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Making a Case for an ARM Cortex-A9
CPU Interlay Replacing the NEON SIMD Unit
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Abstract—As an alternative of adding more and more in-
structions to CPU cores in order to address a wide range
of applications, this paper examines to use a mixed grained
CPU interlay fabric to provide reconfigurable instruction set
extensions. In detail, we are examining to replace the hardened
NEON SIMD unit of an ARM Cortex-A9 with an identical sized
FPGA fabric. We show that by applying a set of optimizations, we
are able to emulate original applications using NEON instructions
at the same hardware cost and at very little performance drop by
an interlay. Moreover we are demonstrating examples where spe-
cial custom instructions running on a CPU-Interlay-hybrid are
substantially outperforming the original hardened CPU-NEON-
system, hence making a strong case to embed reconfigurability
as a beneficial feature in future processors.

I. INTRODUCTION

As new mobile applications continue to appear, existing
processing architectures for mobile devices are under constant
pressure to deliver higher performance at very low power and
very low cost. Additionally, mobile chip vendors strive to
differentiate their products by providing specialized hardware
in the form of accelerator engines or instruction set extensions
(ISE) to support one or many of the aforementioned emerging
mobile applications. For example, to accelerate applications
from the media domain, the ARM architecture introduced an
application domain-specific SIMD unit known as NEON [1].
As a result of this arms race, more and more specialized
hardware units are cramped into mobile chips. Although
more performance can be achieved with this approach, adding
hardened application-specific acceleration units comes at the
cost of an increased area and larger energy consumption.
This points out the core dilemma in the design of mobile
processing architectures: the need for specialization and ac-
celeration on the one hand and the many variations needed
for the heterogeneous application domains on the other. For
this reason, alternative processing architectures capable of
achieving better performance without increasing the die-area
or energy consumption of future mobile devices, are required.

The main purpose of this article is to address the problem
previously described by adding a mix-grained reconfigurable
fabric into an otherwise hardened CPU and combining this
with reconfiguration to swap instructions as needed in order
to improve on-device processing performance. We call this
concept a CPU interlay as it adds a programmable layer
between a hardened CPU and customizable instructions.

As a case study, we replace the NEON SIMD unit of
an ARM Cortex-A9 CPU with a CPU interlay consisting
of a constrained mix of fine-grained bit-level operations and
coarse-grained ALU primitives. We select the ARM Cortex-
A9 processor because it is a widely used IP. Additionally,
the ecosystem provided by ARM and its partners facilitates
the access to development platforms, IDEs and software with

support for this IP. We contend that with our approach, instead
of using a CPU’s real estate to allocate a domain-bound SIMD
unit, a CPU interlay can be allocated in the same area to
dynamically implement different sets of custom instructions.
The contribution of this work is threefold: 1) We introduce the
concept of CPU interlay, which revisits the idea of embedding
a reconfigurable fabric into an otherwise hardened CPU. We
discuss important aspects such as design, usage, and integra-
tion of a CPU interlay. 2) We show that the functionality of
the hardened NEON unit can be emulated by a reconfigurable
implementation of the NEON ISE running on top of an CPU
interlay. We demonstrate that this replacement is realistic and
that it can be achieved by applying optimization techniques
such as ISA subsetting and vector width customization. 3) We
present examples where a CPU interlay can potentially be used
to provide the functionality from different instruction sets and
even from new custom instructions to boost the performance
of a CPU at run-time.

TABLE I: Comparison of related architectures and the CPU interlay.

Architecture Design Characteristics
Implemen- Coupling Interface Target

tation Type Characteristics Size
GARP [2] Hybrid Tight RF↔RA Little
Chimaera [3] Hybrid Tight RF↔SRF↔RA Little
Legup [4] Hybrid/Soft Loose Avalon Interconnect Large
Nios II [5] Soft Tight RF↔RA Small
RISPP [6] Soft Tight RF↔RA Large
CPU Interlay Hybrid Tight RF↔RA Small

