Sml$_2$-catalyzed cyclization cascades by radical relay

DOI:
10.1038/s41929-018-0219-x

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Nature Catalysis

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6B0] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
SmI$_2$-catalyzed cyclization cascades by radical relay

Huan-Ming Huang, Joseph J. W. McDouall, David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

*Correspondence author. Email: david.j.procter@manchester.ac.uk

Abstract

Radical cyclization cascades are powerful tools used to construct the complex three-dimensional structures of some of society’s most prized molecules. Since its first use forty years ago, SmI$_2$ has been used extensively for reductive radical cyclizations. Unfortunately, SmI$_2$ must almost always be used in significant excess thus raising issues of cost and waste. Here we have developed radical cyclization cascades that are catalyzed by SmI$_2$ and that exploit a radical relay/electron-catalysis strategy. The approach negates the need for a super-stoichiometric co-reductant and requires no additives. Complex cyclic products, including products of dearomatization, containing up to four contiguous stereocenters are obtained in excellent yield. Mechanistic studies support a single-electron transfer radical mechanism. Our strategy provides a long-awaited solution to the problem of how to avoid the need for stoichiometric amounts of SmI$_2$ and establishes a conceptual platform upon which other catalytic radical processes using the ubiquitous reducing agent can be built.

Introduction
Biologically-active molecules often possess intricate three-dimensional, ring-containing structures. Classical approaches to these complex polycyclic targets, involving the use of many reagents and operations over many reaction steps, are being superseded by strategies employing one-pot sequences, or cascades, of ring-forming reactions that deliver the target in expedient fashion.1-4 The unique combination of high reactivity and high selectivity associated with open-shell intermediates makes radical processes5,6 ideal for cascade reactions in which simple substrates undergo a series of changes involving bond formation (and bond cleavage) to give complex, high value products and single electron transfer (SET) is commonly used to generate the radical character that drives such processes.7-9 The well-known reductant samarium(II) diiodide (SmI\textsubscript{2}, Kagan’s reagent)10 is arguably one the most important and widely used SET reagents11,12 and it has proved adept at unlocking the total synthesis of numerous high profile and complex natural products (Fig. 1A).13-18 Many of the most important radical reactions of SmI\textsubscript{2} involve SET to ketones and aldehydes and the generation of ketyl radicals.11 Despite almost 40 years of widespread use, the reductant is almost invariably used in super-stoichiometric amounts, thus raising issues of cost and waste. The development of new and sustainable processes catalytic in SmI\textsubscript{2} would be a major advance. Of the few reports of the use of catalytic SmI\textsubscript{2}, all require the use of super-stoichiometric amounts of a metal co-reductant to regenerate Sm(II).19-22 For example, Corey described one of the very few SmI\textsubscript{2}-catalyzed radical cyclizations.19 Unfortunately, the catalytic system requires 15 equivalents of Zn/Hg amalgam (Fig. 1B). Over twenty years later, this system remains the state-of-the-art in the field.

The development of efficient catalytic variants of important reactions requiring stoichiometric reagents is key to the future of synthesis.23 In the field of radical
chemistry involving SET, radical relay/electron-catalysis strategies are highly attractive and atom economical as radical character is recycled and stoichiometric oxidants and reductants are not required. For example, Yoon, Song, and Meggers have described elegant examples of this approach in cyclizations and cyclization cascades involving ketyl radicals. However, even in these systems, co-reductants and additives are required. For example, in the only reported radical relay cyclization cascade, stoichiometric La(OTf)$_3$, TMEDA, and MgSO$_4$ are employed. The work we report here was prompted by the desire to address the longstanding inability to use catalytic amounts of SmI$_2$ and to advance the application of radical relays in synthesis.

