
The University of Manchester Research

High-Performance, Low-Complexity Deadlock Avoidance
for Arbitrary Topologies/Routings
DOI:
10.1145/3205289.3205307

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Pascual Saiz, J., & Navaridas, J. (2018). High-Performance, Low-Complexity Deadlock Avoidance for Arbitrary
Topologies/Routings. In ACM International Conference on Supercomputing
https://doi.org/10.1145/3205289.3205307

Published in:
ACM International Conference on Supercomputing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:28. Apr. 2024

https://doi.org/10.1145/3205289.3205307
https://research.manchester.ac.uk/en/publications/c73d4178-15c1-45cd-a310-cc58eb314c2b
https://doi.org/10.1145/3205289.3205307

High-Performance, Low-Complexity Deadlock
Avoidance for Arbitrary Topologies/Routings

Jose A. Pascual

The University of Manchester

Manchester, United Kingdom

jose.pascual@manchester.ac.uk

Javier Navaridas

The University of Manchester

Manchester, United Kingdom

javier.navaridas@manchester.ac.uk

ABSTRACT
Recently, the use of graph-based network topologies has been pro-

posed as an alternative to traditional networks such as tori or fat-

trees due to their very good topological characteristics. However

they pose practical implementation challenges such as the lack of

deadlock avoidance strategies. Previous proposals are either exceed-

ingly complex, underutilise network resources or lack flexibility. We

propose–and prove formally–three generic, low-complexity dead-

lock avoidance mechanisms that only require local information.

The main strengths of our method are its topology- and routing-

independence and that the virtual channel count is bounded by

the length of the longest path. We evaluate our proposed mecha-

nisms against previous proposals through an extensive simulation

study to measure the impact on the performance using both syn-

thetic and realistic traffic. First we compare against a well-known

HPC mechanism for dragonfly and achieved similar performance

level. Then we moved to Graph-based networks and show that

our mechanisms can greatly outperform traditional, spanning-tree

based mechanisms, even if these use a much larger number of vir-

tual channels. Overall, we find that our proposal provides a simple,

flexible and high performance deadlock-avoidance solution.

KEYWORDS
Deadlock avoidance; Arbitrary network topologies/routing policies;

Virtual channels; Regular random graphs

ACM Reference Format:
Jose A. Pascual and Javier Navaridas. 2018. High-Performance, Low-Complexity

Deadlock Avoidance for Arbitrary Topologies/Routings. In Proceedings of
ACM Intl. Conf. on Supercomputing (ICS).ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Exascale computing is the next challenge for the supercomput-

ing community aiming to design systems capable of delivering

Exaflops. In order to achieve such a huge computing capability, sys-

tems will require millions of interconnected computing elements

(CE) to execute massive parallel applications. For this reason new

architectures and platforms are being developed, such as our novel,

custom-made architecture ABCD [11]. The whole system is com-

posed of tens of millions of low-power-consumption ARM cores

to reach Exascale. These nodes are arranged by means of a uni-

fied, low-latency, lossless interconnection Network (IN) and a fully

distributed storage subsystem with data spread across the nodes.

In such system, the IN is crucial to ensure system performance,

ICS, 2018, Beijing
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

mainly because it needs to scale to extreme levels of parallelism

with applications using tens of thousands of endpoints with any

latency or bandwidth bottlenecks translating into severe penalties

to execution time. In order to meet the requirements of such in-

terconnect in ABCD we are developing our own general purpose

FPGA-based router[12]. One of the requirements of our design is

to be simple enough to guarantee low latency while not restrict-

ing the variety of network topologies and routing algorithms we

are currently exploring. This quest for flexibility imposes on us

the challenge of developing low complexity deadlock-avoidance

mechanisms able to work with any topology/routing combination.

Such mechanisms traditionally lack of generality being specifically

designed for a given topology/routing combo, tightly coupled to the

routing generation process or are based on algorithms whose com-

plexity precludes them for being used in Exascale-sized networks

with millions of endpoints.

In this work we present a collection of three topology- and

routing-agnostic deadlock-avoidance mechanism called Dynamic

Assignment of Virtual Channels (DAVC). DAVC imposes a negli-

gible overhead in terms of logic as it only needs a few registers to

hold local state plus, at most, two comparisons to decide upon tran-

sitions between virtual channels (VCs). In contrast to traditional

topology-agnostic deadlock-avoidance proposals which require pre-

calculation and assignment of paths to VCs, DAVCworks on-the-fly,

making decisions on each router along the path. Our approach is

completely independent from the topology/routing employed and

does not require to re-calculate and re-assign VCs upon changes

on the architecture, including network failures. The latter is impor-

tant since Exascale systems are expected to have very low mean

time between failures given the sheer number of elements. Hence,

extremely-complex recalculations every relatively small period of

time may render the IN close to useless. DAVC seamlessly works

with arbitrary routing schemes, including minimal, non-minimal

and multipath routing algorithms regardless of them being algorith-

mic, source-routed or table-based. In addition we demonstrate here

that the required number of VCs is bounded by the length of the

longest path. Given that current technology allows for large-radix,

low-diameter topologies – and that the community is following

this very same trend [4, 17, 30] – the overheads of our proposal

should be relatively small.

First, we prove theoretically that DAVC guarantees deadlock-

freedom for any topology/routing combination. We start by for-

mally defining the deadlock routing problem. Then we show that

the channel allocation induced by our strategies follows a strict

order and thus, it induces and acyclic utilization of channels, which

ensures deadlock freedom. Afterwards, we proceed to evaluate the

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICS, 2018, Beijing Pascual and Navaridas

performance of our approach. Given that our focus is on large-

scale interconnects, we rely on simulation to carry out our analy-

sis. We start by assessing DAVC performance against an existing

high-performance network-specific algorithm for the Dragonfly

topology [17]. This mechanism has versions for both Minimal and

Valiant [33] routings. Given DAVC flexibility, we are able to im-

plement other generic routings which are not supported by the

standard algorithm – in particular, Shortest Path (SP), Equal Cost

Multiple Paths (ECMP) and AllPath (AP). Our second set of exper-

iments uses the Jellyfish topology [30]–a regular random graph

(RRG)–for which no efficient deadlock-avoidance mechanism exists

[4]. For this reason, and given that typical solutions for irregular

networks rely on spanning trees [24, 34] we compare DAVC with a

multi-spanning-tree solution similar to the one proposed in [22]

in which a configurable number of spanning trees (one per VC)

are selected. Results show that DAVC delivers similar performance

as the standard deadlock-avoidance mechanism for Dragonflies

while allowing the use of other generic routing policies. For RRGs,

DAVC avoids deadlock but delivers much higher performance than

spanning-tree-based solutions.

In summary, the contributions of our paper are the following:

• Wepropose a novel, flexible, high-performance, low-overhead

deadlock-avoidance mechanisms capable of supporting arbi-

trary network topologies and routing functions.

• We demonstrate formally that our approach guarantees dead-

lock freedom.

• We discuss implementation details and highlight the simplic-

ity of its design.

• We evaluate DAVC against a HPC implementation for Drag-

onfly topologies and find out that it can provide comparable

performance levels than topology-specific approaches.