II. RELATED WORK

The idea of extending a hardened CPU with reconfigurable
functional units to accelerate applications has been extensively
studied. Classic examples of these types of reconfigurable pro-
cessing systems are DISC [7], which provides hardware sup-
port for a dynamic selection of instructions streams. Garp [2],
which couples a hardened CPU register file (RF) directly with
a reconfigurable array, and Chimaera, which uses a shadow
register file (SRF) to share data between a hardened CPU and
a reconfigurable array (RA) [3]. More recently, architectures
like CCA [8] and RISPP [6] aim to improve the adaptability of
embedded systems by providing a set of specialized functional
units that can be dynamically selected at run-time. Existing
hybrid architectures such as Legup provide a relatively large
amount of reconfigurable resources for implementing large
accelerators. While substantial gains can be achieved by
offloading large kernels into those accelerators, the associated
area and power cost makes their application on the mobile/IOT
domain unfeasible for cost-sensitive markets. In contrast, CPU
interlays consider a much smaller mix-grained fabric. The
rational behind this is that the CPU interlay is targeting small



kernels that can provide significant performance gains at very
small area overhead. To simplify a comparison between the
here proposed CPU interlay and closely related reconfigurable
architectures, Table I is presented.

III. CPU INTERLAYS

Interlays are reconfigurable fabrics allowing the customiza-
tion of an instruction set after fabrication and while a system
is running. Consequently, it is located logically between the
software instruction stream and the physical hardware. Inter-
lays can be seen as specialized FPGA fabrics that are of small
capacity and that interface directly to a CPU and/or cache.
With this, interlays allow for a much tighter integration without
the need of complex drivers. Furthermore, interlays target a
software centric design flow which will commonly result in
better design productivity than following a hardware centric
design methodology which includes the development of com-
plex accelerators and their integration. While relatively small
interlays may obviously not provide massive acceleration,
they still provide an opportunity for substantial performance
boosts, lower power, and faster time-to-market by allowing
customization of probably low-cost mass produced chips.

Interlays provide a path for accessing lower abstraction
levels (i.e. the ISA) that are commonly hardened. In order to
use interlays at an industrial level, an ecosystem with different
parties will be needed, each of them providing a different set
of skills, as described briefly in the following subsections.

1) Interlay Fabric Design: From a distance, an interlay
fabric should look very similar to an FPGA fabric. However,
there are several differences that require further investigation
including routing architecture, the number of clock networks
used, the interlay primitives required and the fabric layout.

2) CAD and Compilation Tools: An interlay fabric will
need tools for transforming RTL and/or HLS specifications
into interlay configuration bitstreams. Because we assume that
interlay fabrics will provide orders of magnitude less logic and
routing than recent FPGAs, more optimization at compile time
will be feasible. Alternatively, because a small interlay will
demand little resources for tools, even just-in time compilation
could be a feasible option for interlays.

3) SoC Integration: We assume to integrate an interlay
into a given hardened SoC which should omit complex tasks
as much as possible. This includes VLSI aspects such as
floorplanning and manufacturing as well as changes in the
hardware architecture of the SoC (e.g., the interface to the
cache/memory subsystem and the integration with the original
scalar processor).

4) Interlay Configurations: The design of interlay config-
urations can follow an IP-core model as it is known from
the FPGA industry (with corresponding vendors) as well
as automated HLS compilation. IP-cores will typically be
bundled with software libraries that provide an easy usable
API (similar to how major CPU vendors use their embedded
hardware accelerators, like for example for encryption).

The complexity of this ecosystem is enormous and we
use the following approaches for our investigation: Instead of
designing an optimized interlay fabric and corresponding tools,
we take commercial off-the-shelf FPGAs and add constraints
for emulating some of the characteristics of an interlay fabric
(e.g. using bounding boxes and adding restrictions on the
routing fabric). We anticipate that this will give us conservative
numbers for area, performance, and reconfiguration time that
could be improved by optimizing the interlay fabric.

IV. REPLACING THE NEON UNIT WITH A CPU INTERLAY

A. Implementation
To measure the area that a reconfigurable implementation

of NEON would occupy on a FPGA-like fabric, a design
compatible with the NEON ISE was developed in RTL.
It is based on the specification described in the ARMv7
architecture reference manual [1] Our design is a 3-stage
pipeline where 1) the two 128-bit operands are fetched from
the register file, 2) the operation is executed by the SIMD
ALU, and 3) one 128-bit result vector is written back to
the register file. To reduce the LUT count, the register file
was implemented with BRAM blocks. The single-precision
floating-point operations supported by NEON were imple-
mented using the Vfloat floating library which is specifically
designed for FPGAs [9]. Where possible, the design uses DSP
blocks instead of LUTs to reduce area and to enhance the
speed of the design. The synthesis tool was configured to
target the Zynq device from the FPGA vendor Xilinx. Table II
shows the resource breakdown for our reconfigurable NEON
implementation.

