Novel mononuclear and 1D-polymeric derivatives of lanthanides and (η6-benzoic acid)tricarbonylchromium: synthesis, structure and magnetism

DOI: 10.1039/C6DT04895A

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Dalton Transactions

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Novel mononuclear and 1D-polymeric derivatives of lanthanides and (η6-benzoic acid)tricarbonylchromium: Synthesis, structure and magnetic properties†

Andrey Gavrikov, Pavel Koroteev, Nikolay Efimov, Zhanna Dobrokhotova, Andrey Ilyukhin, Andreas K. Kostopoulos, Ana-Maria Ariciu, and Vladimir Novotortsev

Two series of novel heteroleptic derivatives of lanthanides and (η6-benzoic acid)tricarbonylchromium (benzotriacarboxylato)cobalt(III) were synthesized and characterized: mononuclear complexes [Ln(BcrCOO)(acac)(H\textsubscript{2}O)] (Ln = Eu (1), Gd (2), Tb (3a), Dy (4a), Ho (5a)) and 10-polymeric ones [Ln(BcrCOO)(acac)(H\textsubscript{2}O)] (Ln = Tb (3b), Dy (4b), Ho (5b), Er (6), Trn (7), Yb (8) and Y (9)). Bcr = (η6-C\textsubscript{6}H\textsubscript{5}CH\textsubscript{3}Cr(CO\textsubscript{3})]. The molecular and crystal structures of the obtained compounds were determined. Complexes 3a, 4a, 4b, 6 and 8 were found to possess SMM properties. Two maxima were observed on χα(ν) dependencies (LF and HF) for 4a, 4b and 6. For 4a, the anisotropy barriers are Δm\textsubscript{α} = 100 K and 118 K in zero dc-field (128 K and 143 K in 2000 Oe field) for the LF (low frequency) and HF (high frequency) signals, respectively. These values are ones of the highest for Ln carboxylates complexes. The nature of appearance of two maxima in the system was discussed.

Introduction

Currently, there is a considerable interest in directed design, synthesis and comprehensive investigation of lanthanide-based coordination compounds of various dimensions as well as supramolecular systems.1 This is highly due to their interesting magnetic2 and luminescent3 properties, and thus to ability to serve as a basis of various functional materials.4

Among such compounds, carboxylato derivatives are of special interest. These complexes exhibit a great structural diversity due to the capability of the carboxylic groups to manifest various structural features.5 Indeed, a wide range of bi-,6 oligonuclear7 and polymeric8 lanthanide carboxylate complexes are known. Mononuclear Ln carboxylates are also reported9 but examples of such compounds are scarce.

There is a special group of Ln carboxylate complexes which contain stable organometallic derivatives as substituents in the acid moiety. A few known examples of such compounds include derivatives of ferrocene (bis[η5-cyclopentadienyl]iron, [η5-C\textsubscript{5}H\textsubscript{5}Fe\textsubscript{2}]+\textsuperscript{10a,b}) and cymantrene (η5-cyclopentadienyltricarbonylmanganese, (η5-C\textsubscript{5}H\textsubscript{5}Mn(CO\textsubscript{3})\textsubscript{3})13 Presence of the transition metal bond to an aromatic \textit{r}-system allows to regard these complexes either as typical lanthanide carboxylates or as heterometallic 3d-4f-compounds. Therefore, it may be expected that these complexes would manifest properties typical for Ln compounds, e.g. single-molecule magnet (SMM) properties (in case of heavy lanthanides, \textit{i.e.}, Tb – Yb) while their thermolysis should resemble that of classical heterometallic 3d-4f-complexes, \textit{i.e.} result in formation of corresponding complex oxides, Ln manganites and ferrites.

In the past decade, only lanthanide carboxylates containing the ferrocene moiety have been reported. This group includes complexes with ferrocenemono- and dicarboxylic acids,\textsuperscript{10p} ferrocenylbenzoic acid11 and β-ferrocenylpropionic acid.12 The first structurally characterized lanthanide complexes were assembled on a basis of 1,1'-ferrocenedicarboxylic acid (H\textsubscript{2}Fcdc), namely, 2D-polymeric complexes [Ln\textsubscript{2}(Fcdc\textsubscript{2})(H\textsubscript{2}O\textsubscript{2})\textsubscript{3}·nH\textsubscript{2}O (Ln = Eu, Sm) which consist of Ln3+ ions, bridging Fcdc2- moieties, and aqua ligands.10a,b Layered lanthanide ferrocenedicarboxylate polymers ([Ln(η5-O\textsubscript{2}FcdcCO\textsubscript{2}-2O\textsubscript{2}])\textsubscript{2}(μ\textsubscript{2}-η1-O\textsubscript{2}FcdcCO\textsubscript{2}-2O\textsubscript{2})·(H\textsubscript{2}O\textsubscript{2})\textsubscript{3}·mH\textsubscript{2}O (Ln=Eu, Tb, m=2; Fc = (η5-C\textsubscript{5}H\textsubscript{5}Fe) have also been synthesized10c along with isostructural binuclear derivatives of ferrocenecarboxylic acid [Ln\textsubscript{2}(FcCOO\textsubscript{2})\textsubscript{2}(CH\textsubscript{3}OH)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2}]\textsubscript{3}xH\textsubscript{2}O, (Ln=La, Nd, Eu, Gd), where the Ln atoms are linked via two chelate-bridging FccOO ligands, and the other four ferrocenecarboxylate moieties are coordinated in a bidentate chelate fashion.10d Modifying of the synthetic procedure allowed Liu et al.10d to obtain binuclear [Er\textsubscript{2}(μ\textsubscript{2}-OOCFc\textsubscript{2})\textsubscript{3}(η2-OOCFc\textsubscript{2})\textsubscript{3}(η2-OOCFc\textsubscript{2})(MeOH)\textsubscript{2}]\textsubscript{2}\textsubscript{2} complex with the different coordination modes of FccOO2-, namely, tridentate chelate-bridging, bidentate chelate and monodentate ones. All binuclear structures under consideration are built similarly, in all of the cases the Ln3+ ions

