of the costs of switching across occupations, it is necessary to estimate θ, which dictates the dispersion of match quality shocks. To this purpose we take advantage of the properties of the extreme value distribution, which lead to a simple relationship between the distribution of payoffs predicted by the model and the parameter of interest, θ.

The extreme value distribution in Equation (3) has mean $T_j^{1/\beta} \Gamma(1 - 1/\theta)$, where Γ is the Gamma function. Its logarithm has a Gumbel distribution, with standard deviation equal to $\pi/(\theta \sqrt{6})$.

Equation (16) implies that the ex-post payoffs for the set of individuals starting in occupation k follow an extreme value distribution with mean $\left[\sum_{j=1}^{N} T_j d_{kj}^{\theta} (p_j f[X(i)])^\theta\right]^{(1/\theta)} \Gamma (1 - 1/\theta)$. The standard deviation of these ex-post payoffs is $\pi/(\theta \sqrt{6})$. Therefore, for any set of individuals starting in occupation k with common demographic characteristics $X(i)$, we have that $\sigma^x_k = \pi/(\theta \sqrt{6})$, where σ^x_k denotes the standard deviation of ex-post (log) payoffs within the group. This implies that θ can be estimated from the dispersion of payoffs σ^x_k.

27The Gumbel distribution has the CDF $F(x) = \exp(-e^{-(x-\mu)/\beta})$, with standard deviation $(\pi \beta)/\sqrt{6}$. For the logarithm of the productivity draws from the extreme value distribution in Equation (3), we can write $Pr(\ln z_j(i) \leq z) = Pr(z_j(i) \leq e^z) = F_j(e^z) = \exp(-T_j e^{-\theta z})$, which is a Gumbel distribution with standard deviation $\pi/(\theta \sqrt{6})$.

28From the previous footnote the standard deviation of the logarithm of productivity does not depend on T_j. For the distribution of log payoffs, T_j would be replaced by $\left(\sum_{j=1}^{N} T_j d_{kj}^{\theta} (p_j f[X(i)])^\theta\right)$. The standard deviation remains independent of this multiplicative constant.
So far our analysis has relied exclusively on worker flow data and we have interpreted the payoff from an occupation as a present discounted value combining pecuniary and non-pecuniary returns. Unfortunately, while CPS data allows one to measure the dispersion of pecuniary payoffs (wages), there is no direct empirical counterpart to gauge the dispersion of the total utility payoff. The dispersion of current wages may be an imprecise proxy of the true dispersion of utility payoffs. Specifically, suppose that the payoff \(\phi \) can be expressed as the product of the wage \(w \) and a factor \(\varphi \) that scales up current wages to the total lifetime utility payoff (pecuniary and non-pecuniary) in an occupation. We would then have that the variance of total log utility payoffs is given by:

\[
\text{Var}(\ln \phi) = \text{Var}(\ln w + \ln \varphi) = \text{Var}(\ln w) + \text{Var}(\ln \varphi) + 2\text{Cov}(\ln w, \ln \varphi)
\]

(17)

If \(w \) and \(\varphi \) are positively correlated (that is, workers with high current wage in an occupation also have high lifetime wages and/or high non-pecuniary returns in that occupation), or if these two components are negatively correlated but \([\text{Var}(\ln \varphi) + 2\text{Cov}(\ln w, \ln \varphi)] > 0 \), then the variance of wages will underestimate the variance of total payoffs \(\phi \), leading to an overestimation of the value of \(\theta \). Only if the negative correlation between \(w \) and \(\varphi \) is such that \(\text{Var}(\ln \varphi) + 2\text{Cov}(\ln w, \ln \varphi) < 0 \) will the identification of \(\theta \) based on the dispersion of wages underestimate the true value of \(\theta \).

Below we identify a benchmark value of \(\theta \) based on wage dispersion. In Section 5.2 we gauge the robustness of our results to a wide range of estimates of \(\theta \), effectively allowing for different potential correlations between pecuniary and non-pecuniary rewards and between current and lifetime payoffs. It is worth emphasizing that wages have no role in the estimation of Equation (15). We use wage heterogeneity only to approximate the match quality dispersion parameter \(\theta \), and no information about wage changes is used to estimate mobility costs. Moreover, in Appendix D we outline an alternative approach to identify \(\theta \) that does not use wage data at all. This approach yields estimates of \(\theta \) that are similar to the ones based on wage dispersion. Finally, in Appendix E we present new evidence about the variance of non-pecuniary returns (approximated through a variety of job satisfaction measures from a different data source) and their correlation with wages. This evidence suggests that the omission of non-pecuniary returns implies a fairly small positive bias in the estimation of \(\theta \), with little or no change in results relative to our baseline parametrization.

Estimation. In what follows we present three alternative estimations of \(\theta = \pi/(\sigma_k^x \sqrt{6}) \) based on wage data.²⁹ First, we compute \(\sigma_k^x \) using the standard deviation of (ex-post) log wages from the entire set of individuals starting the period in occupation \(k \) (not conditional

²⁹Wage data is available in the CPS for workers in the Outgoing Rotation Groups (fourth and eighth month in the sample). We follow the procedure in Lemieux (2006) to generate hourly wages and to trim extreme values of wages and adjust top-coded earnings.
on demographics). This is computed for each month in the sample using the distribution of wages in month t for workers with common occupation k in month $t-1$.

Next, to control for worker characteristics, we perform an estimation exercise based on residual wages. We first regress log wages on a flexible function of age and education. We then compute the standard deviation of residual wages among all individuals starting the period in occupation k and use this to back out an implied value of θ.

Finally, we provide an estimate of θ based solely on data for young workers. As these individuals are at the start of their working life, there should be little heterogeneity in terms of life cycle shocks that affect wages. We compute estimates of $\theta = \pi/(\sigma_k^x \sqrt{6})$ based on the standard deviation of wages for people aged 25 to 30, by initial occupation and by gender.

Figure A.2 in the Appendix displays histograms of the estimated values of θ for each of these three methods. Table 3 presents the corresponding summary statistics. The estimates of θ are higher when we condition on demographic characteristics. This is because the approach that does not condition on demographic characteristics overestimates σ_k^x and hence underestimates θ. The median estimate of θ based on the dispersion measures for young workers, in Column (3), is 3.23. Below we use this value as a baseline to compute implied mobility costs and perform counterfactual experiments. Section 5.2 gauges the sensitivity of baseline findings to alternative assumptions about the value of θ.

