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Abstract 21 

Atmospheric ice particles exist in a variety of shapes and sizes.  Single hexagonal crystals 22 

like common hexagonal plates and columns are possible, but more frequently, atmospheric ice 23 

particles are much more complex.  Ice particle shapes have a substantial impact on many 24 

atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, 25 

affecting energy balance to name a few.  This publication builds on earlier work where a 26 

technique was demonstrated to separate single crystals and aggregates of crystals using particle 27 

imagery data from aircraft field campaigns.  Here, data from 10 field programs have been 28 

analyzed and ice particle complexity parameterized by cloud temperature for arctic, mid-latitude 29 

(summer and frontal), and tropical cloud systems. Results show that the transition from simple to 30 

complex particles can be as small as 80 microns or as large as 400 microns depending on 31 

conditions. All regimes show trends of decreasing transition size with decreasing temperature.   32 

  33 
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 44 

1 Introduction 45 

Weather forecast and General Circulation Models (GCMs) need to accurately represent 46 

the characteristics of atmospheric ice particles for accurate forecasts.  Atmospheric ice particle 47 

properties vary widely in shape and size due to changing growth regimes in different 48 

temperatures regimes. Some modeling schemes characterize atmospheric ice as “cloud ice” or 49 

“snow” yet the transition between these particle types is poorly understood [Morrison and 50 

Grabowski, 2008]. Waliser et al. [2009] point out that cloud processes in GCMs have become 51 

more sophisticated in recent years in their treatment of ice particles, yet these changes have been 52 

largely independent of measurements.  Jiang et al. (2012) showed that for 19 GCMs, the model 53 

spreads and differences were most significant in the upper troposphere where ice clouds are 54 

prevalent as compared to the lower and middle troposphere.  In natural ice clouds, ice particle 55 

complexity (C) has been used to explore the transition from single ice crystals to complex 56 

particles [Schmitt and Heymsfield, 2014, hereafter SH14]. The SH14 technique uses particle 57 

imagery analysis of aircraft microphysical probe measurements.  In this study we have applied 58 

this technique to numerous datasets from around the world to better quantify the transition from 59 

simple to complex particle in different regions by temperatures.   60 

Ice particle complexity is highly dependent on how ice particles grow in the atmosphere.  61 

Vapor growth of ice crystals has been studied for decades [Ryan et al. 1976] and is well 62 

characterized.  This type of study has led to schemes such as the Adaptive Habit Model [Sulia et 63 

al. 2013] which uses temperature to predict the growth by vapor of ice crystals and the 64 

capacitance model [Westbrook et al. 2008].  In natural clouds, processes such as differential fall 65 

speeds lead to aggregation of ice particles.  Ice particle aggregation and riming lead to highly 66 
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irregular shapes [Ono, 1969]. Though the processes leading to these complex shapes are well 67 

understood, most cloud modeling techniques have not advanced sufficiently to include these 68 

growth processes.   69 

Observations in natural clouds confirm that complex particle shapes including aggregates 70 

are common.  A study by Korolev et al. [1999], using high resolution imagery from the Stratton 71 

Park Engineering Company (SPEC Inc.) Cloud Particle Imager (CPI) probe [Lawson et al. 2001] 72 

showed that only 3% of Arctic ice cloud particles were pristine. Stoelinga et al. [2007] pointed 73 

out that aggregates of ice crystals often included components that can be readily classified using 74 

the Magono and Lee [1966] classification scheme.  The Magono and Lee [1966] classification 75 

scheme includes 80 particle types, yet many types are quite complex while Korolev et al. [1999] 76 

classify four vapor grown habits.    77 

In this paper a global dataset including data from 10 field programs is used to identify the 78 

transition between levels of ice particle complexity. The results of these analyses will help 79 

inform on atmospheric ice particle growth and its variability.  These results will also be useful to 80 

radiation transfer calculations such as Liu et al. [2014] who use two ice particle types for their 81 

model as well as Baum et al. [2011]. In section 2, the analysis technique presented in SH14 will 82 

be reviewed and a parameterized fit scheme is introduced. In section 3, results from datasets 83 

which were manually classified are compared to the automatic classification schemes.  In section 84 

4, results from the global datasets are presented and parameterized.  Conclusions and 85 

implications are discussed in section 5. 86 

 87 

2 Analysis techniques 88 
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The visual appearance of atmospheric ice particles has been used to calculate a 89 

complexity value (C).  Previously, SH14 defined ice particle complexity as:  90 

  𝐶 = 10 ∗ 0.1 −
!!!!
!!