1 N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prasp. 31, 119991 Moscow, Russian Federation
2 School of Chemistry and Photon Science Institute, The University of Manchester, Manchester, M13 9PL, United Kingdom
3 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

*This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 1
are linked via two chelate-bridging carboxylates. Binuclear
moieties can also be distinguished in the structures of
lanthanide derivatives of 1,1'-ferrocenedicarboxylic acid which
are coordination polymers; in all cases, the Ln$^{3+}$ ions are also
linked via two chelate-bridging carboxylates. New heteroleptic
lanthanide ferrocenecarboxylates, [Ln$_2$(μ-O,η2-OOCCF$_3$)$_2$][μ$_2$
-O,O'-OOCCF$_3$]$_2$(η5-NO$_2$)$_2$(DMSO)$_2$] (Ln = Gd, Tb, Y), were
obtained and characterized by XRD. Unlike the previously
known Ln ferrocenecarboxylates, the Ln$^{3+}$ ions in these
structures are bound via two bridging and two
chelate-bridging carboxylate ligands. The magnetic behavior
and thermal decomposition of the complexes with Ln = Gd, Tb
were studied, and decomposition products were shown to
contain garnets Ln$_2$Fe$_5$O$_{12}$.

No information on cymantrenecarboxylate complexes and
their physiochemical properties was available before our
publications.7a,13 Both binuclear complexes typical of
lanthanide carboxylates7a,13c,e and 1D-polymeric
complexes8a,13a,e were obtained. Varying of the synthesis
conditions and usage of auxiliary ligands made it possible to
change gradually the Mn:Ln ratio in the molecules of the
compounds, and to obtain it equal to 3:17a,c, 2:17a,e and
1:113a. This allowed to use various cymantrenecarboxylate
complexes of lanthanides as precursors for pure manganites
LnMnO$_3$, or LnMnO$_2$ exhibiting multiferroic properties. It
should be noted that combination of the catalytic properties
of the cymantrenyl moiety and of Ln$^{3+}$ ions opened prospects for
application of lanthanide cymantrenecarboxylates as catalysts
for stereoregular polymerization of diene hydrocarbons.13c It
has also been shown that Dy cymantrenecarboxylates manifest
SMM properties.13d,e

Benchrotrene ((η6-benzene)tricarbonylchromium, (η6-
C$_6$H$_5$)Cr(CO)$_3$) is an electron analogue of cymantrene their
structures are also similar (piano stool type). Therefore, the
ability of formation of lanthanide benchrotrenecarboxylates
similar to corresponding cymantrenecarboxylates can be
assumed. However, for benchrotrene-based carboxylic acids,
there are only few known complexes with alkali and transition
metals, and studies of them are mainly focused on structural
matters.14,15 The study15 reports the preparation and detailed
structural study of compounds based on organic derivatives of
tin and benchrotrenecarboxylic acid ((η5-benzoic acid)tricarbonylchromium) and thus is of great interest. It is
worth mentioning that no lanthanide benchrotrenecarboxylates are known to date.

This paper develops a previously reported13a novel
approach to the synthesis of heteroleptic lanthanide
carboxylate complexes. Synthesis and investigation of two
series of novel derivatives of lanthanides and
benchrotrenecarboxylic acid BcrCOOH (Bcr = (η6-C$_6$H$_5$)Cr(CO)$_3$)$_3$,
namely, the mononuclear complexes
[Ln(BcrCOO)(acac)$_2$]$_2$(H$_2$O)$_2$] and the 1D-polymeric
[Ln(BcrCOO)(acac)$_2$]$_n$(H$_2$O)$_n$ ones, are reported.

Experimental

Materials and physical methods

The following commercial reagents and solvents were used for the
syntheses: hydrated lanthanide acetylacetonates,
Ln(acac)$_3$(H$_2$O), (η6-methylbenzoate)tricarbonylchromium and
solvents (EtOH, 1-ProOH, THF) from Alfa Aesar.
Benchrotrenecarboxylic acid was synthesized by alkali
hydrolysis of (η5-methylbenzoate)tricarbonylchromium according to a known procedure.14 Before use in the synthesis,
it was dried in a vacuum desiccator. All experiments with the
reaction mixtures were carried out in foil-wrapped vessels to
prevent photolysis. All solvents were used without further
purification.

Elemental analysis was carried out using an EA1108 85
automatic C,H,N,S analyzer (Carlo Erba Instruments).
Attenuated total reflection infrared (ATR-IR) spectra were
recorded in the range of 400-4000 cm$^{-1}$ using a Bruker ALPHA
instrument.

Magnetic susceptibility measurements were performed with
a Quantum Design SQUID magnetometer MPMS-XL and a
Quantum Design susceptometer PPMS-9. These instruments
work between 1.8 and 400 K for dc applied fields ranging from
-7 to 7 T (MPMS-XL) and -9 to 9 T (PPMS-9), respectively. For
ac susceptibility measurements, an oscillating ac field of 1 or 5
Oe with a frequency between 10 and 10000 Hz (PPMS) and an
oscillating field of 1.55 Oe with a frequency between 0.1 and
1500 Hz (MPMS) were employed. Measurements were
performed on polycrystalline samples sealed in a polyethylene
bags and covered with mineral oil in order to prevent field-
induced orientation of the crystallites). The paramagnetic
components of the magnetic susceptibility χ were determined
taking into account the diamagnetic contribution evaluated
from Pascal’s constants as well as the contributions of the
sample holder and mineral oil.

The magnetization relaxation times $T=1/2\pi\tau_{\max}$ and α
factors, which account for the distribution in the relaxation
processes, were obtained by fitting $\chi'(\nu)$ and $\chi''(\nu)$ plots using
the generalized Debye model or a linear combination of two
Debye models (see SI).