4.4 Mobility Costs

Table 4 uses the baseline value of $\theta = 3.23$ to measure the effect of different task variables on the iceberg transition cost d_{kj}. The first three columns of Table 4 show, for each of the specifications in Table 2, the estimated marginal effects $\hat{\beta}$ of each of the variables on the logarithm of the transition cost ($\ln d_{kj}$). The next three columns compute the implied percentage effect on d_{kj} from a one standard deviation change in distance, and from a change from 0 to 1 for each of the task switching dummy variables. The results show that the impact of task distance on the cost of switching is substantial. For example, based on the coefficients from the Tobit-type specification, Column (6) shows that if distance increases by one standard deviation, the cost of switching occupations increases by approximately 14%, all else equal. Meanwhile, the switching cost is substantially increased if the switch involves a transition into a different task group. These additional costs range from 23% for transitions into routine cognitive occupations, to 68% for transitions into routine manual jobs.

30 We include four education dummies, a full set of age dummies, and interactions of education dummies with a quartic in age. We also include month dummies to account for seasonality, and estimate separate regressions for each year and gender, thus flexibly allowing returns to education and age to vary between genders and over time.

31 We use occupation-month bins with at least 100 observations for the first two approaches, and occupation-gender-month bins with at least 15 observations for the approach that considers only young workers.
Decomposing Mobility Costs

Next, we calculate the estimated transition cost d_{kj} for specific occupation pairs based on Equation (14). We compute this in three steps. First, we calculate the cost solely attributable to task distance:

$$\ln d_{kj}^{\text{dist}} = \hat{\beta}_1 \text{dist}_{kj}$$

We then add the cost attributable to switching between broad task groups, in order to obtain the total cost associated with the task variables:

$$\ln d_{kj}^{\text{tasks}} = \hat{\beta}_1 \text{dist}_{kj} + \hat{\beta}_2 \lambda_{kj}^{NC} + \hat{\beta}_3 \lambda_{kj}^{RC} + \hat{\beta}_4 \lambda_{kj}^{RM} + \hat{\beta}_5 \lambda_{kj}^{NM}$$

Finally, we quantify the full estimated transition cost, considering all costs including the fixed destination entry cost:

$$\ln d_{kj}^{\text{all}} = \hat{\beta}_1 \text{dist}_{kj} + \hat{\beta}_2 \lambda_{kj}^{NC} + \hat{\beta}_3 \lambda_{kj}^{RC} + \hat{\beta}_4 \lambda_{kj}^{RM} + \hat{\beta}_5 \lambda_{kj}^{NM} + \hat{m}_j$$

Table 5 shows estimates of these three layers of costs for a selected number of occupation pairs in year 2012. The top half of the table lists occupation pairs that exhibit the lowest overall transition costs, while the bottom half presents the occupation pairs for which we estimate the highest transition costs. All low-cost transitions have a low task distance and do not entail switching between broad task categories. They are also transitions into occupations with relatively low entry costs. Yet, even for such transitions estimated costs remain fairly large. Recall from Equation (1) in the model that d_{kj} is an iceberg cost which reduces the payoff to a worker who switches occupations. For example, the estimated cost of 1.043 associated with the task costs for transitions between “financial records processing occupations” and “other administrative support occupations, including clerical” implies that a switcher’s payoff would be 4.3% higher if there were no costs associated with the task content of occupations (put differently, the utility payoff of an incumbent in the occupation with identical characteristics would be 4.3% higher). Overall, the payoff to a worker switching between these two occupations would be more than 3 times higher if all mobility costs were removed. Estimated switching costs are therefore substantial, even across occupations that see relatively high volumes of flows.

Transitions between occupation pairs at the bottom of Table 5 are the most costly. These transitions involve a high task distance, a transition into a different broad task group, and a transition into occupations with high task-independent entry costs (lawyers and judges). Estimated transition costs are in fact prohibitively high and we observe essentially no transitions between these occupations.

We use the results from the Tobit-type specification in Column (3) of Table 2.
As a simple characterization of the relative importance of task variables, we compute the size of the iceberg cost associated with the task variables relative to the overall estimated iceberg cost. That is, \((d_{kj}^{\text{dist}} - 1)/(d_{kj}^{\text{all}} - 1)\) for the case of task distance, and \((d_{kj}^{\text{tasks}} - 1)/(p_{kj}^{\text{all}} - 1)\) for all task-related costs. Table 6 presents summary statistics for these ratios across all occupation pairs, and using all years in the sample. For the median observation, task-related costs account for approximately 6% of the total costs. Task-related costs account for more than 13% of all costs only for 1 in 10 occupation pair-year cells.\(^{33}\)

Counterfactual Changes in Mobility Rates

An alternative route to measuring the magnitude of the estimated transition costs is to calculate counterfactual occupational mobility rates that would be observed if transition costs were reduced. Although the reduction in transition costs considered in this section may not always be realistic, nor necessarily desirable, these counterfactual exercises offer a simple way to gauge the relative importance of task-related barriers as compared to non-task related costs.

Column (1) of Table 7 shows the observed mobility rates towards other occupations for a number of 2-digit source occupations in year 2012 (that is, the total number of switchers as a fraction of the total number of workers in each occupation). The top half of the table includes occupations with the lowest observed outflows (between 2% and 4% of workers are observed to switch out at a monthly frequency), while the bottom half of the table includes the occupations with the highest outflows (over 5.5%). The final row shows aggregate mobility across 2-digit occupations. Column (2) presents fitted outflows, based on the estimation of the gravity equation.

Column (3) shows the estimated counterfactual mobility rates that would be observed if the switching costs associated with task distance were eliminated. As one would expect, the counterfactual increase in mobility relative to the fitted value in Column (2) is particularly large for occupations that are very remote, in the sense that they exhibit large task distances relative to most other occupations. An example of this type of remote occupation is “freight, stock and material handlers” where removing task distance alone increases occupational mobility rates from 8.3% to 11.8%.\(^{34}\)

Column (4) displays the counterfactual mobility rates if one also removes costs associated with transitions across broad task categories. As expected, this induces further increases in mobility rates. Overall, for three quarters of the occupation-year cells in our sample,\(^{33}\)

\(^{33}\)As an additional metric for the relative importance of the task variables, we note that the McFadden pseudo R-squared that would be obtained from the estimation in Column (3) of Table 2 if only the task variables are included is only 0.03. The corresponding R-squared for the full model is 0.16.

\(^{34}\)The measure of task distance observed across the two most similar occupations in our sample is close to zero, so performing an alternative experiment where we reduce distance to the smallest value observed in the sample (instead of completely removing distance costs) yields essentially the same results.
counterfactual mobility rates increase by at least 5 percentage points (relative to the fitted values) when all task costs are removed. For 10% of the occupation-year cells, mobility rates increase by more than 12 percentage points. The increase for the median occupation in our sample is of 7.5 percentage points. This change is substantial, and approximately equal to the difference between the mobility rate of “helpers in construction and production occupations” (the occupation with the highest mobility rates) and that of “lawyers and judges” (the occupation with the lowest mobility rate). Meanwhile, the counterfactual increase in aggregate mobility is even larger, at just under 10 percentage points.