• We extend this evaluation to irregular topologies (Jellyfish)

where we compare it with a topology-agnostic spanning-tree

based algorithm. DAVC can provide huge benefits in terms

of performance and simplicity without all the limitations

and overheads of algorithms that rely on global information.

2 BACKGROUND AND MOTIVATION
Deadlock avoidance has been an active research topic since the very

beginning of HPC INs. There exist basically two types of routing al-

gorithms to create deadlock-free paths: those that avoid the creation

of cycles in the channel dependency graph (CDG) and those that

break the cycles in the CDG using VCs. The most prominent exam-

ples of the first group are the Spanning Tree protocol, defined in the

IEEE 802.1D Standard [1], and Up*/Down* routing [26], the standard

in HPC networks such as Infiniband. Indeed, Spanning trees are a

specific instance of Up*/Down* routing. Up*/Down* forbids the use

of an up link after a down link has been used. This kind of routing,

mainly used in multi-stage networks (i.e. fat-trees), is deadlock-free

and can be easily implemented without using VCs. However this

approach has many limitations when applied to general topolo-

gies: (i) deciding which links are considered ‘up’ or ‘down’ is far

from trivial, (ii) can leave many resources underutilized (iii) can not

ensure minimal-paths, (iv) routes are not balanced efficiently. For

this reason other alternatives such as A-2 and MA-2 routing [29],

L-turn routing [19] and Multiple Up/Down routing [10] have been

proposed to improve the performance of the network by either

increasing the proportion of shortest paths or balancing the use of

the resources. However, they are still essentially simple variations

over the spanning tree concept and so are inherently very restric-

tive in terms of routing and load-balancing. What is worse, they

require some form of topology exploration and embedding global

knowledge into the switching logic, which preclude their use for

large-scale networks. In fact, experimental work around them is

always done with a relatively reduced number of switches (tens of

them, at most).

Regarding the second group of algorithms we can also differ-

entiate between those which decouple the creation of paths from

the deadlock-free assignment to VCs and those which perform

both actions at the same time. DFSSSP [8] and LASH [32] belong

to the first group working in a similar way in terms of breaking

cycles searching for them in the CDG and moving individual paths

to other virtual layers. As both techniques can suffer from a lim-

ited number of available virtual layers, LASH was improved in

LASH-TOR [31] using Up*/Down* routing in the last VC when un-

resolvable cycles appear. Finally, the heuristic approach ACRO [16]

was proposed to reduce the number of VCs and the time complex-

ity of both LASH and LASH-TOR. On the other hand BSOR [18],

Nue [7] and smart routing [5] implement a new approach in which

both problems are solved together within the CDG, being able to

impose routing restrictions to the path creation on demand (i.e.

the use of a fixed number of VCs). However all of them require to

perform complex searches onto the CDG being the main drawback

of these approaches the computational and memory complexity of

the algorithms.

All the above discussed strategies either lack of generality or

are excessively complex for our purposes, due to the scale we are

aiming at. In addition, none of them is readily available for being

integrated in our environment to compare with DAVC, so, given

their great complexity, we decided not to re-engineer them for our

experimentation purposes.

3 THE DEADLOCK-FREE ROUTING
PROBLEM

In this section we define the deadlock-free routing problem for

arbitrary network topologies. We start defining terms that will be

used thorough the rest of the paper and giving the conditions that

guarantee a deadlock-free topology/routing combination.

3.1 Definitions
An IN is composed of a set of nodes (computing elements and

switches) with a number of ports. The physical links between nodes

are multiplexed into multiple VCs. These connections are defined

by a connection rule which is the function π : N × P → N × P
defined as π (n,pn) = (n′,pn′) which given a node n ∈ N and a port

pn ∈ P within that node returns the node n′ ∈ N and the remote

port pn
′ ∈ P to which is connected to.

Definition 3.1. An IN is a directed graph I = G(N ,C) in which

N is the set of nodes and C is the set of channels induced by the

connection rule, i.e., given two nodes n,n′ ∈ N , the channel cn,n′ ∈
C ⇐⇒ ∃pn ∈ P : π (n,pn) = (n′,pn′).

2

High-Performance, Low-Complexity Deadlock
Avoidance for Arbitrary Topologies/Routings ICS, 2018, Beijing

0 21 3 4 5

0 00 0 0 0

0

1

0 0

1 1
2 2 23 3 3

4

5

4 4

5 5

76 8

Figure 1: Example of a network topology showing the iden-
tifiers of the computing elements (0–5), the switches (6–8)
and the ports. With colors, we have also represented the se-
quence of ports followed by a packet sent from node 0 to
node 5.

As a consequence, a channel between two nodes n,n′ ∈ N is

defined as cn,n′ = ⟨pn⟩ = ⟨n,p⟩ such that π (n,pn) = (n′,pn′). We

define now a path between two nodes as follows:

Definition 3.2. Given a source node ns and a destination node nd ,
a path betweenns andnd , defined as Pns ,nd = (p

n0

0
,pn1

1
, . . . ,p

nl−1
l−1) =

(⟨n0,pn0

0
⟩, ⟨n1,pn1

1
⟩, . . . , ⟨nl−1,p

nl−1
l−1 ⟩) where ni ∈ N and pnii ∈ P ,

is the sequence of ports within each node ni that a packet must

follow to travel from ns = n0 to nd = nl−1. The length of the path,

l , is defined as the number of hops between ns and nd .

In Fig. 1 we have depicted a path between the nodes 0 and 5

which can be represented as P0,5 = (00, 46, 57, 38,p5c) where pc is

the consumption port of the destination node. A generic routing

function R assigns the next channel in the path given a destination

node and the current channel:

Definition 3.3. An arbitrary routing function R : N ×C → C for

an IN returns the next channel to be used given the destination node

nd and the current channel c , i.e. ∀nd ∈ N ,∃c ′ ∈ C : R(nd , c) = c ′
which is equivalent to R(nd , ⟨n,p⟩) = ⟨n′,p′⟩.

Let us now define the concepts of inbound port and outbound
port.

Definition 3.4. Given a path P and a noden ∈ N such thatpni ∈ P ,
we call inbound port of n to the port pn

′
i−1 and outbound port to the

port pni .

An example of inbound port and outbound port is depicted in

Fig. 1. If we focus on the third component of the path p2 = 5
7
(green

arrow), the inbound port would be p1 = 4
6 = 4 and the outbound

port 5. In the same way we define the concept of outbound node
as the node id to which an outbound port is connected to. In the

previous example the outbound node of the port 5
7
is the node with

id 8.

3.2 Deadlock-free Routing
In this work, we consider a routing function to be valid, if and only

if the paths induced are deadlock-free. Notice that in Definition 3.3,

in opposition to [7], we remove the cycle-free and destination-based

conditions from R meaning that we are able to deal with cycles in

the paths and with any kind of routing. In [6] the authors give the

<0,0>

<1,0>

<2,0>

CGD

n0 n1

n2

p0

p0

p0

CGD*

<1,0,0> <1,0,1>

<2,0,1><2,0,0>

<0,0,0> <0,0,1>

Figure 2: Simple topology (left) and a representation of all
channel dependencies (middle) and all channel dependen-
cies considering 2 VCs (right).

necessary and sufficient condition for a routing to be deadlock-free

(which was reformulated as only a necessary condition in [28]).