**Synthesis of [Ln(BcrCOO)(acac)$_2$]$_2$(H$_2$O)$_2$] (Ln = Eu (1), Gd (2), Tb (3a),
 Dy (4a), Ho (5a)).**

Complexes 1 and 2 were synthesized according to the
following procedure. Hydrated lanthanides tris-
acetylacetonates, Ln(acac)$_3$(H$_2$O) (0.68 mmol) were dissolved
in THF (11 mL). A solution of BcrCOOH (175 mg, 0.68
mmol) in PrOH (11 mL) and distilled water (3 mL) were added
successively with stirring to the resulting solutions. The
mixtures were refluxed for 20 min in a water bath and then
slowly concentrated in vacuo using a water-jet pump. After
cooling to room temperature, orange crystals suitable for X-ray
diffraction precipitated. The yields (based on BcrCOOH) were
40-45%. The single-phase state of the samples was confirmed by
X-ray powder diffraction.

For 1, anal. calc. for C$_{30}$H$_{33}$CrEuO$_{11}$: C, 37.34; H, 3.60.
Found: C, 37.38; H, 3.58%.

ATR-IR of 1, cm$^{-1}$: 3495 br. w, 3076 w, 1598 m, 1896 s,
1868 vs, 1643 w, 1579 s, 1546 s, 1512 s, 1454 m, 1437 m, 1406
Synthesis of \[\text{Ln(BcrCOO)(acac)}\] benchrotrenecarboxylic acid. The yield was \(\approx 30\%\) for \(6\) and \(\approx 40\%\) for \(4\). The single-phase state of the samples was confirmed by X-ray powder diffraction.

For \(3\), anal. calc. for \(\text{C}_{20}\text{H}_{24}\text{CrGdO}_{11}\): \(C, 36.94\); \(H, 3.57\). Found: \(C, 36.97\); \(H, 3.52\%).

For \(4\), anal. calc. for \(\text{C}_{20}\text{H}_{24}\text{CrDyO}_{11}\): \(C, 37.67\); \(H, 3.55\). Found: \(C, 37.68\); \(H, 3.50\%\).

For \(5\), anal. calc. for \(\text{C}_{20}\text{H}_{24}\text{CrHoO}_{11}\): \(C, 36.60\); \(H, 3.53\). Found: \(C, 36.66\); \(H, 3.48\%\).

For \(6\), anal. calc. for \(\text{C}_{20}\text{H}_{24}\text{CrTbO}_{11}\): \(C, 37.99\); \(H, 3.35\). Found: \(C, 38.05\); \(H, 3.30\%\).

X-ray diffraction study

Experimental data were collected on a Bruker SMART APEX2 instrument\(^{17}\) (Table S1). Absorption was taken into account by a semiempirical method based on equivalents using SADABS \((1, \text{Na}, \text{B}, \text{O}, \text{H}, \text{O})\) and TWINABS software \((2)\).\(^{18}\) The structures were determined using a combination of the direct method and Fourier syntheses. The positions of C-H hydrogen atoms were calculated from geometrical considerations, while the hydrogen atoms of water molecules were located in difference Fourier maps. The structures were refined by the
Results and discussion

Synthesis of \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{Eu (1), Gd (2), Tb (3a), Dy (4a), Ho (5a)} \)) and \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{ Tb (3b), Dy (4b), Ho (5b), Er (6), Tm (7), Yb (8) and Y (9)} \))

In this work, two series of new isostructural heteroleptic complexes, the mononuclear \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{ Eu – Ho} \)) one and the 1D-polymeric \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{ Dy – Yb and Y} \)), were synthesized by the reaction of lanthanides acetylacetonates with BcrCOOH in solvosystems of various compositions. The effect of the nature of Ln ions and, less, of the solvosystem composition on the structure of the reaction products was shown in the Eu – Gd – Tb – Dy – Ho – Er – Tm – Y series. The synthetic methodology is presented in Scheme 1.

The reactions carried out in the \(\text{PrOH/THF}/\text{H}_2\text{O} \) mixture afforded one-phase samples of mononuclear complexes \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{ Eu (1), Gd (2)} \)) and 1D-polymeric complexes \([\text{Ln(BcrCOO)(acac)}]_2 \) (\(\text{Ln} = \text{ Tb (3b), Dy (4b), Ho (5b), Er (6), Tm (7), Yb (8) and Y (9)} \)). The reactions carried out in EtOH were found to afford one-phase mononuclear complexes also for Tb (3a), Dy (4a) and Ho (5a), whereas 1D-polymeric complexes were only obtained for the heaviest members of the series, i.e., Er (6), Tm (7), Yb (8), as well as Y (9).

Since the compositions of the formula units of mononuclear and 1D-polymeric complexes differ significantly (by one water molecule). Formation of both mononuclear and 1D-polymeric complexes is possible in all the solvosystems under investigation. Therefore, it can be assumed that the observed differences are due to different solubility of complexes in the "mononuclear complex/1D-polymeric complex" pair in the same solvosystem for different Ln atoms.

In case of the first two members of the investigated series, namely Eu and Gd, mononuclear complexes 1 and 2 with the composition \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) apparently have much lower solubility in the solvosystems under study, since these complexes crystallize irrespectively of the solvosystem composition. In fact, complexes 1 and 2 were isolated in rather high yields from the \(\text{PrOH/THF}/\text{H}_2\text{O} \) solvosystem with a volume ratio of the components of 11:11:3, respectively. However, the yields of 1 and 2 become much lower in non-absolute EtOH. This is apparently due to the relatively small excess of water in the system, combined with the extremely high solubility of the target reaction products in EtOH.

In contrast, 1D-polymeric complexes, \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) have the lowest solubility in case of Er-Yb and Y. In fact, complexes 6-9 were obtained irrespective of the solvosystem composition and the yields of the complexes are relatively high in all cases.

As noted above, formation of both mononuclear complexes 3a-5a \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) (crystallization from EtOH) and 1D-polymeric complexes 3b-5b \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) (crystallization from \(\text{PrOH/THF}/\text{H}_2\text{O} \) mixture) is possible in case of Tb, Dy and Ho.