Column (5) calculates the counterfactual mobility rates that would be observed if, in addition to removing task-related costs, occupation-specific entry costs \(m_j \) are reduced to the lowest value observed in the sample. Clearly these task-independent entry costs are very important, as the counterfactual mobility rates in Column (5) are substantially larger than in Column (4).

The results in Column (5) provide a useful benchmark to assess the importance of task-related costs relative to general task-independent entry costs. Specifically, one can compare the increase in mobility rates that occurs when task-related costs are removed to the total increase that occurs when also task-independent costs are reduced to the lowest observed value. The main result from this exercise is presented in Table 8, which provides summary statistics for these relative changes using all occupation-year observations. For the median occupation, task-related costs only account for around 11% of the counterfactual mobility increase. Even at the top of the distribution – in occupations for which task content accounts for the biggest increase in counterfactual mobility – this fraction remains generally well below 25%.

Columns (6) and (7) of Table 7 illustrate how our framework could be used to perform simple counterfactual experiments related to specific policy changes. As shown in Panels C and D of Figure 2, occupations with higher union membership and/or licensing rates tend to feature higher access costs. Given this observation we approximate the extent to which mobility rates would change following a reduction in either unionization or licensing rates. First, we compute the difference between average access costs among occupations with union membership rates above and below 9.8% (the median employment-weighted unionization rate across occupation-years). Column (6) explores a counterfactual where we reduce access costs

\[\frac{T_k p^e_k}{\sum_j T_j p^e_j} \]

Given a total of 37 occupations, this term would be equal to 0.027 if all occupations had the same \(T_j \) and \(p_j \). In our sample, it ranges between 0.003 and 0.420.

35 An alternative counterfactual experiment in which all transition costs are completely eliminated yields mobility rates that are unreasonably high. A similar result applies in the trade literature: Counterfactual outcomes for a world with no trade costs imply implausibly higher levels of trade than what is observed in reality (Eaton and Kortum, 2002). In fact, in a world with no trade costs the share of a country’s expenditure on its own goods would be proportional to its relative weight in the world economy. Analogously, here, the fraction of non-switchers in the counterfactual with no transition costs would be proportional to the source occupation’s relative overall “attractiveness” within the universe of occupations, specifically: \(\frac{T_k p^e_k}{\sum_j T_j p^e_j} \)
for occupations with unionization rates above 9.8% by an amount equivalent to this difference. Results suggest that this change would increase aggregate mobility rates from 5% to 6%. Column (7) performs an analogous counterfactual experiment where we reduce access costs for occupations with above-median licensing rates. In this case, aggregate mobility rates increase to 7.2%. As one might expect, these changes are smaller than those obtained from counterfactuals in which task-related barriers are set to zero. However, they convey valuable information about the magnitude of the effects that could be realistically expected following viable policy changes. These results also suggest that, despite the fact that task-content accounts for a relatively small part of total transition costs, its effects on mobility are non-trivial when compared to those implied by realistic policy changes.

Changes Over Time

Given that we estimate Equation (15) separately for each year in our sample, we are able to assess the evolution of the estimated coefficients on the task variables over time. Figure 4 shows that the estimated coefficient on task distance has become smaller in absolute value over time. The difference between the estimated coefficient at the beginning and the end of the sample period is statistically significant. Under the assumption that the value of θ is constant, this result suggests that the marginal effect of task distance on transition costs has diminished over time.\(^*\)

The estimated coefficients on the transitions across broad task groups do not display significant changes over time. They are presented in Appendix Figure A.3. The estimated source and destination fixed effects do not vary much over time either, suggesting that the ranking across occupations in terms of attractiveness and entry costs remains fairly stable over the 1994-2013 period.

We also verify whether the fraction of the transition costs that can be attributed to tasks varies over time, by performing exercises analogous to those in Tables 6 and 8 separately for each year. In spite of the reduction in the coefficient on task distance, we find that the fraction of transition costs that can be attributed to task-related variables remains stable over time, in the range of 5 to 6.5% for the median occupation according to the metric in Table 6, and between 10 and 14% according to the metric in Table 8.

\(^*\)An alternative interpretation is that the dispersion of match quality has increased (i.e. θ has decreased). In fact, the observed increase in wage inequality suggests that this may be the case. If we estimate θ separately for each year in our sample we do observe a decrease in the estimated value of θ in the post-2000 period; however, the magnitude of the fall in the estimate of θ is not sufficient to account for the change in the coefficient on task distance, suggesting that there is a true decline in the marginal effect of task distance on transition costs over time.
5 Robustness

5.1 Alternative Measures of Task Content

To gauge the robustness of the results we consider a number of alternative measures for the construction of task distance. First, we add additional dimensions from the 1991 Dictionary of Occupational Titles to our task vector for the construction of the distance measure. We also consider alternative task characterizations which are based on more recent data from O*Net, the successor to the DOT. Detailed results are reported in Appendix F. The fraction of the transition costs that can be attributed to task variables varies slightly when using alternative distance measures, but is no larger than 15% for the median occupation.

We also consider a specification where we allow for non-linear effects of task distance, and a specification in which transition costs between different broad task groups vary with both source and destination. As shown in Appendix F, the results from counterfactual experiments using these alternative specifications imply that task-related barriers account for around 10-13% of overall transition costs for the median occupation.

5.2 Alternative Values of θ

As discussed in Section 4.3, the dispersion of wages may differ from the dispersion of total payoffs depending on the correlation between current wages and other factors affecting lifetime payoffs, including the non-pecuniary component of match quality. To check the robustness of our results to alternative assumptions about the value of θ, and to further reduce reliance on the estimates obtained from wage data, Table 9 reproduces the results from Table 6 using a range of higher and lower values of θ. This implicitly allows for a wide range of assumptions about the variance of other components driving lifetime payoffs, and about the correlation of these components with current wages.

For values of θ that are below our benchmark estimate, the fraction of costs that is attributed to task-related variables relative to task-independent occupational entry costs is reduced further. The fraction of costs attributed to task-related variables does not increase dramatically when higher values of θ are assumed: even when setting θ to a value as high as 8.87 (the highest value of θ obtained through the alternative estimation method described in Appendix D), task-related variables only account for around 13% of total costs for the median occupation pair.

It is also important to emphasize that the results from the counterfactual experiments

37 We thank Nicole Fortin for sharing a crosswalk between O*Net occupation codes and occupation codes from the 1980/1990 Census occupation coding systems.