Next we define the concept of the channel dependency graph (see

Fig. 2) used by them:

Definition 3.5. A channel dependency graph D = G(C,E) is a
directed graph in which the node set C is composed by the edge

set of I and E is the set of edges defined by the routing function R
such as (ci , c j) ∈ E ⇐⇒ ∃n ∈ N : R(n, ci) = c j .

Theorem 3.6. A set of paths within an IN is deadlock-free if and
only if there are no cycles in the corresponding channel dependency
graph.

4 DYNAMIC ASSIGNMENT OF VIRTUAL
CHANNELS

As mentioned before, generic deadlock avoidance strategies try to

break cyces in the CDG. As a result, all of them are applied offline

and then populated into the switches of the IN. The way we tackle

the problem is a completely different approach in which cycles are

broken on-the-fly while the packets are traversing the network. In

order to define DAVC we need to redefine the concepts of channels

and CDG used in the traditional approaches. We start this section

with some preliminary results which, lately, will be used to proof

that DAVC is deadlock-free for any topology/routing combination.

4.1 Preliminaries
Let us define the set Sn of all tuples ⟨x1,x2, . . . ,xn⟩ such that ∀i ∈
{1, 2, . . . ,n} : xi ∈ N and the relation “<n” where ⟨x1,x2, . . . ,xn⟩ <n
⟨y1,y2, . . . ,yn⟩ ⇐⇒ ∃i : yi > xi ∧ ∀j ∈ {i + 1, . . . ,n} : yi = xi .

Lemma 4.1. The relation “<n” is a strict order on the set Sn of all
tuples ⟨x1,x2, . . . ,xn⟩.

Proof. A relation is a strict order [27] if it is irreflexive, asym-

metric and transitive. As the demonstration that “<n” fulfils those

properties is straightforward we omit the proof. □

Let us consider now an arbitrary graph D = G(C,E) where C is

the set Sn of all tuples of length n, and the edge set E is induced

by all pairs of nodes ci , c j ∈ Sn related through “<n”, such that if

ci <n c j then (eci ,c j) ∈ E, that is, D = (Sn , (Sn , <n)).

Lemma 4.2. D = (Sn , (Sn , <n)) is a directed acyclic graph.
3

ICS, 2018, Beijing Pascual and Navaridas

Proof. The proof is straightforward using Lemma 4.1 because

every strict order induces a directed acyclic graph, and hence, the

graph D is acyclic. □

4.2 DAVC Strategy
Let us consider a graph I = G(N ,C ′) that represents an arbitrary

topology in which C ′ is the set of channels defined as follows:

Definition 4.3. A channel between two nodes n,n′ ∈ N is defined

as cn,n′ = ⟨pn ,vp ⟩ = ⟨n,p,v⟩ such that π (n,pn) = (n′,pn′) and
v ∈ V is the virtual channel within ports pn and pn

′
.

Notice that Definition 4.3 extends the definition of channel given

in Section 3.1 to include the VCs. It also implies that there exist

multiple channels between each pair of ports, one per VC. For

example, if the number of VCs is m and node n is connected to

node n′ through port p, there existm channels between them: ∀i ∈
{1, 2, . . . ,m} : ⟨n,p,vi ⟩.

Nowwe define the function F : N×C ′ → C ′ as F (R(nd , ⟨n,p⟩),v) =
⟨n′,p′,v ′⟩ and c <3 c ′ where R is a routing function. Looking at F ,
paths between nodes have the form

Pns ,nd = (⟨n0,p
n0

0
,v

pn0
0
⟩, . . . , ⟨nl−1,p

nl−1
l−1 ,v

p
nl−1
l−1

l−1 ⟩)
which is an increasing strict ordered sequence of channels. We call

F the allocation function and it is denoted as FNP . The definition

of FNP also implies that the selection of the VCs is independent

from the routing function R and that is performed on each router

along the path, after the next hop has been calculated. It is also

easy to view that the CDG induced by FNP is acyclic which implies

that channel transitions generated using FNP are deadlock-free.

We denote this CDG as CDG∗ because it uses channels using VCs
(see right part of Fig. 2).

Theorem 4.4. The CDG∗ D = (C ′,E) in which C ′ is the set of
channels and E is the set of edges induced by the function FNP is
acyclic.

Proof. It is straightforward to see that ∀ci , c j ∈ C ′, (ci , c j) ∈
E ⇐⇒ FNP (ci) = c j =⇒ ci <3 c j . This means that the set E
is composed of elements of C ′ which are related through “<n”, so

D = (C ′, (C ′, <3)), by Lemma 4.2, is acyclic. □

By definition of <3, to order two channels we require the identi-

fiers of both current and next channels (node and port ids). However,

instead of using both node and port identifiers, we could just use

one of them to select a channel (⟨n,vpn ⟩ or ⟨pn ,vpn ⟩) and perform
the ordering (VC allocation) using <2. These functions are denoted

as FN and FP .

Theorem 4.5. The CDG∗ D = (C ′,E) in which C ′ is the set of
channels and E is the set of edges induced by the functions FN and
FP is acyclic.

Proof. The proof is the same as in Theorem 4.4 but using<2. □

We conclude this section showing that the allocation functions

are able to deal with loop-paths. Even when these kind of paths are

not desirable, we guarantee that they will not cause deadlocks. This

property will greatly simplify a practical design as will be discussed

later on in Subsection 5.4.

3 4
0

0 2 2 1
7 6 9

1 1 1
FN

3 4
0

0 2 2 1
7 6 9

0 1 1
FP

3 4
0

0 2 2 1
7 6 9

0 0 0
FNP

Figure 3: Examples of the VCs allocation using FN (top), FP
(middle) and FNP (bottom) for a given path. Nodes are repre-
sented in blue, ports in green and VCs in red.

Lemma 4.6. A routing function R that generates paths which con-
tain loops is deadlock-free if channels are allocated using FNP , FN or
FP .

Proof. A path P that contains a loop has the form

Pns ,nd = (c0, . . . , ci , . . . , c j , . . . , ci , . . . , cl−1)
in which at least one channel is visited twice, (ci) in the example.

However, we know that by definition of the allocation functions,

ci <2 ci or ci <3 ci implies that ⟨ni ,pni ,v⟩ <3 ⟨ni ,pni ,v ′⟩ that is
only possible if v ′ > v by definition of <3. This implies that, even

when using the same node and port twice, the path does not create

a loop in the CDG∗ because the VCs differ. □

In the following sections we analyse DAVC in terms of imple-

mentation and hardware requirements. First, we show how these

allocation functions can be easily implemented on any router with

very low overhead. After this, we perform an analysis of the number

of VCs required to implement them.

5 IMPLEMENTATION OF DAVC
The allocation functions which translate the paths generated by

the routing function into an ordered sequence of channels using

the available VCs can be easily implemented in hardware. As we

will see, the overhead added to the routing process is negligible

requiring a small amount of logic in each router. In Fig. 3 we have

depicted three examples of how channel allocation is performed

using FN , FP and FNP along the same path.