Thus, it can be stated that as the atomic number of Ln increases in the series Eu-Yb, the solubility of mononuclear complexes \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) increases, whereas the solubility of 1D-polymeric complexes \([\text{Ln(acac)}]_2[\text{BcrCOO}]_2 \) decreases. The solubility of Y complexes is similar to that of the complexes of heavy lanthanides. In the Ln series under investigation, Tb, Dy and Ho are "transition" elements that can form both mononuclear and 1D-polymeric complexes. In this case, the structure of the resulting complexes can be controlled by varying the composition of the solvosystem (more exactly, the amount of water in it).

Structures of the complexes
The structure of the mononuclear complex in compound 1 (compounds 1, 2, 3a, 4a, and 5a are isostructural) is shown in Fig. 1a. The coordination number (CN) of the Eu atom equals 8; the polyhedron is most similar to a two-capped trigonal prism with the basis formed by the O(1, 2, 4) and O(5, 6, 7) atoms. Naturally, the η²-carboxy group of the BcrCOO⁻ is rigid and therefore causes a strong distortion of the polyhedron. The potential donors of H atoms in hydrogen bonds are located at distances of 2.75 Å, 3.04 Å, and 3.05 Å from the O(7) atom of the H₂O molecule. Difference syntheses in the vicinity of the O(7) atom localized three positions of H atoms; half-populations were assigned to two of them. The coordinates of all the three H atoms in compound 3a that is isostructural with 1, were refined; the Uiso of the H atoms were assumed to be 20 % larger than the Ueq of O(7). The O-H…O hydrogen bonds (Table S3) in structure 1 link the complexes into bands (Fig. S2). The stacking interactions between the Ph moieties of the BcrCOO ligands in structure 1 (Fig. 1b) link bands into layers. A layer contains C(4)-H…O hydrogen bonds (Table S3). There is one contact C(15)-H…O (C-H 0.95 Å, H…O 2.74 Å, C…H 3.66 Å) that is isostructural with 1 (Fig. 1b). The stacking interactions between the Ph moieties, with distances shorter than 3.5 Å indicated (b); projection of the structure along a("Cr(CO)₃") axis (Cr(CO)₃ moieties are omitted for clarity) (c).

Fig. 1 Structure of the complex in compound 1 (a); centrosymmetric dimers in compound 1, with distances shorter than 3.5 Å indicated (b).

Fig. 2 Structure of the polymeric chain in compound 4b (a); stacking interactions between the Ph moieties, with distances shorter than 3.5 Å indicated (b); projection of the structure along a axis (Cr(CO)₃ moieties are omitted for clarity) (c).
3.569(4) Å, C-H…O 146° between the layers that may, under certain assumptions, be attributed to hydrogen bonds.

Structure 4b (compounds 3b, 4b, 5b, and 6-9 are isostructural) is formed by polymeric chains (Fig. 2a) parallel to b axis. The coordination number (CN) of the Dy atom is 7; the polyhedron is a pentagonal bipyramid with its basis formed by O atoms from acac and H2O. The O atoms of the bridging BcrCOO ligand occupy the apical positions. The O-H…O hydrogen bonds (Table S4) link the chain additionally. The stacking interactions between Ph moieties of the BcrCOO ligands linked by a center of inversion are similar to those in 1 (Fig. 1b), and combine the chains into layers (Fig. 2b). Previously, we have found a chain with a similar structure in the [Ln(CymCOO)(acac)2(H2O)]n (Ln=Eu-Er).13a

The overall arrangement of ligands around the Ln atom in structures 1 and 4b is similar (Fig. 3). Minimization of squared distances between the Dy atoms, five O atoms of the base of the pentagonal bipyramid (4b) and Eu(1), O(3-6, 8) atoms (1) results in RMS = 0.25 Å.

As it was noted above, the coordination modes of BcrCOO in the mononuclear and 1D-polymeric complexes are different: only chelate groups are present in the structures of mononuclear complexes 1, 2, 3a, 4a, 5a, whereas only bridging groups are present in 1D-polymers 3b, 4b, 5b, 6-9. It is known that the bands corresponding to the stretching vibrations of the COO groups in the IR spectra of carboxylate complexes are very sensitive to the coordination mode of these groups. This is evidenced by the frequency difference ∆ = ν\text{sym}(COO) - ν\text{asym}(COO): the ∆ value in complexes with chelate coordination of the carboxy groups is noticeably smaller than in carboxylates with bridging groups. Therefore, IR spectroscopy is a convenient method to confirm the type of coordination of carboxy groups.

The ATR-IR spectra of mononuclear and 1D-polymeric dyssprosium-containing complexes 4a and 4b in the range of wave numbers 1320-1600 cm^{-1} were compared (Fig. 4a).

It can be seen that the ∆ value for complex 4a (141 cm^{-1}) is considerably smaller than that for 4b (165 cm^{-1}), which totally agrees with literature data and indicates the difference between the BcrCOO coordination in the structure of complexes.

Furthermore, comparison of IR spectra of mononuclear and 1D-polymeric complexes shows that the number of bands corresponding to the stretching vibrations of carbonyl groups in the Bcr moieties (Bcr = \{η^5-C5H5\}Cr(CO)3) differs between these complexes. Three distinct bands (1867, 1897 and 1963 cm^{-1} for 4a) are observed in the region of 1800–2000 cm^{-1} in the spectra of mononuclear complexes 1, 2, 3a, 4a, 5a. Only two bands (1891 and 1960 cm^{-1} for 4b) are discernible in the spectra of 1D-polymeric complexes 3b, 4b, 5b, 6-9, whereas the third band is almost not recorded, even as an indistinct shoulder (Fig. 4b). This difference persisted in numerous recordings of the spectra of all samples of the complexes (preliminarily, it was confirmed by XRD that they were one-phase and individual), which allows us to conclude its significance. However, we failed to explain this phenomenon from the standpoint of various structural features of the CO group positions in mononuclear and polymeric complexes. Nevertheless, the absolute reproducibility of this difference makes it possible to use a comparison of IR spectra in the specified region (together with the analysis of the positions of

* In one of the syntheses with Eu, we collected a single crystal isostructural to compounds 4b, 5b, 6-9. However, the X-ray diffraction pattern of the reaction product did not show any traces of polymeric Eu_1D. Taking into account the differences in the X-ray diffraction patterns of compounds 1 and Eu_1D (Fig.S3) and the accumulation time it the range of 20-6-14°, it can be stated that the admixture content is less than 0.3%.