       (1) 91 

where AC is the area of the circle with the smallest area which will cover the particle, AP is the 92 

projected area of the particle, and P is the perimeter of the particle. Using a cutoff of C=0.22, 93 

SH14 showed that it was possible to separate simple, possibly single crystals from more 94 

complex, possibly aggregates of ice crystals.  As stated in SH14, this complexity value led to 95 

minimal miss-classifications (10%) with theoretically generated particles at random orientations.  96 

The reader is advised to use caution when using different values of C with different datasets as 97 

some of the values in eq. 1 are sensitive to probe resolution.  An appropriate C value may be 98 

significantly different for a different probe because of different methods for calculating the 99 

parameters (especially perimeter) as well as different imaging characteristics.  Using a C=0.22 100 

for CPI probe data showed that the transition from simple to complex particles as a function of 101 

particle size is a smooth function.  Figure 1 shows two example datasets with sorted values of C 102 

on the ordinate axis and particle size on the abscissa.  The transition size (stepped line) can easily 103 

be described with a hyperbolic tangent function (eq. 2).   104 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 = 100 ∗
!"#! !

!!
!!

!
+ 0.5        (2) 105 

where D is the particle maximum dimension, and Dt is the transition size where the shift occurs 106 

from the majority being lower complexity particles to majority being higher complexity.  S is a 107 

measure of how quickly the change happens.  The hyperbolic tangent fit lines (smooth lines) are 108 

also shown in figure 1.  Using eq. 2 to create fit lines leads to Dt values of 84 and 315 microns 109 

for data in panels a and b. Also shown in figure 1 are three examples of how the different 110 

parameters in equation 2 affect the functional form.  As can be seen in figure 1, the hyperbolic 111 
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tangent fit to the raw data crosses the 50% mark at approximately at the size (Dt) where the raw 112 

data does.  It was found that it was necessary to have at least 100 particles larger than 100 113 

microns in order to get a good fit.  The plots in figure 1 were calculated from 24 000 and 1 200 114 

particles larger than 100 microns and included 1 000 and 20 particles per ten micron bin at Dt 115 

(AIRS and ARM respectively).  Fitting hyperbolic tangent curves to the complexity data is a 116 

good way to identify a quantifiable transition particle size.   117 

2.1 Fractal particles from complexity 118 

 The complexity of observed particles can vary continuously.  In addition to defining the 119 

transition from simple to complex (as in figure 1), it is possible to present particle complexity as 120 

a function of size and complexity.  Figure 2 shows the same two examples except the complexity 121 

values have been colorized to show the variation of complexity. For each 10 micron size bin, the 122 

observed particles were sorted by complexity value.  Each complexity value was then assigned a 123 

color.  In these examples, C=0 is blue and C=1 being red.  The transition complexity value where 124 

the switch generally takes place from a single crystal to early aggregates (C=0.22) is in the blue 125 

range, but it can be observed that there is generally a smooth transition of colors in each size bin.   126 

The Ice Particle Aggregation Simulator (IPAS) model which was developed for Schmitt 127 

and Heymsfield [2010] and used in SH14 to study complexity can be used to understand the 128 

observations in figure 2.  Using IPAS, the complexity range for aggregates of any number of 129 

components crystals can be estimated. While not all complex particles in the atmosphere are 130 

aggregates (bullet rosettes and dendrites for example), using images of aggregates is useful for 131 

understanding the three dimensional characteristics relate to what is observed (two dimensional 132 

images). Figure 3 shows the mean and standard deviation of C for aggregates with between 1 and 133 