5.1 Node ID based allocation function
We start with the allocation function FN which orders the chan-

nels along a path based only on node identifiers. The information

required to perform the VC transition are just the identifiers of

the current and the next node in the path. The later is provided

after the routing function has been applied in order to support non-

deterministic routing. The pseudocode to implement this function

is shown in Alg. 1. As we can see Alg. 1 returns the next VC to

be used using the current node identifier (currentNID), the current
VC (currentVC) and the outbound node identifier (outboundNID)
as defined in Section 3, which is provided by the function getOut-
boundNID(). When the outbound node is lower or equal than the

current one we need to perform a VC transition (+1) to maintain the

order established by <2. In case the outbound identifier is higher,

4

High-Performance, Low-Complexity Deadlock
Avoidance for Arbitrary Topologies/Routings ICS, 2018, Beijing

the order is already maintained and, hence, the VC transition is not

required. Let us illustrate how this allocation function works with

an example.

Algorithm 1 Node ID based VC assignment

1: procedure next_VC(currentN ID, currentVC)
2: outboundNID ← дetOutboundNID()
3: if outboundNID ≤ currentN ID then
4: currentVC ← currentVC + 1
5: end if
6: return currentVC

Given the path shown in Fig. 3 (top) in which a packet travels

from node 3 to node 4, the routing function R that returns the next

channel to be used and the allocation function FN , we start applying

R(4, ⟨3,−⟩) = ⟨7, 0⟩. Notice that source nodes are connected to

the switches through port 0. Then we apply FN which returns

⟨7, 03, 0⟩ because injection is always performed in the VC 0. After

the packet is moved to node 7 using port 0 and VC 0, the process is

repeated: FN (R(4, ⟨7, 0⟩), 0) = ⟨6, 27, 1⟩. Now, as the packet travels
from node 7 to 6 (lower identifier) the allocation function increases

the VC to be used. The next channel to be used is calculated as

FN (R(4, ⟨6, 2⟩), 1) = ⟨9, 26, 1⟩; here, the next identifier is higher, so
a VC transition is not required. Finally, the hop from node 9 is the

destination, so a VC transition is not required.

5.2 Port ID based allocation function
The second allocation function FP orders the channels along a

path using only the port identifiers. In this case it only requires

the inbound and outbound ports (as defined in Section 3), both

provided by the routing function. The pseudocode to implement

this function is shown in Alg. 2.

Algorithm 2 Port ID based VC assignment

1: procedure next_VC(inboundPID, currentVC)
2: outboundPID ← дetOutboundPID()
3: if outboundPID ≤ inboundPID then
4: currentVC ← currentVC + 1
5: end if
6: return currentVC

FP works in a similar way as FN so the example provided is

similar (see Fig. 3 (middle)). The only difference is the sequence

of VCs used in the path, which are allocated considering the ports

identifiers. Let us take a look at the routing and allocations steps:

(1) FP (R(4, ⟨3,−⟩), 0) = ⟨7, 03, 0⟩
(2) FP (R(4, ⟨7, 0⟩), 0) = ⟨6, 27, 0⟩
(3) FP (R(4, ⟨6, 2⟩), 0) = ⟨9, 26, 1⟩
In the first switch (step 2), the VC is kept because the packet

travels from port 0 to 2 (higher identifier). However, in step 3, the

hop is performed from port 2 to port 2 (same id) and in consequence

a VC transition is enforced.

5.3 Node-Port ID based allocation function
We finish this section with the allocation function FNP which uses

both the node and port ids. As we can see in Fig. 3 (bottom), using

more information can help to use less VCs. The pseudocode to

implement this function is shown in Alg. 3.

Algorithm 3 Node-Port ID based VC assignment

1: procedure next_VC(currentN ID, inboundPID, currentVC)
2: outboundNID ← дetOutboundNID()
3: outboundPID ← дetOutboundPID()
4: if outbound_PID < inboundPID or

(outboundPID = inboundPID and
outboundNID ≤ currentN ID) then

5: currentVC ← currentVC + 1
6: end if
7: return currentVC

FNP works as a combination of FN and FP . Let us take a look at

the routing and allocations steps shown in Fig. 3:

(1) FNP (R(4, ⟨3,−⟩), 0) = ⟨7, 03, 0⟩
(2) FNP (R(4, ⟨7, 0⟩), 0) = ⟨6, 27, 0⟩
(3) FNP (R(4, ⟨6, 2⟩), 0) = ⟨9, 26, 0⟩
In this case, the condition to perform a VC transition is much

stricter (combines together the conditions from FN and FP), and
hence, we expect less VC transitions. In the example, the conditions

are never fulfilled, so only one VC (0) is used along the path.

5.4 Considerations for the practical design
We will move now to discuss about how to translate these simple

algorithms into a practical switch design. In contrast with the dead-

lock alternatives discussed in Section 2, which require distributing

channel transitions all across the system, our proposals only require

very little information about the local and neighbouring nodes: ids

for the nodes and ports. The logic to store this information is very

minimal, just a small register per port–to store its id plus the id of

the neighbouring node and port–plus another, even smaller, register

per node to store the local id. Obviously outboundPID, inboundPID,
currentNID and outboundNID would read the information from

these registers, so the implementation of their respective functions

will be straightforward.

Special attention requires how these registers would be loaded

with their respective information. Given that this information sel-

dom varies–local ids can be fixed and neighbouring info only varies

when cables are unplugged or broken–we can consider it static for

the purposes of this discussion. Ports within a switch are implic-

itly numbered from 0 to r − 1 for the different functions within a

switch (e.g., switch allocation), where r is the radix of the switch
or, in other words, the number of ports. This numbering will serve

very well for our purposes and can be safely hard-coded into each

port with a few bits, e.g. 10 bits would support switches with up to

1024 ports. Alternatively, they could be assigned dynamically by

the switch logic as ports are brought up (i.e. connected to another

switch). However, the extra hardware to deal with port-id allocation

and consistency seems like an excessive overhead which serves no

real purpose, so dynamic port-id allocation would be discouraged

for a power-efficient design such as ours.

5

ICS, 2018, Beijing Pascual and Navaridas

Regarding node ids, up until now our examples have assumed

that endpoints and switches are numbered consecutively and that

all ids are unique. This is done for the sake of simplicity,but is not a

requirement of our algorithms as they only rely on the existence of a

strict order operation. For this reason, while it is possible (although

far from trivial) to implement a system-level function that ensures

node ids are consecutive and unique, such a system-level facility

is not required. Hence, we can rely on a simpler methodology for

generating node ids. The simpler, and aligned with current practice

for many networking equipment would be to have a hard-coded

physical address incorporated into the switch at fabrication time.

However, in a FPGA-based set-up as the one we are aiming at

providing, hard-coding the id would require generating a separated

firmware for each FPGA. For this reason, a small module that reads

several local sensors (e.g. voltage, temperature, internal clock, etc)

and hashes them together to generate a random id at boot up seems

like a more flexible solution.