Fig. 3 Comparison of the structure of mononuclear complex 4a (blue) and a monomeric unit in structure of 1D-polymeric 4b (red).

Fig. 4 ATR-IR spectra of complexes 4a (—) and 4b (—) in the range of 1320-1600 cm^{-1} (top) and 1800-2000 cm^{-1} (bottom).
bands corresponding to the stretching vibrations of COO' groups) as a reliable method for preliminary identification of the main structural motif (mononuclear or 1D-polymeric) in heteroleptic benzotriphenacarboxylate complexes of lanthanides formed in Ln(acac)_3·3H_2O – BcrCOOH – Solv (where Solv is an individual organic solvent or a solvent mixture) systems.

Magnetic behavior

Primarily, it should be noted that the magnetic behavior of both the mononuclear and 1D-polymeric benzotriphenacarboxylates obtained is due only to the contribution of Ln^{3+} ions since the benzotriphenacarboxylates are diamagnetic. The $\chi_H T$ vs. T plots for mononuclear [Ln(BcrCOO)(acac)_3]_2(H_2O)_2] (Ln = Eu (1), Tb (2), Dy (3a), Ho (5a)) and 1D-polymeric [Ln(BcrCOO)(acac)_3]_2(H_2O)_2] (Ln = Tb (3b), Dy (4b), Ho (5b), Er (6), Sm (7), Tb (8)) complexes in dc field of 1000 Oe were investigated in the temperature range of 2 – 300 K (Fig. 5). The $\chi_H T$ values at 300 K are close to the theoretical ones for corresponding single Ln^{3+} ions (Table 1).

The magnetic behavior of complex 1 (Eu) is typical of the known mononuclear, polynuclear, and polymeric Eu^{3+} complexes. Unlike the other Ln^{3+}, the energy spectrum of the Eu^{3+} (4f^7) is characterized by low splitting between the non-magnetic ground state 7F_0 and the first excited multiplet. Taking the spin-orbital Hamiltonian $H_{SO} = \lambda L \cdot S$ into account, the energy of the first excited state, 7F_2, is only λ cm$^{-1}$ higher than that of the 7F_0 level. Up to 300 K, the energy of thermal fluctuations is sufficient for population of only three first energy levels at 0, 3, and 3. This results in appearance of a considerable magnetic moment at room temperature (see Fig. 5). As expected in the case where the $k_B T$ energy is of the same order as λ, the value $\chi_H T = 1.52$ cm3/K/mol at 300 K for compound 1 does not reach the theoretical high-temperature limit of 12χ_m $\mu_B^2/k_B = 4.5$ cm3/K/mol. In this case, a monotonous decrease in $\chi_H T$ with a temperature lowering to 0.04 cm3/K/mol at T = 2 K is observed. Like in the majority of other Eu^{3+} complexes, this lowering is due to a decrease in the population of excited m levels. Based on the energy spectrum obtained from the spin-orbital Hamiltonian H_{SO}, the theoretical temperature dependence of magnetic susceptibility in the weak magnetic field approximation can be calculated using the Van-Vleck equation. Thus, just one parameter of spin-orbital interaction, λ, is sufficient for simulation of experimental data.

In the case of complex 1, the best fit of the theoretical curve to experimental data is reached at $\lambda = 265 \pm 3$ cm$^{-1}$ (or 385 ± 4 K). Using the Caro-Porcher equation, the value between the 7F_0 and 7F_2 levels, $\lambda_{CP} = 245$ cm$^{-1}$, was calculated for 1. It can be seen that the λ_{CP} and λ values are in satisfactory agreement. The λ value is rather low. A similar value $\lambda = 253(2)$ cm$^{-1}$ was obtained for the [(Eu$_2$(dpa)$_3$(C$_6$O$_2$)$_3$(H$_2$O)$_3$](H$_2$O)$_n$ polymer (dpa = 2,2′-2-methylbenzimidazolium-1,3-diyldiacetate, C$_6$O$_2$ = oxalate)2 which is apparently due to the crystal field effect in the structures under consideration.

It should be noted that determination of λ value for 1 from the luminescence data is not possible, since the benzotriphenacarboxylate moiety manifests a luminescence quenching effect, similarly to cymantrene moiety. In such cases, the λ value can only be determined from the DC magnetic susceptibility data.

The ground state of Gd^{3+} (4f7) is $^7S_{2/2}$. Since orbital quantum number, L, equals to 0, the spin-orbit coupling is absent. In addition, the first excited state lies about 3000 cm$^{-1}$ above the ground state. Thus, the magnetic susceptibility of compounds containing Gd^{3+} is almost perfectly isotropic, and follows the Curie law 2.

The $\chi_H T$ value of mononuclear Gd complex 2 remains virtually constant down to 25 K and decreases abruptly upon reaching ≈ 10 K (Fig. 5). Such behavior is apparently attributable to the weak intermolecular antiferromagnetic interactions between the Gd^{3+} ions. It is known that in the solid state the molecular magnetic centers, even if they are well separated from each other, are rarely perfectly isolated from a magnetic viewpoint 2.

In order to estimate the value of the magnetic interactions in 2 the temperature dependence of χ_T product of 2 was fitted using Phi program developed by Chilton et al. 2 The following

![Fig. 5. Plots of $\chi_H T$ vs. temperature for mononuclear 1 (Eu), 2 (Gd), 3a (Tb), 4a (Dy), 5a (Ho) (left) and 1D-polymeric 3b (Tb), 4b (Dy), 5b (Ho), 6-8 (Er, Tm, Yb) (right) complexes in 1000 Oe dc field. The lines show the best fit of the theoretical model described in the text to the experimental data for Eu and Gd compounds (1 and 2).](image-url)
parameters were obtained: \(g = 2.00 \), zero-field splitting parameter \(D = 0.314 \text{ cm}^{-1} \) and intermolecular interaction \(JI = -0.004 \text{ cm}^{-1} \).