TABLE II: Utilization breakdown for our NEON RTL implementation.

Functional Unit FPGA Primitive
LUT DSP BRAM

– NEON ALU 10968 275 0
– arithmetic-ops 640 64 0
– boolean-ops 388 4 0
– comparison-ops 926 0 0
– shift-ops 718 0 0
– multiply-ops 819 88 0
– miscellaneous-ops 7699 119 0

– NEON Register File 0 0 4
– NEON Unit 11360 275 4

B. CPU Interlay - hardened NEON Gap Analysis
Since we are aiming to replace the hardened NEON with a

CPU interlay, we measured the gap between both implementa-
tions to quantify and to mitigate the effects of this replacement.
First, we determined the area for a single hardened NEON unit
in terms of FPGA primitives. For our experiment we used the
Zynq chip because it provides a dual-core ARM Cortex-A9
processor (featuring a NEON unit in each core) embedded in
a Xilinx Artix-7 FPGA fabric. Both the ARM core and the
FPGA fabric are fabricated on the same die using a 28 nm
process technology.

TABLE III: Area utilization breakdown for a Dual-Core ARM Cortex-A9
processor and the NEON unit on a Xilinx Zynq chip.

Functional Unit FPGA Primitive Equivalent
LUT DSP BRAM

Dual Core ARM Cortex A-9 Processor 10400 80 40
Single Core ARM Cortex A-9 Processor 5200 40 20

Two NEON Units 2080 16 8
Single NEON Unit 1040 8 4

By analysing the floorplan of the Zynq chip using EDA tools
from the vendor Xilinx, it is possible to accurately determine
the amount of FPGA primitives that can fit in the area occupied
by the ARM processor system. Table III summarizes our
measurements.

1) Area Gap: The area gap measured between our RTL
NEON implementation and the existing hardened NEON using
the methodology described above is summarized in Table IV.
The area gap is expressed as the number of times that our RTL
NEON implementation is bigger than the area reference that
we determined for the existing hardened NEON. Our results



show that our RTL NEON implementation would occupy an
area 10.9× (LUTs) and 34.4× (DSPs) bigger than the existing
hardened NEON. The reasons for the high DSP count are that
1) these coarse-grained multipliers and adders were heavily
used to obtain lower LUT utilization, and 2) the Xilinx Zynq
DSP blocks are not well tailored for exploiting different levels
of sub-word parallelism.

TABLE IV: Area an Latency characteristics of our RTL NEON implemen-
tation and a hardened NEON unit.

FPGA Resources Operating Frequency
Hardened RTL Hardened RTL

NEON NEON NEON NEON
LUT DSP LUT DSP MHz MHz
1040 8 11360 (10.9×) 275 (34.4×) 650 164 (3.9×)

2) Latency Gap: The latency gap measured between our
RTL NEON implementation and the hardened NEON is sum-
marized in Table IV. We measured a gap of 3.9×. This means
that that our soft NEON implementation runs at a 4× lower
clock speed than the existing NEON unit. It can be noted that
despite the fact that hard arithmetic blocks (DSP blocks) are
used, the support of single-precision floating-point operations
adds substantial complexity to the design of our RTL NEON
implementation.

V. CLOSING THE GAP

To close the gap between our RTL NEON implementation
and the hard implementation of the NEON ISE, we applied
ISA subsetting [10], vector width customization [11], and a
design technique known as “folding” [12]. The former two
optimization techniques consist of supporting only the instruc-
tion subsets and vector widths required by each particular
application. The third technique is extensively used in the
domain of DSP architectures and consists of transforming
an operation that is normally executed in a single time
unit, into N steps executed on the same hardware operator
over N time units. To measure the impact of applying these
optimization techniques, we used the following methodology:
First we analysed profiling data from a set of media and
security application benchmarks. Then based on the statistics
previously analysed, we defined stripped-down application-
specific NEON ISE subset configurations. Finally, we obtained
area and latency numbers for the different application-specific
RTL NEON configurations.

