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Abstract
We discuss two main approaches to decompose the Møller-Plesset perturbation theory molecular energies into atomic contributions within the Interacting Quantum Atoms (IQA) formalism, as implemented in the programs MORPHY and AIMAll. For this purpose the so-called intra-atomic energies (also known as self-energies) are compared for a representative set of 55 small molecules. The origin of the possible discrepancies between both approaches is analyzed, and linear models linking the two approaches are proposed for each atom type.
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1. Introduction
      Performing energy decomposition analysis (EDA)1-3 after a quantum chemical computation has become a common practice to extract relevant information on the driving force behind a chemical process. The Morokuma-Kitaura,4 Ziegler-Rauk,5 Baerends-Bickelhaupt,6 and the symmetry-adapted perturbation theory (SAPT)7 schemes are among the most popular EDAs. They notably quantify charge transfers, polarization effects, dispersion and covalency contributions to bonding, at a molecular level. It is often valuable to complement this global approach with an atomic decomposition, in order to unveil the particular role of substituents or functional groups on key properties. 
      For this purpose one has to define what an atom-in-molecule is. Several theoretical schemes have been proposed, for example, Hirshfeld’s stockholder partition,8 fuzzy atoms,9 and Parr’s atoms.10 Among them, the real-space Quantum Theory of Atoms-In-Molecules (QTAIM),11,12 pioneered by Bader and co-workers, has achieved an increasing recognition, especially owing to the fact that a basic QTAIM analysis can also be performed on experimental data derived from X-ray diffraction experiments, and also because it is firmly rooted in quantum physics.
      The choice of QTAIM as a partitioning method leads to the molecular energy being decomposed using the general Interacting Quantum Atoms (IQA) framework13-16 developed by Martín Pendás and coworkers. There is a growing number of case studies applying IQA, for example in chemical bonding mechanisms,17,18 excited states19 and congested molecules,20 in the decomposition of reactivity descriptors,21 and more generally in recovering insight into the role played by each atom of a molecular species in its physico-chemical properties. 
       The original habitat of IQA is actually wavefunction theory, such as Hartree-Fock (HF) and post-HF approaches (CASSCF and CI). Then, in 2016,22 IQA was made compatible with the B3LYP density functional, by a scheme that returned the total molecular energy from all intra- and inter-atomic energy contributions. An alternative Density Functional Theory (DFT)-compatible IQA scheme soon followed,23 and recent discussions24-26 on how DFT can be properly accommodated to IQA have been published.  On the other hand, important papers27-29 recently reported IQA’s use within coupled cluster (CC) electron correlation schemes. Alternatively, some of us30-34 described a robust IQA implementation for second-order Møller-Plesset perturbation theory (MP2),35 thereby harvesting atomistic understanding of electron dynamical correlation energy.
      As described in more detail in the Theory Section, another practical scheme (the so-called Müller decomposition, details see below) is available in the popular AIMAll program.36 The main purpose of this article is to compare both IQA-QTAIM-MP2 decomposition schemes.

2. Theory
       Within the IQA framework, the molecular energy is written as the sum of intra-atomic (also known as “self”) and interatomic contributions, a decomposition that is in principle exact since the molecular Hamiltonian only involves one- and two-body operators:

				(1)
We emphasize that, within the IQA Ansatz and unlike in other energy decomposition schemes, there are no many-body contributions other than the 2-body ones. In addition, we will here only focus on the intra-atomic terms. Actually, even if chemists were more accustomed to scrutinize interatomic terms when studying chemical bonds, several studies17,18,37 have shown that the variations of self contributions can be of the same magnitude as the interatomic ones upon bond formation, and must be taken into account in order to properly describe such chemical processes. The importance of intra-atomic components is also in line with Feynman’s venerable conjecture38,39 that the dispersion force (a dynamical correlation effect) acting on a nucleus arises from its attraction by its own distorted electron density.



       More precisely, the atomic self-energies can be split into three parts for a given atom A: the atomic kinetic energy, TA, the “classical” Coulombic energy,, which gathers the interaction between the nucleus in A (of charge ZA and located at ) and the electrons inside A as well as the Hartree component of the electron-electron repulsion, and the electron-electron exchange-correlation energy, , according to (in atomic units and where A denotes a QTAIM atom A):

	.			(2)




In practice, two types of molecular orbitals can be used to perform the IQA analysis at the MP2 level: the Hartree-Fock (HF) ones () and the natural orbitals (NOs) (), which, by definition, diagonalize the post-HF correlated first-order reduced density matrix. The NOs are associated to non-vanishing non-integer occupation numbers , whose values typically decrease as , in theory.40,41 The MORPHY energy decomposition30,42 is based on the uncorrelated HF orbitals and HF electron density. Hence, the self (“intra-atomic”) energy for a given atom A is evaluated by:

	,			(3)
where the exchange-correlation part is given by the standard textbook expressions for MP2 energy.
A different reference choice was implemented in the AIMAll program since the energy decomposition is based on NOs and on the Müller approximation to build the exchange-correlation contribution:

	.			(4)
The Müller approximation (also coined the Buijse-Baerends functional)43,45 belongs to reduced density matrix functional approximations (RDMFAs) based on the following general expression:	

		(5)
which is common to the most popular RDMFAs such as the Goedecker-Umrigar,45 the BBC,46 or the PNOF47 ones. In the case of Müller, one has simply:

			(6)
The difference between these two protocols reads:

	.			(7)
There are thus three sources of discrepancies between the MORPHY and AIMAll analyses, which we will discuss in greater detail in the Results and Discussion section. The first one is the correlation kinetic energy that arises from the fact that natural and HF orbitals are in general different. The second source of discrepancy, related to the classical electrostatic part, stems from the fact that MP2 and HF electron densities are not identical, while the third one is linked to the description of exchange-correlation effects.
         It should be mentioned that in seminal and inspiring work, Martín Pendás and coworkers48 assessed the performances of various RDMFAs (including the Müller approximation) to accurately reproduce intra-atomic and interatomic exchange-correlation energies (see also the recent work by Cukrowski and Poletschuk49). Other studies of great importance are also those by Matito and coworkers that comprehensively studied RDMAs and correlation effects on QTAIM properties derived from second-order reduced density matrices,50-52 extending previous work by Matta.53
We would like to stress that such a functional benchmark is not our main purpose here. Instead, we will compare two available practical implementations, scrutinizing the possible error cancellations between the three contributions identified in equation 7, and drawing some pragmatic conclusions.

3. Computational details

     All wavefunction calculations were performed with the GAUSSIAN09 package,54 using the 6-311++G(d,p) basis set with 6 Cartesian pure d-type primitives. In the MP2 calculations, all electrons were correlated (see discussion in the Supplementary Material of ref. 32 for a detailed account on the role of core electrons in correlation calculations). All geometries were fully optimized at the MP2 level with very tight threshold. The MORPHY energy decomposition30,42 was carried out from “wfn” files, while the Müller decomposition was obtained by the AIMAll program from “wfx” files that collect MP2 natural orbitals. These NOs are actually related to the so-called generalized electron density , based on the Z-vector approach.55,56 One should mention that computational problems may arise for few species. For instance, it was reported57,58 that the O2- molecule features symmetry-breaking behaviour, which could lead to unphysical orbital response contribution in the relaxed density.59 Such issues are however outside the scope of the present paper.

4. Results and discussion
      A collection of 55 representative molecules was designed from the well-known W4 and G2 datasets60 (that have been used extensively over the last decade to benchmark quantum chemical methods), which we enriched with additional molecules including a small number of charged species. We thus investigated AlH, AlF, AlH3, BH, BN, BF, BF3, BF2H, BeF2, CH2, CH2C, CH2O, CH4, C2H2, C2H4, C2H6, CH2NH, CH3NH2, CH3OH, CH3F, CH3Cl, CO, CS, CO2, CF2, H2, HF, HCl, HLi, HCN, HNC, H2O, H2O2, NH3, N2, NO, NF, NF3, N2O, N2H4, HNO2, HNO3, F2, FNO2, H2NCl, NaH, NaF, CH3, O2, O3, OH, OH-, O2-, NO3- and NH4+.
      This set encompasses the main bonding schemes, from highly ionic to highly covalent bonds, featuring various bond multiplicities and atomic hybridizations. Moreover the set includes some common radicals, standard ions, chemical reagents, and functional groups (alcohol, carbonyl, amine, carboxylic acid, amide, nitro, nitrile…). Thus the set spans the usual space of organic chemistry and some elementary inorganic chemistry, for which MP2 is known to be a reliable method. In total, the set comprises 38 H, 20 C, 19 N, 22 O, and 13 F different atoms (the other heteroatoms (Li, B, Be, Cl, Na and Al) occur too infrequently and are thus statistically not robust). The corresponding numerical values for all energy components are gathered in Table S1 in the Supplementary Material. 
      We now focus on the first of the three possible discrepancies discussed above, which is that associated with the atomic kinetic energy. Let us recall that by the virial theorem, if the exact wavefunction is used and at an equilibrium geometry, the molecular energy will be equal to minus the sum of all atomic kinetic energies, a property that Bader, his co-workers and others exploited to define their virial atomic energies in a molecule. In ref. 26, some of us numerically proved that such values are actually different from both IQA self-energies and IQA additive atomic energies (not discussed here), and this statement would still hold even if exact wavefunctions were used. 