38 From the discussion in Section 4.3, recall that our benchmark estimate of θ will be an upper bound estimate whenever $[\text{Var}(\ln \varphi) + 2\text{Cov}(\ln w, \ln \varphi)] > 0$. Moreover, Appendix E presents evidence that pecuniary and non-pecuniary returns are positively correlated.
presented in Table 8 are not affected in any way by the estimated value of θ. Our conclusion that the costs of occupational mobility are large and primarily driven by task-independent occupation entry costs are therefore robust to a wide range of assumptions about the value of the parameter θ.

5.3 Alternative Data Samples

Our next robustness check involves estimating the model for specific sub-samples of workers. The baseline model assumes that individuals receive productivity draws for all occupations and make switching decisions based on those draws. Results from previous literature, such as Neal (1999) and Gervais et al. (2016), suggest that this assumption is more likely to hold for younger workers who are at the start of their careers and still unsure about how well they will be matched to different types of jobs. In fact, the data shows that younger workers have higher rates of occupational mobility (Kambourov and Manovskii, 2008; Gervais et al., 2016).

Hence we verify the robustness of our results by estimating the gravity equation using data on worker flows across occupations only for individuals aged 18 to 35. Results obtained when using this sample of younger workers are quite consistent with the findings from the full sample. Columns (1) and (2) of Table 10 present results of the counterfactual experiments analogous to those in Table 8. Although there is more dispersion in the estimated role of task content across occupations, the effects for the median occupation are remarkably similar to those estimated from the full sample.

We also estimate our gravity equation using flows for workers with high levels of education (college graduates), as many of these workers may have the option to match with a wide variety of occupations. The results are presented in Columns (3) and (4) of Table 10, and suggest an even weaker role of task content for this group of workers.39

5.4 Occupation Coding Error

Over our sample period the CPS consistently used dependent coding techniques to assign occupation codes.40 Moscarini and Thomsson (2007) discuss how dependent coding reduces the number of spurious transitions due to mis-coding. However, as emphasized by Kambourov and Manovskii (2013), the dependent coding procedure is only applied to workers who remain with the same employer. Therefore, mis-coding may still occur for workers who switch

39If we focus instead on workers without a college degree, we find that task-related costs account for 7% of total costs for the median occupation, and 8% on average across all occupation-year cells.

40Dependent coding involves importing information collected in the previous month’s interview into the current interview. Instead of asking individuals to verbally describe their current occupation in each month and independently coding these descriptions, interviewees were asked whether they still had the same job as in the previous month. If so, they were automatically assigned the same occupation code. The introduction of dependent coding in 1994 has a dramatic effect on measured occupation mobility rates, as illustrated in Appendix Figure A.4.
employers in the post-1994 period.

In order to obtain specific evidence on the effect of coding error, we contrast the estimates of our model for 1994 (the first year in which dependent coding techniques were used in the CPS) to those obtained using data for 1992, prior to the introduction of these techniques.41 The comparison allows us to determine the likely effect of coding error on the estimated coefficients of the task variables. Results from the counterfactual experiments are shown in Table 11. In 1994, after the introduction of dependent coding techniques, we find that task-related costs account for 14% of total transition costs on average across occupations. The corresponding figure for the year 1992, before dependent coding techniques were introduced, is substantially higher at 38%.

This evidence implies that coding error tends to lead to an overestimation of the relative importance of task content heterogeneity. This finding can be understood by considering the nature of occupation mis-classification due to coding error. Mis-classification occurs when an individual’s description of the same job in two consecutive periods is assigned a different occupation code. In such cases, the erroneous code will likely correspond to an occupation that is fairly similar – in terms of task content – to the original occupation. Hence coding error will predominantly lead to spurious transitions across occupation pairs with similar task content.42 This implies that in the presence of coding error, our approach would over-estimate the relative importance of task content, and therefore, to the extent that some coding error remains in the post-1994 period, the relative importance of the task variables may be even smaller than what we find.

6 Discussion

Quantifying the costs faced by workers when considering an occupational transition is key to understand the aggregate impact of labor market shocks and their distributional consequences. Technological change or trade reforms may reshuffle labor demand across occupations and trigger adjustments which critically depend on the magnitude of mobility costs. Arguably, large mobility costs would impose disproportionate losses on workers whose current occupation suffers from decreased demand.

Our novel approach allows us to gauge the magnitude of transition costs across any pair of occupations. A crucial advantage of this approach is that identification relies primarily on worker flows, rather than wage data, allowing for a broad notion of payoffs and costs (whether

41 Matching of individuals across months is problematic during the last months of 1993; hence, we use 1992 data for this exercise in order to have flow data for a full calendar year.

42 Data from the Panel Study of Income Dynamics (PSID) show a striking discontinuity in median distance between the period where occupations were retrospectively coded, and a more recent period where the incidence of coding error is higher; see Figure 3.1 in Cortes (2012). Robinson (2011) also provides a discussion of these issues.
pecuniary or non-pecuniary). Through counterfactual experiments we show that transition costs across most occupation pairs are very large: if all pair-wise costs were reduced to the lowest value estimated in our sample, the aggregate mobility rate across 2-digit occupations would increase by an order of magnitude. The large transition costs imply that a negative demand shock that persistently reduces payoffs in a particular occupation will not induce much additional worker reallocation, as many workers will find it optimal to remain in that occupation and avoid incurring these costs. This is consistent with evidence in Autor and Dorn (2009) who find that routine jobs – which experience a decline in demand due to new automation technologies – are “getting old”. Our findings also complement influential work on labor market mobility which, using different identification strategies, has highlighted the large magnitude of the costs faced by workers considering a transition across industries (see Dix-Carneiro, 2014; Artuc et al., 2010).

Existing studies on industry-switching costs typically draw inference from data on sectoral wages; hence, the identification of intersectoral mobility costs critically depends on the quality of counterfactual wage differentials measured across sectors, and their expected evolution. As noted by Dix-Carneiro (2014), this line of research only offers limited insights into the nature of the costs faced by workers when switching sectors. Yet, an understanding of what constitutes mobility costs is necessary to make sense of observed patterns and to inform policy. To that end, a key contribution of our paper is to explore the relative importance of task heterogeneity as a component of occupational mobility costs. Our estimates suggest that task content heterogeneity has a significant impact on transition costs: a one standard deviation increase in task distance raises the cost of switching jobs by approximately 14%. However, we also find that most mobility costs are not related to task differences and can be best described as occupation-specific access costs. These access costs account for at least 80% of overall transition costs between most occupation pairs. Thus, they play a critical role in the labor adjustment process and, as we show, can be partly related to existing labor market institutions. Incidentally, our findings corroborate those of several studies looking at workers' reallocation patterns following trade liberalizations. In this context, Ritter (2014) shows that labor market institutions play a larger role in the adjustment process than specific human capital, confirming earlier results in Kambourov (2009). Similarly, Dix-Carneiro (2014) argues that mobility costs other than sector-specific experience are of crucial importance, and may explain the slow adjustment of the labor market following trade reforms in Brazil.