Finally, now that we have established how local id information

can be generated, we look into how this information can be dis-

tributed. The simplest, most effective way of sharing information

with the neighbours is to implement it in a per-port basis during

the negotiation/handshaking process that occurs when the ports

are brought up once a cabled is plugged in. Instrumenting the ports

to interchange node and port ids and store them in the local register

as one of the last steps of the interface up process should be trivial

and require very little extra logic.

All these considerations show the feasibility of our approach and

also that it imposes very low overhead to the switch architecture

and no system-level support.

6 ANALYSIS OF VC REQUIREMENTS
As we have seen, the allocation functions work in a distributed

and online manner making decisions independently on each router.

The overhead of implementing them on each router is negligible

just requiring a few extra logic to perform one or two comparisons

over information which is readily available (current and next chan-

nel). Furthermore, no inter-router communication is required, nor

any off-line process to generate the dependency graphs. The main

overhead is the number of VCs. Most current interconnection tech-

nologies support a relatively large number of VCs; 8 and 16 VCs

are not uncommon. However, surpassing that number would pose

a great limitation for the use of DAVC. Hence, we will look now

at the requirements in terms of VCs of each proposed allocation

function when dealing with different topology/routing combos.

6.1 Analysis of algorithms
The number of VCs required depends on the type of routing used.

Clearly, when minimal routing is used this number is bounded by

the diameter of the network because the number of VC transitions

is determined on each hop of the path. Similarly, when non-minimal

routing is used, the number of VCs is bounded by the longest path

length which can be longer than the diameter of the network. Notice

that the allocation functions are independent of the type of routing

and can be used with single- or multi-path routing strategies. The

following lemma formalises the maximum number of VCs required

(the proof is straightforward):

Lemma 6.1. Given a routing function R and any VC allocation
function F , the maximum number of VCs used is lower than the
number of hops of the longest path.

Notice that in practice, as the injection is performed in VC 0

and consumption does not require a VC transition, the maximum

number of VCs equals to the length of the longest path minus 2. The

worst case happens when one of the longest paths requires a VC

transition in every hop, which depends on the allocation function

used. Let us analyse the worst case in terms of VC transitions on

each of the allocation functions for the longest path P reported by

a routing function:

• FN : As the VC assignment on this function depends on the

ids of the nodes along the path, the worst case appears when

the sequence of node ids is decreasing.

• FP : In this case the VC assignment is performed according

to the sequence of port ids along the path. The worst case

appears when the sequence of port ids is decreasing.

• FNP : This function uses a combination of node and port ids

to perform a VC transition which only happens when the

sequence of nodes and ports ids is decreasing. This imposes

a more strict condition to perform a VC transition which can

result in the use of less number of VCs (as happened in the

example shown in Fig. 3.

Although DAVC is independent from the topology/routing, the

number of required VCs is not. However, it is easy to determine this

number just analysing the topology and the routing implemented.

6.2 Analysis of DAVC on different
topology/routing combinations

Now we analise the most used topology/routing combinations to

determine the number of VCs required to implement DAVC. As

our proposal is bounded by the length of the longest path, the

most appropriate topologies to be uses with DAVC are those which

have short path lengths. We will discuss the feasibility of DAVC for

two topologies, Dragonfly and Jellyfish [30] which belongs to the

Regular Random Graphs (RRG) family.

6.2.1 Torus topologies. These topologies have been widely used

in the past to build supercomputers. However, they are not the

most suitable for DAVC because of their large diameter which

would impose a large number of VCs. Furthermore, torus topologies

already have efficient ways to avoid deadlock, such as the bubble-

router algorithm [25] which only requires one VC.

6.2.2 Fat-tree topology. Regarding fat-trees and other multi-

stage topologies, DAVC would be suitable because the diameter

grows logarithmically with the number of endpoints. For normal

application traffic, Up*/Down* routing is very well suited for these

topologies and requires of a single VC to avoid deadlock. However,

the management traffic for InfiniBand-based systems requires of

special consideration for tree-like networks. In this case, communi-

cation between switches are required which means that Up*/Down*

routing can not always be applied (e.g., communications between

root switches) [2, 3]. In practice this means that a separate deadlock-

avoidance for management traffic is needed, a role for which DAVC

can be an appropriate and elegant solution.

6

High-Performance, Low-Complexity Deadlock
Avoidance for Arbitrary Topologies/Routings ICS, 2018, Beijing

6.2.3 Dragonfly topology. Dragonfly [17] is a direct topology

whose main design objectives was to minimize the diameter, which

is the best scenario to use DAVC. Using minimal-routing the longest

path is 5 hops. However, minimal routing is known to not balance

well the traffic in Dragonflies. For this reason Valiant routing [25]

is typically used to maximize network utilization. This routing is

randomized and non minimal and has a longest path of 7 hops.

These paths lengths would keep the number of VCs needed for

DAVC relatively low (3 and 5, respectively). The availability of

short paths together with the existence of a specific HPC deadlock-

avoidance mechanism [17] we can compare with motivate this

topology being included in our experimental work.

6.2.4 RRG topologies. The diameter of the RRGs depends on

the radix of the switches. Using realistic switches with up to 64

ports, we can build very large topologies with thousands of com-

puting elements with very low diameter. This fact together with

the absence of practical deadlock-avoidance mechanisms [4] makes

these kind of networks the main target for DAVC.

6.2.5 Other topologies. Finally, there is a plethora of topologies
proposed for the data-centre domain for which there exists no

deadlock avoidance mechanisms. They use Ethernet interconnects

and rely on TCP-based packet dropping and retransmission. Some

examples worth mentioning are DCell [14], BCube [15], FiConn

[20] and DPillar [21]. All of these topologies feature low diameter

and could benefit greatly from an advanced deadlock-avoidance

mechanisms such as DAVC maybe even to the point where they

could be used within HPC domains. At any rate, looking into data-

centre topologies is outside of the scope of this paper so we will

stick to HPC topologies for the remaining of this paper.

7 EXPERIMENTAL SET-UP
In this section we present the simulation environment used to anal-

yse the performance of DAVC. First we describe the experimental

environment which is composed of the INSEE simulator [23] and

the different traffic generation models. We conclude the section

describing the set of experiments performed.

7.1 Simulation environment
The evaluation has been carried out using INSEE, a widely use

and tested interconnection networks simulator. INSEE uses a very

detailed model of the router at a phit level and supports both the

generation of several synthetic traffic patterns and the execution

of traces extracted from real applications. In addition, it also imple-

ments several deadlock-avoidance mechanisms for many different

topology/routing combinations.

We carried out two set of experiments with two topologies of the

same size, a Dragonfly(6,12,6) and a RRG(876,23,17), both composed

of 876 23-port switches (6 ports for compute nodes plus 17 ports for

inter-switch) and connecting a total of 5256 computing nodes. In

each set of experiments we first focus on raw performance metrics

such as throughput and VC utilization and use two synthetic traffic

patterns:

• Uniform: This is the traditional pattern in which packet des-

tinations are selected uniformly at random. This generates a

VC1 VC2
VC1

VC0 VC2

VC1

VC0 VC1
GI

GDGS

Rs Ra Rb Rd

Rx Ry Minimal

Non-minimal

Figure 4: VC assignment to avoid deadlock in Dragonfly
topologies for both minimal and non-minimal routing.

uniform distribution of traffic and serves to understand the

load-balancing capability of the different schemes.