A. NEON Utilization

We measure the percentage of NEON ISE that is used
by media and security applications. For portability, the se-
lected benchmarks don’t make explicit use of ARM/NEON-
specific instructions. Instead, we instruct the GCC compiler
(arm-linux-gnueabi-gcc version 5.4.0) to perform automatic
vectorization on the application’s code. A static analysis of the
code produced by GCC shows that the studied benchmarks
use on average 13% of the general-purpose NEON ISE.
Figure 1, shows the relative amount of NEON instructions
used by each application. Figure 2, shows the distribution
of the different types of NEON instructions used by each
application. Likewise, our analysis showed that 8-bit and 32-
bit operations are more heavily used than 16-bit and 64-bit
operations. Hence providing an opportunity for further area
optimization. Figure 3 shows the distribution of the size of
operations performed by each application.

ad
pc

m gs
m

jpe
g

moti
on ae

s
sh

a
8

10

12

14

N
E

O
N

In
st

ru
ct

io
n

Se
t

E
xt

en
si

on
U

til
iz

at
io

n
(%

)

Fig. 1: Relative NEON ISE utilization by different applications.
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Fig. 2: Distribution of the different types of NEON instructions used by
media and security applications.

B. Application-Specific Optimization
We generated optimized stripped-down configurations of

our RTL NEON implementation. Table V shows the area occu-
pied by these optimized configurations (expressed in terms of
FPGA primitives). In parenthesis the area gap and the folding
factor (N=2, 4) used is presented for each configuration. With
these optimizations, the original area gap (10.9× LUT, 34.4×
DSP) for the full RTL NEON design is substantially reduced
to between 0.5× and 1.0× for LUTs, and between 0.5× to
2.8× for DSPs. Figure 4 shows the relative area savings that
were achieved with these techniques combined.

Similarly, we measured the latency gap between the opti-
mized RTL NEON configurations and the existing hardened
NEON. Our experimental results, presented in Table V, show
that the latency gap between the full CPU interlay (i.e. 3.9×)
and the hardened NEON, is reduced to between 2.2× and
2.9× for the optimized NEON configurations. Because only
a few NEON instructions and vector sizes are used by each
application, the corresponding NEON configuration becomes
less complex which improves the critical path delay. Figure 5
shows the relative latency gap reductions achieved by the
application-specific NEON configurations.

C. Performance Considerations
We tuned Gem5 to simulate the characteristics of an ARM

Cortex-A9 processor, then we executed the application bench-
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Fig. 3: Distribution of the vector sizes of NEON instructions used by media
and security applications.



TABLE V: CPU Interlay / Hardened NEON Gap

Application Resources Frequency
LUT DSP MHz

adpcm 933 (0.9×) (N = 2) 12 (1.5×) 247.6 (2.6×)
gsm 960 (0.9×) (N = 4) 22 (2.8×) 220.2 (2.9×)
jpeg 993 (1.0×) (N = 4) 18 (2.3×) 250.2 (2.5×)
motion 706 (0.7×) (N = 2) 22 (2.8×) 280.7 (2.3×)
aes 528 (0.5×) (N = 2) 6 (0.8×) 303.6 (2.2×)
sha 473 (0.5×) (N = 2) 4 (0.5×) 302.9 (2.2×)
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Fig. 4: Relative area gap reductions achieved by different application-specific
NEON configurations.

marks on Gem5 using this baseline configuration. To simulate
the impact on the performance caused by replacing the exis-
ting hardened NEON with our RTL NEON implementation,
we manually increased the latency values defined for the
NEON operations. We were able to do this by modifying the
Gem5 configuration file where the latencies of the different
functional units of the ARM processor, including the NEON
unit, are defined (i.e. the O3 ARM v7a.py configuration file).
Because our earlier experiments showed that the slowest
NEON configuration is 3.0× slower than the hardened NEON,
we incremented the latency value of the NEON operations
in the Gem5 simulator by that factor. Next, we executed
the benchmark applications on Gem5 with this modification.
Finally, we compared the execution time corresponding to the
baseline and the modified configuration reported by Gem5.
Table VI summarizes the performance values obtained for the
different benchmark applications.

TABLE VI: Performance Gap (CPU Interlay / Hardened NEON)

Application Execution Time (µs)
Hardened CPU Hardened CPU

+ +
Hardened NEON CPU Interlay

adpcm 259 285 (1.10×)
gsm 65 69 (1.06×)
jpeg 5411 6096 (1.13×)
motion 72 74 (1.03×)
aes 202 213 (1.05×)
sha 597 793 (1.33×)

VI. CPU INTERLAY APPLICATIONS

In this section, we will show how the reconfigurability
introduced by the interlay fabric can be leveraged to obtain
substantial performance gains.
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Fig. 5: Relative latency gap reductions achieved by different application-
specific NEON configurations.