9 components.   Also shown in Figure 3 is the average aggregate size relative to monomer size 134 
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for IPAS particles with different numbers of components.  Note that the mean C values are 135 

initially reasonably separated, but as the number of components increases, there is overlap in the 136 

C values. As eq. 1 includes several particle measurements that can be used in identifying fractal 137 

properties [Falconer, 2003], it is suggested that aggregates with 6 or more components are 138 

sufficiently indistinguishable and are likely to be sufficiently fractal to adhere to standard fractal 139 

relationships (eg. power law mass and area dimensional relationships).  Schmitt and Heymsfield 140 

[2010] showed that ice particle aggregates generally became fractal in dimensional 141 

characteristics once the aggregates had approximately 10 components which agrees reasonably 142 

with the complexity argument. Using this information, particles with C>0.6 are likely to be 143 

fractal.   144 

 145 

3 Manual classification 146 

 For three datasets, manual particle classification has been done in order to validate 147 

automatic algorithms.  Figure 4 shows the complexity plotted versus size for the three datasets.  148 

For each of the datasets, particles have been separated into single particles or complex particles 149 

by manual inspection as well as by the automated C classification.  Blue points represent 150 

particles which were manually classified as single crystals and red points represent more 151 

complex particles. The black and red stepped lines represent the percentage of particles that are 152 

classified as simple for logarithmically spaced size bins.  The black is for the automatic 153 

classification and red is for the manual classification.  Note that these curves are the inverse of 154 

those shown in figure 1 so that the lines do not interfere with the data points.   155 

The first dataset is composed of approximately 500 particles during a flight from the 9 156 

March 2000 ARM IOP over Oklahoma.  The clouds sampled were mostly composed of bullet 157 
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rosettes with some aggregates of bullet rosettes as well as some small columns. The second 158 

dataset is composed of approximately 500 particles measured during a flight from the 26 July 159 

2002 CRYSTAL-FACE field project in Florida where most of the particles were aggregates of 160 

small crystals.  The third plot shows only data from bullet rosettes classified during the ARM 161 

case.  Different colors are used to represent different ranges for the number of bullets in the 162 

rosette. The data from SH14 as well as other data analyzed in this work are from the CPI probe.  163 

The final dataset was collected using the Particle Habit Imaging and Polar Scattering (PHIPS) 164 

instrument developed at the Karlsruhe Institute of Technology [Abdelmonem et al. 2011].  The 165 

PHIPS has similar resolution than the CPI, and the results are quite similar. This dataset is 166 

composed of 14000 particles measured during the ACRIDICON-CHUVA project in Brazil 167 

[Wendisch et al. 2016].  The cluster of points stretching from 10 to 100 microns which is 168 

composed mostly of single particles has a moderate slant upwards in complexity values.  This is 169 

likely due to slight differences in the way the different parameters are calculated by PHIPS. For 170 

this dataset, C=0.3 was used rather than 0.22 for the automatic classification.  The three datasets 171 

show that the automatic classification and manual classification generally agree well.  172 

 173 

4 Global analysis 174 

 For the datasets analyzed, several precautions were taken to assure high quality data.  175 

Data were analyzed using “CPIview” software written by Stratton Park Engineering Corp (SPEC 176 

Inc.). Particle images were only used if the particle was the only particle in the CPI frame 177 

reducing the likelihood of shattered particles being inadvertently included in the analysis. 178 

Particles with focus values of less than 45 were not used and particles that touched the edge of 179 
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the field of view were not used (McFarquhar et al, 2013). Figures 1 and 2 show two cases where 180 

there was an extreme difference in the transition size from simple to complex particles.  181 

Here we present results from 10 field programs around the globe. Field programs were 182 

separated into four different types: Arctic, Mid-latitude summer, Mid-latitude frontal, and 183 

