
The University of Manchester Research

Towards Practical Heterogeneous Virtual Machines

DOI:
10.1145/3191697.3191730

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Clarkson, J., Fumero, J., Papadimitriou, M., Xekalaki, M., & Kotselidis, C. (2018). Towards Practical
Heterogeneous Virtual Machines. In Towards Practical Heterogeneous Virtual Machines
https://doi.org/10.1145/3191697.3191730

Published in:
Towards Practical Heterogeneous Virtual Machines

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact openresearch@manchester.ac.uk providing relevant details, so
we can investigate your claim.

Download date:18. Jul. 2025

https://doi.org/10.1145/3191697.3191730
https://research.manchester.ac.uk/en/publications/78872618-c5f6-4c75-9c3e-144c8a2da3b4
https://doi.org/10.1145/3191697.3191730


Towards Practical Heterogeneous Virtual Machines
James Clarkson, Juan Fumero, Michail Papadimitriou, Maria Xekalaki, Christos Kotselidis

The University of Manchester
United Kingdom, M13 9PL
first.last@manchester.ac.uk

ABSTRACT
Heterogeneous computing has emerged as a means to achieve high
performance and energy efficiency. Naturally, this trend has been
accompanied by changes in software development norms that do
not necessarily favor programmers. A prime example is the two
most popular heterogeneous programming languages, CUDA and
OpenCL, which expose several low-level features to the API making
them difficult to use by non-expert users.

Instead of using low-level programming languages, developers
tend to prefer more high-level, object-oriented languages typically
executed on managed runtime environments. Although many pro-
grammers might expect that such languages would have already
been adapted for execution on heterogeneous hardware, the reality
is that their support is either very limited or totally absent. This
paper highlights the main reasons and complexities of enabling
heterogeneous managed runtime systems and proposes a number
of directions to address those challenges.

CCS CONCEPTS
• Software and its engineering→ Virtual machines;

KEYWORDS
Virtual Machines, Java, OpenCL, GPU, FPGA

ACM Reference Format:
James Clarkson, Juan Fumero, Michail Papadimitriou, Maria Xekalaki, Chris-
tos Kotselidis. 2018. Towards Practical Heterogeneous Virtual Machines. In
Proceedings of 2nd International Conference on the Art, Science, and Engineer-
ing of Programming (<Programming’18> Companion). ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3191697.3191730

1 INTRODUCTION
Heterogeneous computing, initially introduced in the form of GPG-
PUs, has recently become very popular as a means to accelerate
various applications from different domains including HPC and Big
Data. Towards the transition to heterogeneous computing a num-
ber of new programming languages has emerged with CUDA and
OpenCL being the most prevalent. Both languages enable the exe-
cution of high performance code on a variety of devices including

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5513-1/18/04.
https://doi.org/10.1145/3191697.3191730

GPUs and FPGAs, and have been designed at a lower level than non-
expert programmers would expect. Both the prerequisite in-depth
understanding of the architectural characteristics of the underlying
heterogeneous hardware, and the exposure of low-level primitives
to the API, make their use more challenging by developers, who
typically write code in more widely used high-level programming
languages such as Java, C#, Python, R, and JavaScript [14]. These
languages typically run on top of a Managed Runtime Environment
(MRE) and, in order to exploit a heterogeneous hardware resource
(e.g. GPU), wrapper libraries are required to direct execution to
pre-compiled OpenCL/CUDA kernels. Such an approach not only
“violates” the semantics of the high-level programming language,
but also requires from developers to gain expertise on new low-level
programming environments.

Recently, a significant amount of work [1–9, 12, 13, 15] has been
dedicated to enable dynamic JIT compilation of high-level code
(e.g. Java, JavaScript, R) to heterogeneous hardware via OpenCL
or PTX/CUDA. These approaches partially solve the challenge of
heterogeneous execution since they mainly focus only on the as-
pect of compilation. MREs are complex systems encompassing a
number of interconnected software components such as compilers,
runtimes, memory managers, and garbage collectors. Consequently,
all of these subsystems have to be re-engineered to enable per-
formance and usability from interpreted programming languages.
The remainder of this paper discusses the challenges of enabling
heterogeneous execution of MREs and presents our proposal and
work in progress towards addressing those challenges.

2 CHALLENGES
In this section we highlight the most significant challenges in de-
signing heterogeneous MREs.

Programmability: High-level features ofmanaged languages such
as dynamic memory allocation and management, virtual calls and
exception handling, although supported by Java and other lan-
guages, they are not present in CUDA or OpenCL. Therefore, they
are not naturally supported on heterogeneous devices.

Transparency: Platform portability is a key design principle of
Java that has been achieved through virtualization and abstraction
of the underlying hardware architecture by the JVM. Similarly, the
integration of hardware accelerators in the JVM should also follow
the same principle. Developers should be able to run their code on
the underlying device without having to explicitly manage memory,
parallelism, code placement and other added complexities.