1) CRC Operator: We implemented a handcrafted CRC-
32 operator for the CPU nterlay and compared this with a
software implementation running on the ARM Cortex-A9. We
reduced execution time from 17708.5 ns to just 260 ns (i.e. a
68× faster). This operator only takes 121 LUTs.

2) RGB2Y Operator: According to our experiments, the
RGB2Y function running on an ARM processor using existing
NEON instructions consumes 1701 ns to process a 360x270
RGB image. In contrast, a handcrafted RTL RGB2Y operator
takes 34 ns (i.e. a 50× faster). The RGB2Y operator consumes
136 LUTs.

3) Human Skin Colour Classifier Operator: With a re-
source utilization of 132 LUTs, a hardware Human Skin
Colour Classifier Operator achieves 3.6× faster classification
on a 360x270 image over a software implementation.

A summary of the here presented custom instructions tar-
geting the CPU interlay is presented in Table VII.

TABLE VII: Summary of Custom Instructions targeting the CPU Interlay.

Algorithm Resources Latency Speedup
CRC-32 121 LUTs 260 ns 68×
RGB2Y 136 LUTs 34 ns 50×
Skin Colour Classifier 132 LUTs 1726.2 ms 3.6×

VII. CONCLUSION

In this article we introduced the concept of an CPU interlay
which is aimed to be embedded into the core of an otherwise
hardened CPU. We demonstrated that a relatively small FPGA
can substitute a hardened vector unit at the same cost (i.e. die
area) and at almost the same performance when using FPGA
design specific optimizations. With the possibility to customize
the processor, we provide all the opportunities that come with
(run-time) reconfiguration which includes in particular in-field
updates and specialized instructions.

ACKNOWLEDGMENT

This work is kindly supported by the Mexican National
Council for Science and Technology (CONACyT) under grant
381920.

REFERENCES

[1] “ARM Architecture Reference Manual. ARMv7-A and ARMv7-R edi-
tion ,” www.arm.com.

[2] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor,” in IEEE FCCM 1997.

[3] Z. A. Ye et al., “CHIMAERA: A High-performance Architecture With
a Tightly-coupled Reconfigurable Functional Unit,” in ACM Computer
Architecture News, vol. 28, no. 2, 2000, pp. 225–235.

[4] A. Canis et al., “LegUp: An open-source High-level Synthesis Tool for
FPGA-based Processor/Accelerator Systems,” TECS, 2013.

[5] Altera Corp., “Nios II Custom Instruction. User Guide.”
[6] L. Bauer, M. Shafique, and J. Henkel, “RISPP: A run-time adaptive

reconfigurable embedded processor,” in IEEE FPL 2009, pp. 725–726.
[7] M. D. Nemirovsky et al., “DISC: Dynamic instruction stream computer,”

in Proceedings of the 24th annual international symposium on Microar-
chitecture. ACM, 1991, pp. 163–171.

[8] N. Clark et al., “An architecture Framework for Transparent Instruction
Set Customization in embedded processors,” IEEE ISCA 2005.

[9] X. Wang and M. Leeser, “VFloat: A Variable Precision Fixed- and
Floating-Point Library for Reconfigurable Hardware,” ACM Trans. Re-
configurable Technol. Syst., 2010.

[10] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and customiza-
tion of FPGA-based Soft Processors,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2007.

[11] P. Yiannacouras et al., “VESPA: Portable, Scalable, and Flexible FPGA-
based Vector Processors,” in ACM CASES, 2008.

[12] K. K. Parhi et al., “Synthesis of Control Circuits in Folded Pipelined
DSP Architectures,” IEEE Journal of Solid-State Circuits, vol. 27, no. 1,
1992.

www.arm.com

	Introduction
	Related Work
	CPU Interlays
	Interlay Fabric Design
	CAD and Compilation Tools
	SoC Integration
	Interlay Configurations


	Replacing the NEON Unit with a CPU Interlay
	Implementation
	CPU Interlay - hardened NEON Gap Analysis
	Area Gap
	Latency Gap


	Closing the Gap
	NEON Utilization
	Application-Specific Optimization
	Performance Considerations

	CPU Interlay Applications
	CRC Operator
	RGB2Y Operator
	Human Skin Colour Classifier Operator


	Conclusion
	References