• Adversarial: This is a completely unbalanced traffic pattern

whichwas designed for Dragonfly. It generates a pathological

distribution of traffic in which all the nodes in a group try

to use the same output port in the group by sending traffic

randomly to the nodes in the next group. For RRGs, we have

adapted this traffic pattern such that the network is divided

in groups of a given size and each group sends the traffic to

the next group.

The second set of experiments is similar but using traffic patterns

typically present in HPC applications:

• Stencil 2D and 3D: These patterns resemble typical commu-

nication patterns in HPC applications with large matrices.

The application tasks are arranged in a 2D or 3D lattice

and compute for a certain part of the matrix and only need

communicating with its neighbours in this virtual topology.

• Butterfly: This pattern represents an optimised, binary im-

plementation of collective operations in which each node

communicates with other nodes located at power of 2 dis-

tances.

• Waterfall: This traffic pattern consists of a large collection

of small messages, with very tight causal dependencies. We

can consider this pattern heavy because during the most of

the execution time, most of the nodes are injecting messages

at once.

In order to compare the performance of DAVC we have used one

deadlock-avoidance mechanism for each topology. For Dragonflies

we have implemented the one used in the original work [17] which

we refer as Dally in this work. This mechanism uses two VCs for

minimal routing and three VCs for Valiant routing as depicted in

Fig. 4. For RRGs we have used SPDA which creates a spanning-tree

per VC to spread the traffic over them (see below).

7.2 Spanning-tree protocol deadlock-avoidance
(SPDA)

SPDA is a simple generic strategy that, given a network topology

and a number m (configurable) of VCs to be used, calculates m
spanning treeswhichwill be used to route the traffic. The creation of

the spanning trees is performed by selecting a root node at random

and using a breadth first search (BFS) to create a minimal spanning

tree from it. When a packet is injected, one of them VCs is selected

7

ICS, 2018, Beijing Pascual and Navaridas

8

0

1

2

3

4

5

6

7

(a) Example topology

8

0

1

2

3

4

5

6

7

(b) ST0 – VC0

8

0

1

2

3

4

5

6

7

(c) ST1 – VC1

Figure 5: Example of two spanning trees (b) and (c) calcu-
lated from a non deadlock-free network topology (a). Gray
nodes represent the root of the spanning tree.

randomly and the packet will follow the path determined by the

corresponding spanning tree. Deadlock-free routing is guaranteed

as spanning-trees have no cycles. An example of SPDA is depicted

in Fig. 5 which shows two spanning trees of a network topology

which are assigned to VC 0 and 1 respectively. Notice that SPDA is

also a routing policy as the packets are routed to their destination

following the selected spanning-tree.

7.3 Generic routing policies
We have used Minimal and Valiant routing policies for Dragonfly

and SPDA for RRGs. However, in order to test the capacity of DAVC

to use any kind of routing we have also used the following three

generic routings for both topologies:

• Shortest Path (SP): Uses only one of the existing shortest

paths between each source and destination. The longest path

is equal to the diameter of the topology

• Equal cost Multiple Paths (ECMP): This is a multi-path policy

which, instead of using just one of the shortest paths between

each source and destination, spreads the traffic between all

of them. The length of the longest path is again the diameter.

• ALLPATH(k) (AP) [9]: This policy is similar to ECMP but

uses all existing paths whose length is no longer than the

shortest path plus k . Notice that these longer paths may not

exist for a particular topology.

8 EXPERIMENTAL RESULTS
We move now to analyse the results of our experimental work.

8.1 Dragonfly topology
First, we will focus on the results for the Dragonfly topology. As

mentioned above, the main objective of this set of experiments is

to assess the performance of DAVC vs a HPC deadlock-avoidance

mechanism, and not the performance of the routing policies.

Fig. 6 shows the throughput of the dragonfly topology (at maxi-

mum injection load) and the VC occupancy. Let us start analysing

the performance using uniform traffic. There are several points to

highlight here. First of all, we can see that FP and FNP are able

to operate at a same throughput level as the efficient Dally imple-

mentation for both minimal and Valiant. Also they are capable to

support other routing functions (SP, ECMP and ALLPATH), all of

which are able to outperform Dally+Valiant for this specific case.

While the objective of this work is not to compare routing functions,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(a) Accepted load (Uniform).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
N

 F
P
 F

NPD F
N

 F
P
 F

NPD F
N

 F
P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP

VC0
VC1

VC2
VC3

VC4

AP(2)ECMPSPValiantMinimal

(b) VC Utilization (Uniform).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(c) Accepted load (Adversarial).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
N

 F
P
 F

NPD F
N

 F
P
 F

NPD F
N

 F
P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP

VC0
VC1

VC2
VC3

VC4

AP(2)ECMPSPValiantMinimal

(d) VC Utilization (Adversarial).

Figure 6: Accepted load and VC utilization of a DF(6,12,6) us-
ing uniform and adversarial traffic.

0.0*10
0

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(a) Stencil 2D

0.0*10
0

2.0*10
5

4.0*10
5

6.0*10
5

8.0*10
5

1.0*10
6

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(b) Stencil 3D

0.0*10
0

2.0*10
4

4.0*10
4

6.0*10
4

8.0*10
4

1.0*10
5

1.2*10
5

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(c) Butterfly

0.0*10
0

2.0*10
5

4.0*10
5

6.0*10
5

8.0*10
5

1.0*10
6

Minimal Valiant SP ECMP AP(2)

FN
FP

FNP
Dally

(d) Waterfall

Figure 7: Execution time (in cycles) for realistic workloads
in a DF(6,12,6).

it is clear that being able to support more routing functions can

be beneficial. The case of FN requires special consideration as it

produces a pathological scenario for this topology when combined

with the standard routing functions (Min and Valiant), but performs

relatively well with the other routings. The culprit for its low per-

formance is the network becoming highly congested, which could

be alleviated by implementing a congestion management algorithm,

e.g., [13]. A detailed examination showed that with other Dragonfly

8

High-Performance, Low-Complexity Deadlock
Avoidance for Arbitrary Topologies/Routings ICS, 2018, Beijing

link-arrangements, the performance of FN with Min and Valiant is

much closer to that of FP and FNP , but still substantially lower.

Moving on to adversarial traffic, it is more difficult to draw con-

clusions because most of the networks are suffering from exceed-

ingly high congestion scenarios. However, it is clear that, in this

case, multipath non-minimal routes (Valiant, ECMP and AP) are

able to reduce significantly the effects of congestion.

Only Valiant+Dally, and to some extent, Valiant+FP are able to

reach acceptable performance levels, though. While this is expected

as ADV was designed to highlight the Valiant+Dally combo, it is

still interesting to see that FP is capable of getting competitive per-

formance values as well. Moving from Valiant, now, the differences

between FN and FP and FNP are diluted and the three of them

seem to perform roughly the same for all routing functions.

Also of interest is the VC utilization of the different algorithms.