The literature on task human capital (e.g. Poletaev and Robinson, 2008; Gathmann and Schönberg, 2010) has identified task tenure as a significant component of individual wage

\[43\] Evidence in Cortes et al. (2014) also highlights the importance of inflows from unemployment and non-participation when accounting for the decline in routine employment, suggesting that the economy has adjusted to the decreased demand for routine jobs through reduced inflows rather than increased outflows. Our findings indicate that this asymmetry can be rationalized by the high cost of transiting out of routine occupations for incumbents.
growth. This is not inconsistent with our results. However, we find that the cost of switching occupations considerably exceeds the loss of task-specific human capital. Hence, researchers working on models motivated by the task human capital literature should be cautious about assuming that transition costs depend exclusively on the extent of overlap in task content between occupations. Calibrating these costs based only on task distance measures would be misleading. Realistic portraits of the labor market should carefully account for formal or implicit institutional features that constrain access to occupations, severely limiting labor movement even across occupations with substantial overlap in terms of their task content. These considerations are especially relevant for policy analysis.

It is important to acknowledge that certain caveats apply to our results. The empirical analysis is based on transitions occurring over one-month horizons; hence our estimates should be interpreted as describing occupational transition costs over relatively short intervals.44 Moreover, we emphasize the transferability of task-specific human capital and, therefore, we focus on the overlap in task content within each occupation pair. A broader notion of task human capital could encompass all the skills that can be attributed to task content, regardless of their portability to other occupations. For example, particular bundles of tasks could affect payoffs in different occupations by impacting the mean level of productivity of incumbent workers, or the speed of human capital accumulation in those occupations. Through these channels, task content could influence occupational mobility in ways not directly related to skill transferability as captured by task distance.45 To explore these complementary mechanisms one would have to specify a richer, but rather more restrictive, life-cycle model of productivity and wages.

7 Conclusions

We quantify the costs of occupational mobility using an approach which relies on data on worker flows across occupations rather than wages. This approach circumvents potentially confounding effects embedded in wage changes observed for occupational switchers, and allows us to estimate the total costs (both pecuniary and non-pecuniary) that workers would face if they chose to change occupations. These are the costs that limit mobility, and they are not equal to the costs that are actually incurred by workers who decide to make a switch.

We posit an occupational choice model where workers draw a match quality shock for each potential occupation from a set of extreme value distributions, and choose optimally which occupation to work in, based on their draws, the utility payoffs of alternative occupations and

44Unfortunately our data is not suitable for an analysis of longer-term transitions due to the presence of coding error, as discussed in Appendix G.

45It is important to stress that our framework is not incompatible with the possibility that certain bundles of tasks are associated with a faster rate of human capital accumulation. If this accumulated human capital is task-specific, it should remain portable across occupations with similar task content.
the costs of moving out of their current occupation. The model naturally maps into a gravity specification linking worker flows to occupation characteristics, and to the implicit transition costs faced by workers.

Our empirical analysis quantifies different layers of occupational transition costs. In particular, we assess the role of task distance (the degree of dissimilarity in the mix of task requirements) as a component of the cost of switching among any two occupations. We find that raising task distance by one standard deviation increases the cost of switching occupations by approximately 14% in our baseline specification, all else equal. In addition, if the switch involves moving across major task groups mobility costs are raised much further, in ways not captured by the pure distance measure. Yet, despite the considerable role of task content, we find that the largest share of occupational mobility costs is attributable to task-independent factors, modeled as occupation entry costs in our baseline specification. These occupation-specific costs vary widely in size, and are positively correlated with measures of training, unionization and licensing requirements at the occupational level. Overall, estimated transition costs across occupations are substantial and remain fairly stable over the period that we consider. The results are robust to alternative ways of characterizing the task content of occupations, using both Dictionary of Occupational Titles and O*Net data, and hold also when we focus exclusively on the mobility patterns of younger workers, or workers with a college degree.

Our findings complement the evidence regarding transition costs across industries in Artuc et al. (2010), Artuc and McLaren (2015) and Dix-Carneiro (2014), and caution against assuming perfect mobility of workers across occupations, or positing that the cost of switching is homogeneous and/or mainly driven by loss of task-specific human capital. Models that make such assumptions abstract from transition costs that are very sizable and heterogeneous across occupations.

Future work might embed our flow model within an equilibrium framework featuring shocks to demand for different occupations (due to technology or trade, as in Tombe and Zhu, 2015). The occupational sorting mechanism in our model would provide a parsimonious setup to study worker flows across occupations whose fortunes change over time. With finer data, the model could also encompass richer heterogeneity in terms of match quality distributions or mobility costs. It would also be interesting to consider a richer dynamic setting where workers explicitly maximize a present discounted value of lifetime utility, and some assumption is made about the persistence of match-quality draws. As stressed by Head and Mayer (2013) in their review article, this is an extension that micro-founded gravity models have yet to address and remains a promising direction for future work.
References

Figure 1: Estimated source and destination occupation fixed effects for the year 2012

Note: Each circle represents a 2-digit occupation, with the size of the circle representing the size of the occupation in 2012, and labeled with its corresponding occupation code; see Appendix Table A.1 for the definitions of each occupation code.
Figure 2: Correlation between estimates of θ_{m_j} and other empirical measures of occupation access costs

Panel A: Specific Vocational Preparation

Panel B: Fraction of Workers with College Degree

Panel C: Union Membership Rate

Panel D: State Licensing

Note: Each circle represents a 2-digit occupation, with the size of the circle representing the average size of the occupation across all years in our sample, and labeled with its corresponding occupation code; see Appendix Table A.1 for the definitions of each occupation code.
Figure 3: Correlation between estimates of θm_j and composite empirical measures of occupation access costs

Note: Each circle represents a 2-digit occupation, with the size of the circle representing the average size of the occupation across all years in our sample, and labeled with its corresponding occupation code; see Appendix Table A.1 for the definitions of each occupation code.
Figure 4: Evolution of the estimated coefficient on task distance over time

Note: The dashed lines indicate a 95% confidence interval.
Table 1: Examples of Task Content