The \(x_mT \) values for Tb (3a and 3b), Dy (4a and 4b), Ho (5a and 5b), Er (6), Tm (7), and Yb (8) complexes decrease very slowly from room temperature to ca 100 K, and more abruptly below this temperature to reach the minimum values at \(T = 2 \) K (see Table 1 and Fig. 5). Such behavior is consistent with depopulation of the \(m_i \) sub-levels, with zero-field splitting effects, and/or occurrence of very weak antiferromagnetic interactions between the lanthanide ions. These low temperature effects are also observed on the field dependencies of the magnetization for Tb (3a, 3b), Dy (4a) and Yb (8) (Fig. 6, 7 and Table S6) which show no sign of saturation at magnetic fields up to 7 T. Nonsuperposition of \(m \) vs. \(H/T \) on a single master curve also suggests the presence of magnetic anisotropy.

We measured the \(ac \) susceptibility of complexes containing anisotropic ions, namely, Tb\(^{3+} \), Dy\(^{3+} \), Ho\(^{3+} \), Er\(^{3+} \), Tm\(^{3+} \) and Yb\(^{3+} \), in order to find out whether the complexes have properties characteristic of molecular magnets. No non-zero out-of-phase component of the dynamic magnetic susceptibility \(\chi'' \) was found for Ho (both 5a, 5b), and Tm (7) complexes. For the complexes of Dy (4a, 4b) and Er (6), non-zero \(\chi'' \) values are observed even in zero field. For the Tb (3a, 3b) and Yb (8) complexes \(\chi'' > 0 \) values are only observed in non-zero dc fields.

For complex 3a (Tb), at temperatures below 6 K in zero magnetic field, some growth of the out-of-phase component of dynamic magnetic susceptibility \(\chi'' \) is observed at low temperatures, which attests to presence of slow magnetic relaxation. Application of various magnetic fields allowed us to determine the optimal field, \(H_{\text{OC}} = 2000 \text{ Oe} \), where the quantum tunneling probability is the lowest (Fig. S6), and hence the relaxation time is the largest. The frequency dependencies of \(\chi'' \) in the optimal magnetic field were studied in the temperature range of 2 – 7 K (Fig. S6). The temperature dependence of the relaxation time has been extracted from the frequency dependencies of the ac susceptibility (Fig. S6) by fitting to the generalized Debye model (Table S5). Using the Arrhenius law \(\tau = \tau_0 \exp(\Delta_{\text{eff}}/k_B T) \), the pre-exponential factor \(\tau_0 = 4 \cdot 10^{-8} \text{ s} \) and the energy barrier \(\Delta_{\text{eff}}/k_B = 5 \text{ K} \) were determined (Fig. S7).

For complex 4a (Dy), non-zero \(\chi'' \) values are observed even in zero dc field (Fig. 6). We failed to fit the ac susceptibility data for 4a with single generalized Debye model. Therefore, the ac susceptibility data were fitted with the linear combination of two Debye models (Fig. S8). In such a way, the low frequency (LF) and the high frequency (HF) components of the signal were separated. The \(\tau(T) \) plots for complex 4a are presented in Fig. 7. It can be seen from Fig. 6, 7 and Table S6 that at temperatures below 5 K the frequencies of the maxima on \(\chi''(\nu) \) dependencies are shifted toward the high frequency range in both cases (LF and HF). The similar behavior was observed earlier\(^{28} \) and can be attributed to appearance of additional pathways for quantum relaxation and/or to very weak magnetic exchange interactions which result in short-range magnetic ordering/glasy behavior that, in turn, affects the magnetic relaxation at \(T < 5 \) K. Approximation of the high temperature regions (17 – 20 K) of the \(\tau(T) \) plots by the Arrhenius equation allowed us to determine the potential barriers of magnetization reversal, \(\Delta_{\text{eff}}/k_B = 100 \text{ K} \) and 118 K, and the pre-exponential factors, \(\tau_0 = 5.6 \cdot 10^{-5} \text{ s} \) and 4.5 \cdot 10^{-8} \text{ s} \) for LF and HF, respectively.

Table 1. DC-magnetic characteristics of complexes.

<table>
<thead>
<tr>
<th>Ln</th>
<th>(x_mT (300 \text{ K}) \text{ cm}^3 \text{ mol}^{-1} \text{K})</th>
<th>(x_mT(\text{theor}) \text{ cm}^3 \text{ mol}^{-1} \text{K}) [22]</th>
<th>(x_mT (2 \text{ K}) \text{ cm}^3 \text{ mol}^{-1} \text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu (1)</td>
<td>1.52</td>
<td>-</td>
<td>0.04</td>
</tr>
<tr>
<td>Gd (2)</td>
<td>7.88</td>
<td>7.88</td>
<td>5.16</td>
</tr>
<tr>
<td>Tb (3a)</td>
<td>11.75</td>
<td>11.82</td>
<td>7.67</td>
</tr>
<tr>
<td>Dy (4a)</td>
<td>14.42</td>
<td>14.17</td>
<td>6.82</td>
</tr>
<tr>
<td>Ho (5a)</td>
<td>14.21</td>
<td>14.07</td>
<td>4.63</td>
</tr>
</tbody>
</table>