Both FP and FNP require the same number of VCs as Dally for both

Min and Valiant, regardless of the traffic pattern. We can see that

this is not the case for FN which always requires a higher number

of VCs.

If we focus on the realistic workloads, shown in Fig. 7 we can

see that when dealing with application traffic the differences be-

tween Dally and our proposals is very small, except for Min+FN as

expected from the throughput figures shown above. Furthermore,

the non-standard routing algorithms can outperform either Min

or Valiant in all scenarios, which again, highlights the benefits of

providing higher flexibility.

8.2 RRG topology
Let us analyse now the results for the RRG topology. Looking at

the results with synthetic traffic in Fig. 8, we can see that in no

case the network seems to become highly congested as happened

with the Dragonfly. This is because of the high path diversity of the

RRG topologies. In this case, ECMP seems to be the best routing

solution as it can sustain the highest throughputs for both traffic

patterns. The rationale for that is that ECMP leverages the gains

of using shortest paths for balanced traffic (uniform), with those

of using multipath for unbalanced traffic (adversarial). Note that

SP out performs ALLPATH for Uniform, whereas with Adversarial

the results are just the opposite. Focusing on the different DAVC

functions, we can see that FP seems to be able to offer the best

performance whereas, again, FN seems to suffer from saturation

more than the others, regardless of the routing function. At any rate,

we can see how these algorithms hugely outperform the spanning

tree deadlock avoidance, due to the strict restrictions imposed by

such algorithms, which both leave many channels unused and make

paths longer. We can see how allowing more VCs for more parallel

spanning trees has a major influence in the performance, but even

with hundreds of VCs, the performance is not near comparable to

that of DAVC.

These trends translate neatly to the application-like traffic (see

Fig. 9) where we can see that the differences between DAVC imple-

mentations are subtle, whereas the SPDA takes up to 2 orders of

magnitude longer when a small number of VCs are used. Although

the purpose of the paper is not to compare the topologies, we can

see how the running times of the different applications over the

RRGs and Dragonflies are similar to each other, which shows that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(a) Accepted load (Uniform).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
N

 F
P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP 1 2 4 8 163264 128

VC0
VC1

VC2
VC3

 SPDAAP(4)AP(2)ECMPSP

(b) VC Utilization (Uniform).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(c) Accepted load (Adversarial).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
N

 F
P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP
F

N
 F

P
 F

NP 1 2 4 8 163264 128

VC0
VC1

VC2
VC3

 SPDAAP(4)AP(2)ECMPSP

(d) VC Utilization (Adversarial).

Figure 8: Accepted load and VC utilization of a
RRG(876,23,17) using uniform and adversarial traffic.

1.0*10
0

1.0*10
1

1.0*10
2

1.0*10
3

1.0*10
4

1.0*10
5

1.0*10
6

1.0*10
7

1.0*10
8

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(a) Stencil 2D

1.0*10
0

1.0*10
1

1.0*10
2

1.0*10
3

1.0*10
4

1.0*10
5

1.0*10
6

1.0*10
7

1.0*10
8

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(b) Stencil 3D

1.0*10
0

1.0*10
1

1.0*10
2

1.0*10
3

1.0*10
4

1.0*10
5

1.0*10
6

1.0*10
7

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(c) Butterfly

1.0*10
0

1.0*10
1

1.0*10
2

1.0*10
3

1.0*10
4

1.0*10
5

1.0*10
6

1.0*10
7

SP ECMP AP(2) AP(4) SPDA

FN FP FNP

(d) Waterfall

Figure 9: Execution time (in cycles) for realisticworkloads in
a RRG(876,23,17). Notice the logarithmic scale of the y axis.

the performance with the former is comparable to that of the Drag-

onfly with Dally, which further demonstrates the good performance

of our approach.

We conclude our discussion of results with some final remarks

about the different allocation functions for DAVC. In general, FN
seems to be the worst alternative, since it is the one that requires

the most VCs and also the one that seems to be more prone to

congestion. The difference between FP and FNP seems to be, in

general, much smaller with the only exception of DF-Valiant we

9

ICS, 2018, Beijing Pascual and Navaridas

mentioned above. In the rest of the cases, FP seems to be slightly

better in terms of performance in many cases, but the difference

may very well be compensated by the, a priori, lower number of

VCs required by FNP .

9 CONCLUSIONS AND FUTUREWORK
In this paper we have presented DAVC, a new mechanism to avoid

deadlock in arbitrary topology/routing combinations. DAVC is an

online, low-overhead mechanism that must be implemented on

each router.

After theoretically proving that DAVC guarantees deadlock-

avoidance, we evaluated the performance against specific mech-

anisms designed for two specific topologies. In addition we also

evaluated the performance of generic routing policies as alterna-

tives to specific ones.

Results show that DAVC achieves similar performance of the

deadlock-avoidance mechanism used in Dragonfly while at the

same time allowing the use of other generic routing policies. In

the case of RRGs, DAVC allows the use of any routing in these

random topologies while delivering much higher performance than

a specific deadlock-avoidance mechanism using spanning-trees.

The results presented in this paper show the raw performance

of DAVC without any optimizations. However there are still many

improvements to be done in order to further reduce the number

of VCs used. Two of the ideas that we are investigating for future

works are: (i) Analysis of the generated paths so to be able to

instrument routing functions in such a way that we reduce the

number of VC transitions. (ii) Strategies for reordering the node

and port ids so to reduce the number of VC transitions.

ACKNOWLEDGMENTS
Anonymised for Blind Review

REFERENCES
[1] IEEE Standard Association. 2012. IEEE 802.1D Standard. (2012).

[2] Bartosz Bogdanski. 2013. System and method for providing deadlock free routing

between switches in a fat-tree topology. (May 9 2013). http://www.google.com/

patents/US20130114620 US Patent App. 13/653,303.

[3] Bartosz Bogdanski, Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, and Ernst Gun-

nar Gran. 2012. sFtree: A Fully Connected and Deadlock-free Switch-to-switch

Routing Algorithm for Fat-trees. ACM Trans. Archit. Code Optim. 8, 4, Article 55
(Jan. 2012), 20 pages.

[4] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. 2017. Random Folded

Clos Topologies for Datacenter Networks. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 193–204.

[5] Ludmila Cherkasova, Vadim Kotov, and Tomas Rokicki. 1996. Fibre channel fab-

rics: evaluation and design. In Proceedings of HICSS-29: 29th Hawaii International
Conference on System Sciences, Vol. 1. 53–62 vol.1.

[6] William J. Dally and Charles L. Seitz. 1987. Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks. IEEE Trans. Comput. 36, 5 (May 1987),

547–553.

[7] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. 2016. Routing on the De-

pendency Graph: A New Approach to Deadlock-Free High-Performance Routing.

In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 3–14.

[8] Jens Domke, Torsten Hoefler, and Wolfgang E. Nagel. 2011. Deadlock-Free

Oblivious Routing for Arbitrary Topologies. In 2011 IEEE International Parallel
Distributed Processing Symposium. 616–627.

[9] Peyman Faizian, Md Atiqul Mollah, Xin Yuan, Zaid Alzaid, Scott Pakin, and

Michael Lang. 2018. Random Regular Graph and Generalized De Bruijn Graph

with k -Shortest Path Routing. IEEE Transactions on Parallel and Distributed
Systems 29, 1 (Jan. 2018), 144–155.