Adaptability: The existing compilers of JVMs have been tuned
throughout the years for CPU execution exploiting Instruction
Level Parallelism (ILP). Heterogeneous hardware accelerators, how-
ever, are built for different execution scenarios such as data par-
allelism (GPUs) or task pipelining (FPGAs). In addition, different

https://doi.org/10.1145/3191697.3191730
https://doi.org/10.1145/3191697.3191730


<Programming’18> Companion, April 9–12, 2018, Nice, France J. Clarkson et al.

GPUs have different characteristics and capabilities that compilers
must accommodate. Therefore, JVMs must be able to dynamically
adapt the generated code based on the particular hardware device
transparently to the user.

Device Portability: Breaking away from the norm that applica-
tions always execute on CPUs, heterogeneous MREs must accom-
modate device portability. For example, a vanilla Java application
should be able to exploit any hardware device, even if unknown
during development time. In addition, in cloud deployed Big Data
applications where fault tolerance is important, MREs should be
able to adapt the code (through de-optimization and re-compilation)
if a node with a specific device fails.

Performance Portability: The main motivation behind hardware
accelerators is increased performance. A heterogeneousMRE should
aim in delivering the same performance when executing the code
on different accelerators. The trade-offs between peak performance,
compilation time, and heterogeneous execution should always yield
the best possible performance regardless of the type of accelerator
that exists on our system. Therefore, a more sophisticated decision-
making model is required compared to the existing counter-based
compilation of "hot" methods.

3 PROPOSAL
This section outlines our proposal for heterogeneous MREs with
some initial results described in [10, 11].

Task-Based API. To address programmability, we propose a
task-based API for heterogeneous programming that augments ex-
isting Java APIs in a seamless manner. Developers create tasks by
invoking existing Java methods that will be executed on a device
with minimal changes in the source code. Listing 1 shows a pseu-
docode of the task API. As shown, a group of tasks (t1 and t2) is
created in the form of a task group (lines 6-8). Either the whole task
group or individual tasks can be scheduled on the same, or different,
heterogeneous device(s). Also, they can execute in parallel and all
data dependencies (and data copying) is handled transparently by
the VM with the help of the task scheduler and the runtime.

Tasks in our system encapsulate existing Java methods. In the
example shown in Listing 1, the task t1 refers to the Compute.bfs
Javamethodwhile the task t2 refers to the Compute.mapReduce Java
method. Those methods contain legal Java code that can include
Java objects, exceptions, etc. The runtime system, in combination
with the JIT compiler and the heterogeneous VM, compile and
execute the existing Java code to the target accelerator via OpenCL.

1 public class Compute {

2 public static void bfs(in, out) { ... }

3 public static void mapReduce(in, out) { ... }

4 }

5 public static void main(String[] args) {

6 Schedule TaskGroup "g1" {

7 task "t1" :: Compute::bfs, inA, outA

8 task "t2" :: Compute::mapReduce, inB, outB }

9 }

Listing 1: Example of the Task Parallel API.

Runtime System. The runtime system performs type inference
and obtains sizes and meta-data needed for compiling and optimiz-
ing tasks. It will also build a Data Flow Graph (DFG) to optimize
data dependencies between tasks and generate new bytecodes for
orchestrating their execution on the heterogeneous device.

Heterogeneous VM. This component will execute the new byte-
code generated by the runtime system in a bytecode interpreter,
resulting essentially in a “VM-in-a-VM” aiming at heterogeneous
hardware virtualization. The main VM is the Java Virtual Machine
(JVM) while the secondary is the VM that virtualizes the hetero-
geneous devices. Our runtime system generates, at runtime, new
bytecodes to execute tasks on heterogeneous devices. These new
bytecodes are interpreted in the heterogeneous VM that optimizes
and orchestrates the execution across the accelerators. The het-
erogeneous VM will also manage memory between Java and the
device while inspecting hardware features of the underlying device.
This allows adaptability and transparency of applications when
running on heterogeneous hardware.

Listing 2 shows an example of this new bytecode where two ker-
nels (k1 and k2) are launched for execution on two devices (DEV 0
and DEV 1) in lines 5 and 9. These two tasks correspond to the gen-
erated bytecode of Listing 1. Before running the kernel, on-device
memory is allocated and data is copied from the VM (output data
are also copied back to the host’s memory). Allocating, copying
memory, and running kernels can be synchronous or asynchro-
nous operations, allowing more task-level parallelism. Just before
running a kernel, the heterogeneous VM compiles the input Java
methods (tasks) for a specific device and executes the resulting
code.

Heterogeneous JIT Compilation. The JIT compiler and the VM
work together for bringing performance and portability using
iterative compilation. The compiler will optimize the input tasks for
the selected device using its hardware information during runtime.
It will also report to the VM profiling information to improve thread
scheduling, bringing adaptability of high-level code to the target
hardware.