Tropical.   184 

4.1 field programs 185 

Arctic field programs include: The Aerosol Cloud Coupling And Climate Interactions in 186 

the Arctic [ACCACIA, Lloyd et al. 2015] and the Mixed Phase Arctic Cloud Experiment 187 

[MPACE, Verlinde et al. 2007]. 188 

Mid-latitude summer field programs include: The Atmospheric Radiation Measurements 189 

Intensive Operating Period [ARM-IOP, Heymsfield et al. 2002]. the Midlatitude Cirrus Cloud 190 

Experiment (MIDCIX, Heymsfield et al. 2006), and the Egrett Microphysics Experiment with 191 

RAdiation, Lidar, and Dynamics [EMERALD, Whiteway et al. 2004].   192 

Mid-latitude frontal field programs include: The Alliance Icing Research Study II 193 

[AIRS2, Isaac et al. 2004], and the Ice in Clouds Experiment – Layers [ICE-L, Heymsfield et al. 194 

2011].   195 

Tropical field programs include: The Aerosol and Chemical Transport in Deep 196 

Convection [ACTIVE, Vaughan et al. 2008], the Cirrus Regional Study of Tropical Anvils and 197 

Cirrus Layers – Florida Area Cirrus Experiment [CRYSTAL-FACE, Jensen et al. 2004], and the 198 

Ice in Clouds Experiment – Tropical [ICE-T, Heymsfield and Willis, 2014].    199 

4.2 Results 200 

In order to present data in a statistically representative way, the following procedure was 201 

used. For each field program type, Dt was calculated for all particles sampled during each of the 202 
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individual flights at 5°C temperature blocks through the observed clouds.  When there were 203 

sufficient particles, the value of Dt was determined and included in the study. This led to an array 204 

of Dt values with the different flight days on one axis and the different temperature ranges on the 205 

other axis filled with Dt values for each field program. All of the Dt values for a particular 206 

temperature range from each field program classification were averaged and the standard 207 

deviation was determined (the standard deviation was calculated when there were at least 5 data 208 

points available). Figure 5 shows the vertical profiles of Dt and with plus and minus the standard 209 

deviation shown.  A fit line is also plotted on the figures.  The parameters for the fit lines are 210 

given on the figures.  As can be seen in figure 5, all cloud types display a trend of decreasing Dt 211 

with decreasing temperature.  The slope of the trend in arctic and frontal datasets was not as 212 

steep as for the tropical and midlatitude summer datasets. Cloudtop temperature likely plays a 213 

role in this as tropical and midlatitude clouds often reach colder cloudtop temperatures due to 214 

higher tropopause altitudes.  The S parameter in equation 2 did not show any significant trends 215 

with temperature and was generally 2.5 plus or minus 0.5.   216 

The transfer of particles from early aggregates to fractal aggregates was estimated with 217 

fractal particles being defined as having C values higher than 0.6. In this case, data are averaged 218 

for the different temperature blocks for each of the field programs as there often were not 219 

sufficient large particles to get a good fit to the data for an individual temperature block for a 220 

single flight.  This value was then compared to the Dt for transitioning from single to complex 221 

particles.  The results suggest that there is a reliable relationship between the two transition 222 

points that doesn’t vary environmentally.  For the full dataset, the transition to fractal particles 223 

occurs at 3.3 times Dt with a standard deviation of 0.9.  The only significant exception to this 224 
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was for the midlatitude summer cases where bullet rosette shaped particles were the dominant 225 

particle shape.  The relationship for these cases averaged 2.6.   226 

The factor of 3.3 difference between Dt and the transition to fractal particles agrees 227 

reasonably with the results from IPAS which showed that an aggregate of six monomers 228 

averaged 2.7 times the average size of an individual monomer (figure 3b). Note that the sizes of 229 

the IPAS aggregates are determined by averaging the maximum dimension from theoretical 230 

images of the IPAS aggregates, not the true maximum dimension.  This is done so that the IPAS 231 

results can be directly compared to the data from aircraft probes which do not measure the true 232 

maximum dimension.  The discrepancy between IPAS and measurement results (3.3 versus 2.7) 233 

is likely due to the fact that atmospheric ice particles can continue to grow from vapor while 234 