1D-Polymeric complexes

<table>
<thead>
<tr>
<th>Ln</th>
<th>(x_mT (300 \text{ K}) \text{ cm}^3 \text{ mol}^{-1} \text{K})</th>
<th>(x_mT(\text{theor}) \text{ cm}^3 \text{ mol}^{-1} \text{K}) [22]</th>
<th>(x_mT (2 \text{ K}) \text{ cm}^3 \text{ mol}^{-1} \text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb (3b)</td>
<td>11.46</td>
<td>11.82</td>
<td>7.42</td>
</tr>
<tr>
<td>Dy (4b)</td>
<td>14.17</td>
<td>14.17</td>
<td>7.15</td>
</tr>
<tr>
<td>Ho (5b)</td>
<td>14.36</td>
<td>14.07</td>
<td>6.63</td>
</tr>
<tr>
<td>Er (6)</td>
<td>11.67</td>
<td>11.48</td>
<td>5.45</td>
</tr>
<tr>
<td>Tm (7)</td>
<td>7.52</td>
<td>7.15</td>
<td>3.72</td>
</tr>
<tr>
<td>Yb (8)</td>
<td>2.23</td>
<td>2.57</td>
<td>1.69</td>
</tr>
</tbody>
</table>
The magnetization dynamics of complex 4a (Dy) have been also studied under an applied dc magnetic field in order to minimize the probability of quantum tunneling and to evaluate the effect of the dc field on both LF and HF peaks. The relaxation dynamics in 4a (Dy) slows down when the dc field is raised from zero to 2000 Oe (Fig. 5A). Above this optimum dc field, as expected, a further increase of the magnetic field raises further the potential barriers of magnetization reversal, \(\Delta E/k_B = 128 \text{ K} \) for LF and HF, respectively.

The presence of two maxima on the \(\chi''(v) \) isotherms was one of the theoretical explanation of the appearance of two maxima in systems with coordinated water molecules. The appearance of two maxima on the \(\chi''(v) \) dependencies. The appearance of two maxima in systems with coordinated water molecules and/or possible disordering was reported earlier.

Thus, a study of three mononuclear complexes 3a (Tb), 4a (Dy), and 5a (Ho) has shown that complex 4a (Dy) has the best SMM characteristics, whereas no SMM properties were found for complex 5a (Ho). Interpretations of the properties of lanthanide-containing SMMs should be made with specific features of the electronic structure of lanthanide ions taken into account. Irrespective of the metal type, there are two strict conditions/requirements for a compound to manifest the SMM properties: bistability of the ground state and magnetic anisotropy. It is expedient to perform directed design of molecular magnets using heavy lanthanide ions: Tb\(^{3+}\) (\(f^8 \), ground state \(^7\)\(^I\) \(F_6\)), Dy\(^{3+}\) (\(f^8 \), ground state \(^6\)\(^H\)\(S\))\(/2\)), Ho\(^{3+}\) (\(f^{10} \), ground state \(^5\)\(^I\) \(I_8\)), and Er\(^{3+}\) (\(f^{12} \), ground state \(^4\)\(^I\)\(S\))\(/2\)) due to their...
anisotropy and high spin of the ground state. The three mononuclear complexes under investigation are isostructural. Hence, the crystal field generated by the electron density of the same set of the ligands should be near identical. However, its effect on the attainment of the maximum anisotropy will differ due to differences in the shape of the electron density of the 4f-orbitals in cases of Tb\(^{3+}\), Dy\(^{3+}\) and Ho\(^{3+}\). The behavior of Tb\(^{3+}\) and Dy\(^{3+}\) in isostructural complexes with the same geometry of the coordination environment could be identical. However, Dy\(^{3+}\) is a Kramers ion (i.e., it has an odd number of f-electrons). The ground state of such ions is always bistable irrespective of the ligand field symmetry, therefore the requirements for environment symmetry for the Dy\(^{3+}\) ion are less strict. The Tb\(^{3+}\) ion has a higher anisotropy of electron density than Dy\(^{3+}\), but Tb\(^{3+}\) has an even number of f-electrons and axial symmetry of the ligand field must be strictly observed. Thus, it may be assumed that the shape of the Ln\(^{3+}\) polyhedron in the mononuclear complexes under study containing chelate ligands is most suitable for reaching the maximum anisotropy for the Dy\(^{3+}\) ion.

In order to evaluate the influence of the disordering of the water molecule hydrogen we performed the electrostatic calculations for mononuclear Dy complex 4a using the electrostatic model for the determination of magnetic anisotropy in dysprosium complexes developed by Chilton et al.\(^\text{34}\). The calculations were carried out using the MAGELLAN program on the basis of charge distribution according to Scheme S1-S3. Previously, in case of mononuclear dysprosium β-diketonates auxiliary ligands were considered as electro-neutral moieties without any localized partial charges\(^\text{34}\).

Consideration of water molecules as moieties without partial charges in case of 4a (Scheme S1) leads to the fact that the anisotropy axis lies in the plane of four β-diketonate oxygen atoms (see Fig S11). However, taking into account localized partial charges on the water molecules (Scheme S2) results in completely different situation (Fig S12). In this case the anisotropy axis lies in a plane which is perpendicular to the plane of four β-diketonate oxygen atoms due to the higher negativity of the oxygens of carboxyl groups (-1/2) vs. the β-diketonate oxygen atoms (-1/3). Intermediate situation takes place (Fig S13, S14) when the localized partial charge of the water oxygen is comparatively small (e.g., -1/4, Scheme S3).

We can state that the application of the electrostatic model allowed us to evaluate the influence of the disordering of the water molecule hydrogen in 4a. It can be seen that the difference between the minimal reversal energy values (=Min. reversal energy) given by MAGELLAN program is more than 10 % for different positions of the water molecule hydrogen (H2A or H2B; see Output file information under respective Scheme S2, S3 in SI) which is close to the observed difference in the potential barriers of magnetization reversal in complex 4a.

Thus, we can conclude that replacement of the β-diketonate oxygen donors (-1/3) in trans-position with the water molecules by carboxylate oxygen donors (-1/2), acac → BcrCOO\(^-\), makes the system much more delicate and therefore further \textit{ab initio} calculations which will allow to confirm the obtained results are required.

In case of 10-polymeric complex 3b (Tb) we observe just non-zero out-of-phase component of ac magnetic susceptibility without clear-cut maxima (Fig. S15) even in non-zero dc field up to 5000 Oe. The lack of maxima on these plots did not allow us to make quantitative estimation of the relaxation barrier height.