        Table 1 shows a statistical summary of the discrepancies between the AIMAll and MORPHY approaches. A clear trend appears for C, N, O, and F: the  difference is significantly positive in all cases. Interestingly, the mean values do not follow any trend with respect to the atomic number since they are (in Hartree): 0.233 for C, 0.279 for N, 0.274 for O, and 0.242 for F. For hydrogen, the TA difference is positive in 66% of the cases, but can also be slightly negative (minimum value equal to -0.015 Eh). The values for hydrogen are nevertheless very small with respect to those of the other atoms, such that their contribution to the sign of the total kinetic energy differences, at the molecular level, is in general negligible.
      It is worth comparing these findings with previous ones published elsewhere. Indeed, in ref. 25, we extensively discussed correlation kinetic energy within the framework of Kohn-Sham (KS) DFT, defined as the difference between the exact kinetic energy and that obtained from the KS determinant. Because the latter is by definition built to minimize the expectation value of the kinetic energy operator, the molecular KS correlation kinetic energy is in principle always positive. However, there is no proof that it should be positive at the regional atomic level: sign compensations can occur between different atoms to ensure positivity at the molecular scale. 



       On one hand, we are dealing here with the HF determinant instead of the KS determinant, and on the other hand with a relaxed perturbational correlated wavefunction instead of the exact variational one. To the best of our knowledge, no formal result exists to rationalize the sign of , even if the analogy with KS DFT justifies its positive value. From a quantitative point of view, as evidenced by Figure 1,  and  are strongly correlated (coefficient of determination R2 higher than 0.98) for a given atom number. The following linear models (in atomic units) were obtained:

							(8)
      It immediately appears that the intercepts and slopes of these models strongly differ: this implies that the two decompositions should be compared at the level of each atom type. 


      We now turn our attention to the second energy contribution: the classical electrostatic component of the intra-atomic energies (that depends only on the electron density), and inspect the  difference. The conclusions are actually very similar to those found for the kinetic energy in the sense that for C, N, O and F, a definitive property emerges: for all of them, the  difference is negative. Figure 2 is the counterpart of Figure 1, and shows similar information but now for the electrostatic energy.
       Once again, hydrogen distinguished itself in Table 1 because it is the only element that shows a positive difference. Also, we found almost as many positive values as negative values, resulting in a nearly vanishing average value (-0.007 Eh). Interestingly, a robust linear model can be obtained for hydrogen, and also for carbon (with R2 > 0.99 in both cases). Unfortunately, such models are significantly less accurate for N and O (see Figure 2). They are given by (in atomic units):

	.						(9)
     The third and last discrepancy occurs in the exchange-correlation energy. For the kinetic and electrostatic parts, the MORPHY and AIMAll reconstructions share the same functionals (orbital functional for the kinetic component and density functional for the electrostatic one), but they apply them to different functions (different orbitals or different densities). However, for the exchange-correlation part, the two approaches use a different orbital functional (HF and Müller) computed for different orbitals (Hartree-Fock or natural orbitals). Unfortunately, with the currently available implementations, it is not feasible to disentangle orbital and functional effects. The above text can be verified by contrasting eq.(3) with eq.(4).

     Once more, Table 1 summarizes the main results, which are depicted in Figure 3. This time all atoms show the same behavior because the  is negative in all cases. This means that the Müller approximation always overestimates exchange-correlation with respect to MP2. The mean values are equal (in Hartree) to -0.019 (H), -0.181 (C), -0.188 (N), -0.185 (O) and -0.183 (F), which are thus almost constant for chemical elements belonging to the same row of the periodic table. 
It is also worth noticing that they are roughly of the same magnitude as those obtained for the electrostatic part. However, one should recall that the exchange-correlation contribution is considerably lower in absolute value. It is thus instructive to compare the relative deviations evaluated according to:

	.				(10)



The following values were obtained for the quantity : 0.9 (H), 0.3 (C), 0.2 (N), 0.1 (O) and 0.07 (F). For , one obtains 9.8 (H), 3.9 (C), 2.9 (N), 2.1 (O) and 1.8 (F), which are thus about one order of magnitude higher than , while the exchange-correlation energy is known to roughly represent 10% of total energy. Nevertheless, even if the deviations are not negligible, it appears that the two exchange-correlation models are actually highly correlated (all R2 values are higher than 0.97), which was not the case for the electrostatic component. These linear models are given by:

	.				(11)
        It is thus informative to compare the performances of all these linear models (equations 8, 9, and 11). To this aim, Table 2 collects the corresponding standard deviation (SD) values. All are lower than 0.1 Eh, and are in general of the order of 0.03 Eh for non-hydrogen atoms, indicating a moderate accuracy. As expected from our previous results, the SDs for Exc(C), Exc(N) and Exc(O) are lower than those for the electrostatic counterpart, even if, obviously, chemical accuracy (milli-Hartree) is not reached. 