IPAS particles are not grown during the theoretical aggregation process. 235 

 236 

5 Summary 237 

 In this publication we present the results of the analysis of microphysical data from ten 238 

field programs to characterize the transition of complexity of ice particles.  Results demonstrate 239 

that particles in different regions have predictable characteristics based on cloud temperature.  240 

Tropical and mid-latitude summer datasets generally showed similar trends while mid-latitude 241 

frontal and arctic datasets were similar.  The mid-latitude summer and tropical are likely 242 

different due to convective storms being more common in these regions.   243 

For all cases the transition size decreases with decreasing temperature from 190-240 244 

microns at 0°C to less than 100 microns at the coldest temperatures in some regions.  The 245 

transition size is easily parameterized with linear fit parameters through the troposphere.  Ice 246 
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particles tend to have fractal characteristics when they are 3.3 ± 0.9 times larger than the 247 

transition from single to complex.  This ranges from 300 microns up to 750 microns.   248 

Results will be useful for radiation transfer research as well as for modeling applications.  249 

As the light scattering properties of ice clouds can be characterized using simple and complex 250 

particles [Liu et al. 2014], this finding will be useful for parameterizing the light scattering 251 

properties of clouds in climate models.  Liu et al. [2014] used a fixed cutoff size which could be 252 

advanced by including a variable cutoff size based on atmospheric temperature.  Modeling 253 

studies can benefit from this research ice particle properties can be easily parameterized by 254 

temperature which will lead to better characterization of ice particle properties especially in 255 

models that do not have the resolution to include cloud processes.   256 
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Figure captions: 352 

Figure 1:  Panels a and b show two examples of ice particle complexity from aircraft data using 353 

the C=0.22 as a cutoff between ‘simple’ and ‘complex’ particles.  The stepped line represents the 354 

percentage of complex particles in each 10 µm size bin from each day of the indicated research 355 

flights.  The smooth curve is the hyperbolic tangent fit to the data.  The bottom row shows the 356 

effect of changing the different parameters in the hyperbolic tangent fit equation (eq. 2).  357 

Changing S (panel c) moves the curves side to side.  Changing Dt (panel d) changes the shape as 358 

well as the placement of the 50% intersect in the curve.  To keep the same Dt cutoff, Dt and S 359 

must be changed together as in panel e so that for each D, D/Dt -S is constant. 360 

Figure 2:  The same two examples as in figure 1, except that the C values are represented by 361 

different colors running from blue (C=0) to red (C=1).  This shows that there is a relatively 362 

uniform transition in complexity in each given size bin.  363 

Figure 3:  Results from IPAS simulations.  Panel a shows the average C value for IPAS particles 364 

with 1 to 9 component crystals as well as plus and minus the standard deviation.  Note that there 365 

is much more overlap with higher numbers of components.  Panel b shows the size of IPAS 366 

aggregates divided by the average single crystal size for aggregates with different numbers of 367 

components. 368 

Figure 4:  Hand analysis for several datasets.  Particle complexity value is plotted versus 369 

maximum dimension.  In panels a, b, and d, the particles which were hand identified as single 370 

crystals are represented by blue dots while the particles hand identified as complex are 371 

represented by red dots.  In panel c, the complexity of bullet rosette shaped crystals is plotted 372 

with respect to maximum dimension.  Bullets with fewer than 4 bullets are green, 4 to 5 bullets 373 

are red, and more than 5 are represented by blue dots. In panels a, b, and d, the black and red 374 
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lines indicate the proportion of particles in the size range which were classified as single 375 

particles by hand (red) or by automatic classification (black), scale on the right 376 

Figure 5:  Observed trends Dt , the transition size between ‘simple’ and ‘complex’ atmospheric 377 

ice particles in datasets separated into sampling regions.  Stars represent average values for each 378 

temperature layer with standard deviation spreads when sufficient data are available.  Equation 379 

for the fit lines are given.   380 

381 
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