<table>
<thead>
<tr>
<th></th>
<th>Health Assessment and Treating</th>
<th>Cleaning and Building Service</th>
<th>Helpers, Construction and Production</th>
<th>Freight, Stock and Material Handlers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GED-Reasoning</td>
<td>1.12</td>
<td>-0.79</td>
<td>-1.52</td>
<td>-1.92</td>
</tr>
<tr>
<td>GED-Math</td>
<td>1.08</td>
<td>-0.59</td>
<td>-1.24</td>
<td>-1.42</td>
</tr>
<tr>
<td>GED-Language</td>
<td>1.18</td>
<td>-0.61</td>
<td>-1.33</td>
<td>-1.59</td>
</tr>
<tr>
<td>Intelligence</td>
<td>0.91</td>
<td>-0.63</td>
<td>-0.87</td>
<td>-0.90</td>
</tr>
<tr>
<td>Verbal</td>
<td>0.83</td>
<td>-0.60</td>
<td>-0.85</td>
<td>-0.84</td>
</tr>
<tr>
<td>Numerical</td>
<td>0.57</td>
<td>-0.57</td>
<td>-0.82</td>
<td>-0.91</td>
</tr>
<tr>
<td>Spacial</td>
<td>0.42</td>
<td>-0.39</td>
<td>-0.51</td>
<td>-0.73</td>
</tr>
<tr>
<td>Form Perception</td>
<td>1.07</td>
<td>-0.63</td>
<td>-0.68</td>
<td>-0.83</td>
</tr>
<tr>
<td>Clerical</td>
<td>0.88</td>
<td>-0.58</td>
<td>-0.98</td>
<td>-1.01</td>
</tr>
<tr>
<td>Motor Coord</td>
<td>1.05</td>
<td>-0.64</td>
<td>-0.46</td>
<td>-0.72</td>
</tr>
<tr>
<td>Finger Dext</td>
<td>0.66</td>
<td>-0.57</td>
<td>-0.50</td>
<td>-0.59</td>
</tr>
<tr>
<td>Manual Dext</td>
<td>0.68</td>
<td>-0.17</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Eye-Hand-Foot</td>
<td>-0.05</td>
<td>0.23</td>
<td>-0.04</td>
<td>-0.30</td>
</tr>
<tr>
<td>Color Discrim</td>
<td>0.56</td>
<td>-0.34</td>
<td>-0.54</td>
<td>-0.73</td>
</tr>
<tr>
<td>Distance (DOT)</td>
<td>0.986</td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Distance (ONet)</td>
<td>0.807</td>
<td></td>
<td>0.062</td>
<td></td>
</tr>
</tbody>
</table>

Note: Each DOT dimension is normalized to have mean zero and standard deviation one across the universe of standardized 3-digit occupations from Autor and Dorn (2013). More details are provided in Appendix C. Distance is calculated as in Equation (13). The distance based on O*Net uses the work activities listed in Appendix Table A.3.
Table 2: Estimated coefficients on ‘gravity-type’ equation, 2012

<table>
<thead>
<tr>
<th></th>
<th>No Zeros</th>
<th>Zeros Replaced</th>
<th>IntReg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>IntReg</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>dist</td>
<td>-1.132</td>
<td>-1.394</td>
<td>-1.457</td>
</tr>
<tr>
<td></td>
<td>(.107)**</td>
<td>(.180)**</td>
<td>(.191)**</td>
</tr>
<tr>
<td>(\lambda^{NC})</td>
<td>-.182</td>
<td>-.628</td>
<td>-.690</td>
</tr>
<tr>
<td></td>
<td>(.120)</td>
<td>(.204)**</td>
<td>(.216)**</td>
</tr>
<tr>
<td>(\lambda^{RC})</td>
<td>-.584</td>
<td>-.686</td>
<td>-.676</td>
</tr>
<tr>
<td></td>
<td>(.137)**</td>
<td>(.236)**</td>
<td>(.249)**</td>
</tr>
<tr>
<td>(\lambda^{RM})</td>
<td>-1.209</td>
<td>-1.629</td>
<td>-1.672</td>
</tr>
<tr>
<td></td>
<td>(.132)**</td>
<td>(.226)**</td>
<td>(.239)**</td>
</tr>
<tr>
<td>(\lambda^{NM})</td>
<td>-.784</td>
<td>-.730</td>
<td>-.712</td>
</tr>
<tr>
<td></td>
<td>(.203)**</td>
<td>(.354)**</td>
<td>(.374)**</td>
</tr>
<tr>
<td>Const.</td>
<td>-4.467</td>
<td>-3.737</td>
<td>-3.630</td>
</tr>
<tr>
<td></td>
<td>(.193)**</td>
<td>(.338)**</td>
<td>(.356)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>1218</td>
<td>1332</td>
<td>1332</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.588</td>
<td>.515</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table presents the results from the estimation of Equation (15) for the year 2012. Observations are at the occupation pair level. The dependent variable is the normalized flow of workers \(\ln(\text{sw}_{kj}/\text{sw}_{kk})\). All specifications include source and destination occupation dummies.

Table 3: Summary statistics of estimates of \(\theta\)

<table>
<thead>
<tr>
<th>Sample:</th>
<th>Full</th>
<th>Full</th>
<th>Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure:</td>
<td>Wages</td>
<td>Residual Wages</td>
<td>Wages</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>2.182</td>
<td>2.504</td>
<td>2.437</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>2.435</td>
<td>2.725</td>
<td>2.769</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>2.851</td>
<td>3.023</td>
<td>3.230</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>3.151</td>
<td>3.304</td>
<td>3.770</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>3.411</td>
<td>3.530</td>
<td>4.350</td>
</tr>
<tr>
<td>Mean</td>
<td>2.820</td>
<td>3.019</td>
<td>3.333</td>
</tr>
<tr>
<td>Nr of Cells</td>
<td>7,448</td>
<td>7,441</td>
<td>8,505</td>
</tr>
</tbody>
</table>

Note: The table presents summary statistics for the estimated value of \(\theta\) based on the standard deviation of wages or residual wages as described in Section 4.3. The estimation in Columns (1) and (2) uses the full sample in each month, by initial occupation, excluding occupation-month cells with less than 100 observations; the estimation in Column (3) uses a restricted sample of gender-specific demographic bins for those aged 25 to 30, by month and by initial occupation, excluding cells with less than 15 observations.
Table 4: Estimated effects on occupational transition costs for each of the specifications in Table 2

<table>
<thead>
<tr>
<th></th>
<th>Implied $\hat{\beta}$</th>
<th>Percentage effect on d_{kj}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Zeros</td>
<td>Zeros Replaced</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>$dist$</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>0.351</td>
<td>0.432</td>
<td>0.451</td>
</tr>
<tr>
<td>λ^{NC}</td>
<td>0.056</td>
<td>0.194</td>
</tr>
<tr>
<td>λ^{RC}</td>
<td>0.181</td>
<td>0.212</td>
</tr>
<tr>
<td>λ^{RM}</td>
<td>0.374</td>
<td>0.504</td>
</tr>
<tr>
<td>λ^{NM}</td>
<td>0.243</td>
<td>0.226</td>
</tr>
</tbody>
</table>