[10] Jose Flich, Pedro López, José C. Sancho, Antonio Robles, and Jose Duato. 2002.

Improving InfiniBand Routing through Multiple Virtual Networks. Springer Berlin

Heidelberg, Berlin, Heidelberg, 49–63.

[11] Anonymized for Blind Review. 2017.

[12] Anonymized for Blind Review. 2018.

[13] Marina García, Enrique Vallejo, Ramón Beivide, Mateo Valero, and German Ro-

dríguez. 2013. OFAR-CM: Efficient Dragonfly Networks with Simple Congestion

Management. In 2013 IEEE 21st Annual Symposium on High-Performance Inter-
connects.

[14] Chuanxiong Guo, Wu Haitao, Kun Tan, Lei Shi, Guohan Lu, Yongguang Zhang,

and Songwu Lu. [n. d.]. ([n. d.]).

[15] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: A high performance,

server-centric network architecture for modular data centers. SIGCOMM Comp.
Comm. Review 39, 4 (October 2009), 63–74.

[16] Ryuta KAWANO, Hiroshi NAKAHARA, Seiichi TADE, Ikki FUJIWARA, Hiroki

MATSUTANI, Michihiro KOIBUCHI, and Hideharu AMANO. 2017. A novel

channel assignmentmethod to ensure deadlock-freedom for deterministic routing.

IEICE Transactions on Information and Systems E100D, 8 (8 2017), 1798–1806.
[17] John Kim, William J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-

Driven, Highly-Scalable Dragonfly Topology. In Procs. of the 35th Annual Intl.
Symposium on Computer Architecture (ISCA ’08). IEEE Computer Society, Wash-

ington, DC, USA, 77–88.

[18] Michel A. Kinsy, Myong Hyon Cho, Tina Wen, Edward Suh, Marten van Dijk,

and Srinivas Devadas. 2009. Application-aware Deadlock-free Oblivious Routing.

In Procs. of the 36th Intl. Symp. on Computer Architecture (ISCA ’09). ACM, New

York, NY, USA, 208–219.

[19] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano. 2001. L-turn routing: An
adaptive routing in irregular networks. Vol. 2001-January. Institute of Electrical
and Electronics Engineers Inc., 383–392.

[20] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, Yongguang Zhang, Songwu Lu,

and Jianping Wu. 2011. Scalable and Cost-Effective Interconnection of Data-

Center Servers Using Dual Server Ports. IEEE/ACM Transactions on Networking
19, 1 (February 2011), 102–114.

[21] Yong Liao, Jiangtao Yin, Dong Yin, and Lixin Gao. 2012. DPillar: Dual-port server

interconnection network for large scale data centers. Comp. Networks 56, 8 (May

2012), 2132–2147.

[22] Olav Lysne and Tor Skeie. 2001. Load Balancing of Irregular System Area Net-

works through Multiple Roots (2nd International Conference on Communications
in Computing (CIC’01)).

[23] Javier Navaridas, José Miguel-Alonso, Jose A. Pascual, and Francisco J. Ridruejo.

2011. Simulating and evaluating interconnection networks with INSEE. Simula-
tion Modelling Practice and Theory 19, 1 (2011), 494 – 515.

[24] Radia Perlman. 2000. Interconnections (2nd Ed.): Bridges, Routers, Switches, and
Internetworking Protocols. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

[25] Valentín Puente, Cruz Izu, Ramón Beivide, Jose A. Gregorio, Fernando Vallejo,

and Jose M. Prellezo. 2001. The Adaptive Bubble Router. J. Parallel and Distrib.
Comput. 61, 9 (2001), 1180 – 1208.

[26] Thomas L. Rodeheffer, Chuck Thacker, Andrew Birrell, Tom Rodeheffer, Hal Mur-

ray, Michael Schroeder, Ed Satterthwaite, Roger Needham, Mike Burrows, M. D.

Schroeder, and Mike Schroeder. 2006. Autonet: A High-speed, Self-configuring

Local Area Network Using Point-to-point Links. IEEE Journal on Selecetd Areas
in Communications 9, 8 (Sept. 2006), 1318–1335.

[27] Alex Sakharov. 2018. Strict Order. From MathWorld—A Wolfram Web Resource

created by Eric W. Weisstein. (2018). http://mathworld.wolfram.com/StrictOrder.

html Last visited on 29/1/2018.

[28] Loren Schwiebert. 2001. Deadlock-Free Oblivious Wormhole Routing with Cyclic

Dependencies. IEEE Trans. Comput. 50, 9 (Sept. 2001), 865–876.
[29] Federico Silla and Jose Duato. 2000. High-Performance Routing in Networks of

Workstations with Irregular Topology. IEEE Transactions on Parallel Distributed
Systems 11, 7 (July 2000), 699–719.

[30] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jel-

lyfish: Networking Data Centers Randomly. In Procs. of the 9th USENIX Conf.
on Networked Systems Design and Implementation (NSDI’12). Berkeley, CA, USA,
17–17.

[31] Tor Skeie, Olav Lysne, Jose Flich, Pedro Lopez, Antonio Robles, and Jose Duato.

2004. LASH-TOR: A Generic Transition-Oriented Routing Algorithm. In Procs. of
the Parallel and Distributed Systems, 10th Intl. Conf. (ICPADS ’04).

[32] Tor Skeie, Olav Lysne, and Ingebjorg Theiss. 2002. Layered Shortest Path (LASH)

Routing in Irregular System Area Networks. In Procs. of the 16th Intl. Parallel and
Distributed Processing Symp. (IPDPS ’02).

[33] Leslie G. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J.
Comput. 11, 2 (1982), 350–361.

[34] Dong Xiang and Jiangxue Han. 2012. Multiple spanning tree construction for

deadlock-free adaptive routing in irregular networks. In IEEE 10th Intl. Symp. on
Parallel and Distributed Processing with Applications. 9–16.

10

http://www.google.com/patents/US20130114620
http://www.google.com/patents/US20130114620
http://mathworld.wolfram.com/StrictOrder.html
http://mathworld.wolfram.com/StrictOrder.html

	Abstract
	1 Introduction
	2 Background and Motivation
	3 The Deadlock-free Routing Problem
	3.1 Definitions
	3.2 Deadlock-free Routing

	4 Dynamic Assignment of Virtual Channels
	4.1 Preliminaries
	4.2 DAVC Strategy

	5 Implementation of DAVC
	5.1 Node ID based allocation function
	5.2 Port ID based allocation function
	5.3 Node-Port ID based allocation function
	5.4 Considerations for the practical design

	6 Analysis of VC requirements
	6.1 Analysis of algorithms
	6.2 Analysis of DAVC on different topology/routing combinations

	7 Experimental Set-up
	7.1 Simulation environment
	7.2 Spanning-tree protocol deadlock-avoidance (SPDA)
	7.3 Generic routing policies

	8 Experimental Results
	8.1 Dragonfly topology
	8.2 RRG topology

	9 Conclusions and Future Work
	Acknowledgments
	References