1 start // start the Heterogeneous VM

2 mem_alloc inA // memory alloc on the device

3 mem_alloc outA // memory alloc on the device

4 copy_in inA // data transfer Host->Device

5 runParallel t1 DEV0 // run task t1 on device 0

6 mem_alloc inB // memory alloc on the device

7 mem_alloc outB // memory alloc on the device

8 copy_in inB // data transfer Host->Device

9 runParallel t2 DEV1 // run task t2 on device 1

10 copy_out outA // data transfer Device->Host

11 copy_out outB // data transfer Device->Host

12 finish // finish the VM

Listing 2: Bytecode example of heterogeneous MRE.

ACKNOWLEDGMENTS
Thiswork is partially supported by the EPSRC grants PAMELAEP/K008730/1
and AnyScale Apps EP/L000725/1, and the EU Horizon 2020 E2Data 780245.



Towards Practical Heterogeneous Virtual Machines <Programming’18> Companion, April 9–12, 2018, Nice, France

REFERENCES
[1] AMD. 2016. Aparapi. (2016). http://aparapi.github.io/.
[2] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján. 2017. Boost-

ing Java Performance using GPGPUs. In Proceedings of the 30th International
Conference on Architecture of Computing Systems (ARCS ’17).

[3] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J.
Fink. 2012. Compiling a High-level Language for GPUs: (via Language Support for
Architectures and Compilers). In Proceedings of the 33rd ACM SIGPLANConference
on Programming Language Design and Implementation (PLDI ’12). ACM, New
York, NY, USA, 1–12. https://doi.org/10.1145/2254064.2254066

[4] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. 2017. Just-
In-Time GPU Compilation for Interpreted Languages with Partial Evaluation.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE ’17). ACM, New York, NY, USA, 60–73.
https://doi.org/10.1145/3050748.3050761

[5] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. 2017.
OpenCL JIT Compilation for Dynamic Programming Languages. In MoreVMs
Workshop. Collocated with Programing 2017 (MoreVMs ’17).

[6] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach.
2015. Runtime Code Generation and Data Management for Heterogeneous
Computing in Java. In Proceedings of the Principles and Practices of Programming
on The Java Platform (PPPJ ’15). ACM, New York, NY, USA, 16–26. https://doi.
org/10.1145/2807426.2807428

[7] Juan José Fumero, Michel Steuwer, and Christophe Dubach. 2014. A Composable
Array Function Interface for Heterogeneous Computing in Java. In ARRAY’14:
Proceedings of the 2014 ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. 44.

[8] Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
2013. Accelerating Habanero-Java Programswith OpenCL Generation. In Proceed-
ings of the 2013 International Conference on Principles and Practices of Programming

on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’13). ACM,
New York, NY, USA, 124–134. https://doi.org/10.1145/2500828.2500840

[9] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. 2015. Compiling and Opti-
mizing Java 8 Programs for GPU Execution. In 2015 International Conference on
Parallel Architecture and Compilation (PACT). 419–431. https://doi.org/10.1109/
PACT.2015.46

[10] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John
Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime Systems: A
Computer Vision Case Study. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’17). ACM, New
York, NY, USA, 74–82. https://doi.org/10.1145/3050748.3050764

[11] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nisbet, John Mawer,
Will Toms, James Clarkson, et al. 2015. Project Beehive: A Hardware/Software
Co-designed Stack for Runtime and Architectural Research. In 9th International
Workshop on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG) (2015). http://arxiv.org/abs/1509.04085

[12] Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. 2012. Rootbeer:
Seamlessly Using GPUs from Java (HPCC-ICESS), Geyong Min, Jia Hu, Lei (Chris)
Liu, Laurence Tianruo Yang, Seetharami Seelam, and Laurent Lefevre (Eds.).

[13] Sumtra. 2015. Sumatra OpenJDK. (2015). http://openjdk.java.net/projects/
sumatra/.

[14] December TIOBE List. 2017. TIOBE Programming Language Index. (2017).
http://www.tiobe.com/tiobe-index/.

[15] Wojciech Zaremba, Yuan Lin, and Vinod Grover. 2012. JaBEE: Framework for
Object-oriented Java Bytecode Compilation and Execution on Graphics Processor
Units. In Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units (GPGPU-5). ACM, New York, NY, USA, 74–83.
https://doi.org/10.1145/2159430.2159439

http://aparapi.github.io/
https://doi.org/10.1145/2254064.2254066
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2500828.2500840
https://doi.org/10.1109/PACT.2015.46
https://doi.org/10.1109/PACT.2015.46
https://doi.org/10.1145/3050748.3050764
http://arxiv.org/abs/1509.04085
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
http://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2159430.2159439