Note: Columns (1) to (3) show the marginal effects of distance and the task group switching dummies on the normalized flow of workers across occupation pairs using the estimate of $\theta = 3.23$. Columns (4) to (6) show the percentage effect on the transition cost d_{kj} from a one standard deviation increase in distance and from a change from 0 to 1 for the task group switching variables. The standard deviation of distance is computed among the sample of occupation pairs with non-zero flows for the purposes of Column (4) and among the full sample of occupation pairs for the purposes of Columns (5) and (6).
Table 5: Estimated occupational transition costs between selected occupation pairs, 2012

<table>
<thead>
<tr>
<th>Source Occupation</th>
<th>Destination Occupation</th>
<th>Estimated d_{kj}</th>
<th>Distance</th>
<th>Tasks</th>
<th>All costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info and records processing, excl financial</td>
<td>Other admin support occ, incl clerical</td>
<td>1.005</td>
<td>1.005</td>
<td></td>
<td>2.994</td>
</tr>
<tr>
<td>Office supervisors and computer operators</td>
<td>Other admin support occ, incl clerical</td>
<td>1.031</td>
<td>1.031</td>
<td></td>
<td>3.071</td>
</tr>
<tr>
<td>Management related occupations</td>
<td>Executives, administrators and managers</td>
<td>1.005</td>
<td>1.005</td>
<td></td>
<td>3.091</td>
</tr>
<tr>
<td>Librarians, social scientists, religious workers</td>
<td>Executives, administrators and managers</td>
<td>1.006</td>
<td>1.006</td>
<td></td>
<td>3.095</td>
</tr>
<tr>
<td>Financial records processing occupations</td>
<td>Other admin support occ, incl clerical</td>
<td>1.043</td>
<td>1.043</td>
<td></td>
<td>3.107</td>
</tr>
<tr>
<td>Teachers, except college and university</td>
<td>Executives, administrators and managers</td>
<td>1.015</td>
<td>1.015</td>
<td></td>
<td>3.122</td>
</tr>
<tr>
<td>Teachers, college and university</td>
<td>Executives, administrators and managers</td>
<td>1.016</td>
<td>1.016</td>
<td></td>
<td>3.127</td>
</tr>
<tr>
<td>Lawyers and judges</td>
<td>Executives, administrators and managers</td>
<td>1.023</td>
<td>1.023</td>
<td></td>
<td>3.146</td>
</tr>
<tr>
<td>Office machine operators and mail distributing</td>
<td>Other admin support occ, incl clerical</td>
<td>1.060</td>
<td>1.060</td>
<td></td>
<td>3.158</td>
</tr>
<tr>
<td>Retail and other salespersons</td>
<td>Other admin support occ, incl clerical</td>
<td>1.065</td>
<td>1.065</td>
<td></td>
<td>3.174</td>
</tr>
<tr>
<td>Food service occupations</td>
<td>Lawyers and judges</td>
<td>1.416</td>
<td>1.754</td>
<td></td>
<td>67.389</td>
</tr>
<tr>
<td>Helpers, construction and production occ</td>
<td>Lawyers and judges</td>
<td>1.432</td>
<td>1.774</td>
<td></td>
<td>68.160</td>
</tr>
<tr>
<td>Transportation and material moving</td>
<td>Lawyers and judges</td>
<td>1.434</td>
<td>1.775</td>
<td></td>
<td>68.219</td>
</tr>
<tr>
<td>Other personal service occupations</td>
<td>Lawyers and judges</td>
<td>1.434</td>
<td>1.776</td>
<td></td>
<td>68.250</td>
</tr>
<tr>
<td>Production inspectors and graders</td>
<td>Lawyers and judges</td>
<td>1.446</td>
<td>1.791</td>
<td></td>
<td>68.813</td>
</tr>
<tr>
<td>Mechanics and repairers</td>
<td>Lawyers and judges</td>
<td>1.461</td>
<td>1.810</td>
<td></td>
<td>69.541</td>
</tr>
<tr>
<td>Machine operators and tenders, not precision</td>
<td>Lawyers and judges</td>
<td>1.462</td>
<td>1.810</td>
<td></td>
<td>69.567</td>
</tr>
<tr>
<td>Fabricators, assemblers and hand working occ</td>
<td>Lawyers and judges</td>
<td>1.477</td>
<td>1.829</td>
<td></td>
<td>70.298</td>
</tr>
<tr>
<td>Construction trades</td>
<td>Lawyers and judges</td>
<td>1.480</td>
<td>1.832</td>
<td></td>
<td>70.410</td>
</tr>
<tr>
<td>Other precision production occupations</td>
<td>Lawyers and judges</td>
<td>1.508</td>
<td>1.868</td>
<td></td>
<td>71.766</td>
</tr>
</tbody>
</table>
Table 6: Summary statistics for the relative size of the transition cost associated with the task-related variables

<table>
<thead>
<tr>
<th></th>
<th>Distance</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>0.005</td>
<td>0.010</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>0.015</td>
<td>0.027</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.031</td>
<td>0.057</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>0.050</td>
<td>0.095</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.069</td>
<td>0.131</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.229</td>
<td>0.283</td>
</tr>
<tr>
<td>Mean</td>
<td>0.036</td>
<td>0.065</td>
</tr>
<tr>
<td>Obs.</td>
<td>26,640</td>
<td>26,640</td>
</tr>
</tbody>
</table>

Note: The observations are occupation pair-year cells. Column (1) presents the summary statistics for the fraction of the transition costs that can be attributed to task distance, while Column (2) presents the fraction that can be attributed to all task-related barriers (task distance and costs of transitioning across broad task groups). The remainder is accounted for by task-independent occupational entry costs.
<table>
<thead>
<tr>
<th>Occupation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed (1)</td>
</tr>
<tr>
<td>Lawyers and judges</td>
<td>0.023</td>
</tr>
<tr>
<td>Health assessment and treating occupations</td>
<td>0.028</td>
</tr>
<tr>
<td>Health diagnosing occupations</td>
<td>0.029</td>
</tr>
<tr>
<td>Teachers, except college and university</td>
<td>0.029</td>
</tr>
<tr>
<td>Protective service occupations</td>
<td>0.033</td>
</tr>
<tr>
<td>Teachers, college and university</td>
<td>0.036</td>
</tr>
<tr>
<td>Transportation and material moving</td>
<td>0.039</td>
</tr>
<tr>
<td>Other personal service occupations</td>
<td>0.040</td>
</tr>
<tr>
<td>Librarians, social scientists, religious workers</td>
<td>0.041</td>
</tr>
<tr>
<td>Food service occupations</td>
<td>0.042</td>
</tr>
<tr>
<td>Construction trades</td>
<td>0.057</td>
</tr>
<tr>
<td>Retail and other salespersons</td>
<td>0.057</td>
</tr>
<tr>
<td>Other administrative support occupations, inc clerical</td>
<td>0.060</td>
</tr>
<tr>
<td>Fabricators, assemblers and hand working occ</td>
<td>0.060</td>
</tr>
<tr>
<td>Machine operators and tenders, not precision</td>
<td>0.061</td>
</tr>
<tr>
<td>Engineering and science technicians</td>
<td>0.065</td>
</tr>
<tr>
<td>Office supervisors and computer operators</td>
<td>0.070</td>
</tr>
<tr>
<td>Information and records processing, except financial</td>
<td>0.071</td>
</tr>
<tr>
<td>Freight, stock and material handlers</td>
<td>0.083</td>
</tr>
<tr>
<td>Helpers, construction and production occ</td>
<td>0.099</td>
</tr>
<tr>
<td>Aggregate</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Note: In Column (3) counterfactual occupational mobility rates are calculated for the case when task distance is reduced to zero. In Column (4), transition costs across broad task groups are also reduced to zero. In Column (5), task-independent occupational entry costs are reduced to their lowest estimated value in the sample. In Column (6), access costs are reduced for occupations with above-median membership rates. In Column (7), access costs are reduced for occupations with above-median licensing rates.
Table 8: Summary statistics for the fraction of the transition costs that can be attributed to task-related variables based on the results from the counterfactual experiments