       As a final step, we now look at the self-energies (see Figure 4), which are the sums of the kinetic, electrostatic and exchange-correlation energies within a given atom. In particular, we previously noticed that the differences between AIMAll and MORPHY are of opposite sign for the kinetic and electrostatic energies. It is thus legitimate to wonder whether error compensations occur. In all of the cases (except only one, occurring for N atom), the  difference was found negative for all atoms (see Table 1), suggesting that potential energy effects dominate kinetic ones, with a mean value of the order of 0.1 Eh order for non-hydrogen atoms. 
       Despite these non-negligible values, the two approaches revealed strong correlations, with R2 values higher than 0.98 for all H, C, O and F, and only 0.92 for N, according to the following equations:

	.							(12)
      The corresponding SD values (see Table 2) are between 0.01 and 0.06 Eh, or one order of magnitude lower than the average for the differences. This is an important improvement even if the discrepancies can still be reduced. Obviously, models should be built one atom at a time; in fact, it is illusory to find a universal model valid for any atom type. This finding is somewhat reminiscent of force fields in molecular mechanics for which different set of parameters should be designed for different atom types (the force field bonding terms being related to the interatomic terms, which have not been examined here).  

5. Conclusions  
      We compared two available schemes for performing Interacting Quantum Atoms energy decomposition within the framework of the Quantum Theory of Atoms-in-Molecules at the level of second-order Møller-Plesset perturbation theory. The differences between the exact MP2 implementation in MORPHY (based on Hartree-Fock orbitals) and the Müller approximation (based on natural orbitals) in AIMAll were divided into three physical components: kinetic, electrostatic, and exchange-correlation contributions. 
      Universal trends were found for C, N, O and F: the Müller approximation returned higher (more positive) values of atomic kinetic energies but lower (more negative) atomic electrostatic and exchange-correlation than the exact MP2 treatment. However, for hydrogen those trends are not so pronounced. Furthermore, although the numerical energy differences between the two approaches are far from being negligible, we showed that they correlate well, in general. 
      Even if improvement is still needed (and our results suggest that this is so for each atom type), this study constitutes, from our viewpoint, a step toward a better partition of molecular exchange-correlation energies at the atomic level.
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Table S1 (values for all energy components for the whole dataset).
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TABLE 1. Statistical analysis for the various atomic energy components calculated according to the MORPHY or AIMAll approaches. All values in atomic units.

	
	

	

	

	


	
	
	
	
	

	Mean(H)
	0.009
	-0.007
	-0.019
	-0.017

	Min(H)
	-0.015
	-0.047
	-0.041
	-0.037

	Max(H)
	0.039
	0.014
	-0.007
	-0.001

	Mean(C)
	0.233
	-0.206
	-0.181
	-0.154

	Min(C)
	0.067
	-0.804
	-0.237
	-0.588

	Max(C)
	0.443
	-0.032
	-0.107
	-0.154

	Mean(N)
	0.279
	-0.245
	-0.188
	-0.155

	Min(N)
	0.151
	-0.447
	-0.227
	-0.256

	Max(N)
	0.525
	-0.130
	-0.082
	0.003

	Mean(O)
	0.274
	-0.201
	-0.185
	-0.112

	Min(O)
	0.127
	-0.291
	-0.250
	-0.064

	Max(O)
	0.419
	-0.090
	-0.076
	-0.221

	Mean(F)
	0.242
	-0.131
	-0.183
	-0.071

	Min(F)
	0.188
	-0.166
	-0.254
	-0.113

	Max(F)
	0.315
	-0.115
	-0.127
	-0.042



TABLE 2. Standard deviation values for the linear models given by equations 8, 9, 11, and 12. All values in atomic units.

	Atom
	

	

	

	


	
	
	
	
	

	H
	0.006
	0.006
	0.006
	0.011

	C
	0.032
	0.056
	0.032
	0.054

	N
	0.037
	0.075
	0.037
	0.063

	O
	0.030
	0.041
	0.030
	0.044

	F
	0.026
	0.013
	0.026
	0.022




Figure captions

Figure 1. Atomic kinetic energies calculated according to the MORPHY or AIMAll approaches. All values in atomic units. Regression lines in red.

Figure 2. Atomic electrostatic energies calculated according to the MORPHY or AIMAll approaches. All values in atomic units. Regression lines in red.

Figure 3. Atomic exchange-correlation energies calculated according to the MORPHY or AIMAll approaches. All values in atomic units. Regression lines in red.

Figure 4. Atomic self energies calculated according to the MORPHY or AIMAll approaches. All values in atomic units. Regression lines in red.
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