The 1D-polymeric complexes of Dy (4b), Er (6) and Yb (8) demonstrate nearly the same dynamic behavior. Measurements of ac susceptibility for 4b, 6 and 8 in zero dc field did not show clear-cut maxima on the χ\(^{″}\)-frequency plots (Fig. S16, S17). Application of the various external dc magnetic fields allowed us to determine the optimal field of 2000 Oe, wherein the quantum tunneling probability is the lowest (Fig. S18, S19) and the relaxation time is the highest. The increase of the relaxation time values corresponds to a shift of the maximum on the χ\(^{″}\)-frequency plot towards lower frequencies. The χ\(^{″}\) vs. v dependences obtained in the optimal magnetic field of 2000 Oe were studied in the 2 – 10 K, 2 – 7 K and 2 – 10 K temperature ranges for 4b (Dy) (Fig. S20, Table S8), 6 (Er) (Fig. S21, Table S9) and 8 (Yb) (Fig. S22, Table S10), respectively. We failed to fit the ac susceptibility data for 4b and 6 by using the single generalized Debye model. Therefore, the τ = f(1/T) plots were obtained by the best fit of χ\(^{″}\) experimental data to single (for 8) or linear combination of two (for 4b and 6) generalized Debye models (Fig. S23, Fig. S24 and Fig. S25). One can see that at temperatures below 3 K for 4b (Dy), 6 (Er) and 8 (Yb) quantum tunneling continues to affect the relaxation process considerably even under 2000 Oe magnetic field. An approximation of the τ = f(1/T) plots by the Arrhenius equation in the temperature range of 7 – 10 K, 5 – 7 K and 5 – 6.5 K allowed us to estimate the effective barriers heights as 38 K (LF), 57 K/14 K (LF/HF) and 36 K with the relaxation times τ\(_{0}\) = 6·10\(^{-5}\)s, 1.2·10\(^{-5}\)/7.3·10\(^{-5}\)s and 1.5·10\(^{-5}\)s for 4b (Dy), 6 (Er) and 8 (Yb), respectively.

Apparently, the presence of two maxima on χ\(^{″}\)(ν) dependences for 4b and 6 has the same nature as in the case of mononuclear Dy complex 4a. Both 4b and 6 complexes contain one coordinated water molecule per Ln ion. Therefore, disordering in the molecular structures is the most probable reason for such phenomenon. In contrast, for Yb complex (8) only one maximum on χ\(^{″}\)(ν) was observed. This can be due to the smaller size of Yb\(^{3+}\) which contains two maxima.
properties in polynuclear SMM are manifested by each lanthanide atom rather than by the exchange coupled systems as in complexes of d-elements. A considerable disadvantage of polynuclear lanthanide complexes (in comparison with similar mononuclear derivatives) lies in the existence of dipole-dipole coupling that accelerates relaxation processes, and in their tendency to quantum tunneling.

Conclusions

Thus, it has been found that the reactions of benchoctreneacarbonylic acid, BcCOOH, with hydrated lanthanides acetylacetonates in solvsystems of various compositions afford new heteroleptic benchoctreneacarbonylates, the mononuclear [Ln(acac)2(BcCOO)(H2O)2] (Ln = Eu(1), Gd(2), Tb(3a), Dy(4a), Ho(5a)) and the 1D-polymeric [Ln(acac)3(BcCOO)(H2O)]n (Ln = Tb(3b), Dy(4b), Ho(5b), Er(6), Tm(7), Yb(8), Y(9)) ones. It appears that the formation of polynuclear complexes is mainly typical for light rare earths elements, whereas formation of 1D-polymeric complexes is more typical for heavy Ln and yttrium. However, a strict position of the mononuclear complex/1D-polymeric complex demarcation line/border in the Ln series is determined by the conditions of the synthesis. The structure of complexes 1, 2, 3a, 4a, 5a is built of mononuclear molecules [Ln(acac)2(BcCOO)(H2O)] wherein the Ln ions are chelated by two acac and one BcCOO; two H2O molecules complete the coordination environment of the lanthanide. The structure of 1D-polymers 3b, 4b, 5b, 6–9 is built of acetylacetonate moieties [Ln(acac)2(H2O)], wherein the Ln ions are chelated with acetylacetonate anions, and two bridging benchoctreneacarbonylate groups link the neighbouring [Ln(acac)2(H2O)] moieties into infinite chains. The ac magnetic susceptibility measurements have shown that mononuclear complexes 3a, 4a and 1D-polymeric complexes 4b (Dy), 6 (Er) and 8 (Yb) exhibit slow magnetic relaxation, thereby manifesting SMM properties. For 4a, the anisotropy barriers are ∆P/kB = 100 K and 118 K in zero dc-field (128 K and 143 K in 2000 Oe field) for the LF and HF signal respectively. The nature of appearance of two maxima in such type of systems was assigned to disordering of the water molecule hydrogen.

Acknowledgements

This study was financially supported by the Russian Science Foundation (grant 14–13–00938). This research was performed using the equipment of the JRC PMR IGIC RAS. We also acknowledge the EPSRC UK National EPR Research Facility and Service at the University of Manchester for magnetic measurements.

Appendix A. Supplementary data

CIF files of the structural data for compounds 1, 2, 3a, 4a, Eu1D, 4b, 5b, 8 and data collection and structure refinement statistics. CCDC 1519452-1519455 (Eu1D, 4b, 5b, 8), 1519456-1519459 (1, 2, 3a, 4a). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/dat_request/cif.

Notes and references

18 G.M. Sheldrick, SADABS. University of Göttingen, Germany, 2014.

19 G.M. Sheldrick, TWINABS. University of Göttingen, Germany, 2012.

Novel derivatives of lanthanides and (η^6-benzoic acid)tricarbonylchromium were synthesized and characterized; complexes of Tb, Dy, Er, Yb exhibit SMM behavior.