<table>
<thead>
<tr>
<th></th>
<th>Distance</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction</td>
<td>Fraction</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>0.026</td>
<td>0.060</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>0.034</td>
<td>0.081</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.045</td>
<td>0.105</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>0.057</td>
<td>0.134</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.068</td>
<td>0.163</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.133</td>
<td>0.267</td>
</tr>
<tr>
<td>Mean</td>
<td>0.047</td>
<td>0.110</td>
</tr>
<tr>
<td>Obs.</td>
<td>740</td>
<td>740</td>
</tr>
</tbody>
</table>

Note: The observations are occupation-year cells. Column (1) presents the summary statistics for the fraction of the counterfactual increase in mobility that can be attributed to task distance, while Column (2) presents the fraction that can be attributed to all task-related barriers (task distance and costs of transitioning across broad task groups). The remainder is accounted for by heterogeneity in task-independent occupational entry costs.
Table 9: Robustness checks for the results on the relative size of the transition cost associated with the task-related variables

<table>
<thead>
<tr>
<th>Distance</th>
<th>Tasks</th>
<th>Distance</th>
<th>Tasks</th>
<th>Distance</th>
<th>Tasks</th>
<th>Distance</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>.002</td>
<td>.003</td>
<td>.003</td>
<td>.005</td>
<td>.008</td>
<td>.016</td>
<td>.014</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>.005</td>
<td>.010</td>
<td>.008</td>
<td>.016</td>
<td>.023</td>
<td>.040</td>
<td>.042</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>.011</td>
<td>.022</td>
<td>.018</td>
<td>.035</td>
<td>.046</td>
<td>.081</td>
<td>.077</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>.020</td>
<td>.044</td>
<td>.031</td>
<td>.064</td>
<td>.071</td>
<td>.128</td>
<td>.114</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>.031</td>
<td>.064</td>
<td>.046</td>
<td>.090</td>
<td>.094</td>
<td>.172</td>
<td>.146</td>
</tr>
<tr>
<td>Maximum</td>
<td>.140</td>
<td>.182</td>
<td>.178</td>
<td>.226</td>
<td>.275</td>
<td>.333</td>
<td>.352</td>
</tr>
<tr>
<td>Mean</td>
<td>.015</td>
<td>.029</td>
<td>.023</td>
<td>.043</td>
<td>.050</td>
<td>.089</td>
<td>.080</td>
</tr>
<tr>
<td>Obs.</td>
<td>26,640</td>
<td>26,640</td>
<td>26,640</td>
<td>26,640</td>
<td>26,640</td>
<td>26,640</td>
<td>26,640</td>
</tr>
</tbody>
</table>

Note: The observations are occupation pair-year cells. Columns (1), (3), (5) and (7) present the summary statistics for the fraction of the transition costs that can be attributed to task distance using the value of θ indicated on the first row. Columns (2), (4), (6) and (8) present the fraction that can be attributed to all task-related barriers (task distance and costs of transitioning across broad task groups). The remainder is accounted for by heterogeneity in task-independent occupational entry costs.
Table 10: Results from the counterfactual experiments using alternative sub-samples

<table>
<thead>
<tr>
<th>Sample:</th>
<th>Young</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance</td>
<td>Tasks</td>
</tr>
<tr>
<td></td>
<td>Fraction</td>
<td>Fraction</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>.018</td>
<td>.043</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>.031</td>
<td>.074</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>.051</td>
<td>.122</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>.073</td>
<td>.169</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>.096</td>
<td>.224</td>
</tr>
<tr>
<td>Maximum</td>
<td>.177</td>
<td>.379</td>
</tr>
<tr>
<td>Mean</td>
<td>.055</td>
<td>.128</td>
</tr>
<tr>
<td>Obs.</td>
<td>740</td>
<td>740</td>
</tr>
</tbody>
</table>

Note: The observations are occupation-year cells. The results are based on the estimation of Equation (15) using data for younger workers only (aged 18 to 35) in Columns (1) and (2), and using data for college graduates only in Columns (3) and (4). Columns (1) and (3) present the summary statistics for the fraction of the counterfactual increase in mobility that can be attributed to task distance, while Columns (2) and (4) present the fraction that can be attributed to all task-related barriers (task distance and costs of transitioning across broad task groups). The remainder is accounted for by heterogeneity in task-independent occupational entry costs.

Table 11: Results from the counterfactual experiments before and after the introduction of dependent coding techniques

<table>
<thead>
<tr>
<th></th>
<th>Dependent Coding (1994)</th>
<th>No Dependent Coding (1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance</td>
<td>Tasks</td>
</tr>
<tr>
<td></td>
<td>Fraction</td>
<td>Fraction</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>.037</td>
<td>.078</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>.049</td>
<td>.109</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>.063</td>
<td>.141</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>.070</td>
<td>.167</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>.099</td>
<td>.190</td>
</tr>
<tr>
<td>Maximum</td>
<td>.124</td>
<td>.275</td>
</tr>
<tr>
<td>Mean</td>
<td>.064</td>
<td>.141</td>
</tr>
<tr>
<td>Obs.</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

Note: The observations are at the occupation level. The results are based on the estimation of Equation (15) using data for 1994 (after the introduction of dependent coding techniques) in Columns (1) and (2), and using data for 1992 (before the introduction of dependent coding techniques) in Columns (3) and (4). Columns (1) and (3) present the summary statistics for the fraction of the counterfactual increase in mobility that can be attributed to task distance, while Columns (2) and (4) present the fraction that can be attributed to all task-related barriers (task distance and costs of transitioning across broad task groups). The remainder is accounted for by heterogeneity in task-independent occupational entry costs.