Here we describe radical cyclization cascades mediated solely by a SmI$_2$ catalyst. Our approach represents the use of the classical SET reagent in a radical relay, converts simple cyclopropyl ketones 1 to complex cyclic ketones 2 (Fig. 1C), avoids the use of co-reductants and additives, involves short reaction times (< 20 min), is operationally straightforward, and exhibits broad scope. Key to the catalytic radical process is the spring-loaded nature of ketyl radical I which is formed by reversible SET from SmI$_2$ to substrate 1a. Ketyl radical I fragments to give distal radical II. Cyclization then generates radical III which rebounds by addition to the Sm(III)-enolate moiety, regenerating new ketyl radical IV. Back electron transfer to Sm(III) regenerates the SmI$_2$ catalyst and liberates product 2a (Fig. 1D). The use of substrates bearing alkenes and alkynes as radical acceptors delivers complex products containing two new rings and up to four new stereocenters. Furthermore, dearomatizing radical cyclizations using catalytic SmI$_2$ are also possible using heteroarene substrates (Fig. 1C).
Fig. 1 | Importance of stoichiometric SmI₂-mediated cyclizations and the challenge of catalysis using SmI₂. (A) Selected complex bioactive natural products synthesized using stoichiometric amounts of SmI₂. (B) A rare example of a SmI₂-catalyzed radical cyclization requires a large excess of stoichiometric co-reductant and additives. (C) SmI₂-catalyzed cyclization cascades. (D) Proposed catalytic cycle.

Results
Optimization studies. To assess the feasibility of the proposed catalytic radical process, 1a (Ar = Ph, R\(^1\) = Me, X = C(CO\(_2\)Et)\(_2\)) was treated with 30 mol% SmI\(_2\) (Fig. 2). The corresponding bicyclic product 2a was obtained in 68% isolated yield (see Supplementary Table 1). When the catalyst loading of SmI\(_2\) was decreased to 10 mol\%, the yield of 2a dropped to 56% with 1a recovered in 31% yield. Pleasingly, the efficiency of the cyclization cascades increased upon heating; using 5 mol\% SmI\(_2\) at 65 °C, 2a was obtained in 87% isolated yield and 71:29 dr, with the reaction complete in <20 min. Formation of 2a was not observed in the absence of the SmI\(_2\) catalyst and only starting material 1a was recovered.

Catalytic radical cyclizations of alkynes. The scope of the SmI\(_2\)-catalyzed cyclization cascade was initially assessed using a range of alkyne substrates 1a-1v (Fig. 2). In almost all cases, products were obtained in good yield and with moderate diastereocontrol after short reaction times. Furthermore, gram-scale reaction of 1a gave cascade product 2a in an improved 99% yield (1.10 g) in less than 20 minutes. The process tolerated various groups on the alkyne unit including alkyl (2a, 2d), hydrogen (2b), silyl (2c) and aryl (2e-h, 2m, 2n). Furthermore, important functional groups including various ester (e.g. 2a, 2i, 2j), bromo (2f, 2q), fluoro (2s), protected amino (2k), methoxy (2h, 2r), naphthyl (2t), cyclopropyl (2v), and 2-thienyl (2u) were compatible with the catalytic radical process. In addition to a wide range of carbocyclic products, including less-substituted carbocycle 2n, variation of the tether allowed valuable heterocyclic products to be obtained (2k-m). SmI\(_2\)-catalyzed cyclization of 1v bearing a medicinally-relevant cyclopropyl substituent gave cascade product 2v in excellent yield and with the strained ring intact. This result suggests that 5-exo-trig cyclization of the alkenyl radical intermediate (cf. III in Fig. 1D) is faster than radical fragmentation.\(^{34}\) X-ray crystallographic analysis of 2k, 2m and 2o
confirmed the relative stereochemistry of the major diastereoisomeric cascade products.
Fig. 2 | Substrate scope for alkynes. Reaction conditions: To a solution of 1 (0.1 mmol) in THF (4 mL, 0.025 M) at 65 °C under N₂ was added SmI₂ (5 mol%). The reaction was quenched after 20 minutes by opening to the air. Isolated yields are given. Dr determined by ¹H NMR spectroscopy of crude product mixtures.

- 10 mol% SmI₂ required.
- 20 mol% SmI₂ required.
- 40 mol% SmI₂ required.
Catalytic radical cyclizations of alkenes. We next investigated the capacity of alkenes to participate in the SmI$_2$-catalyzed cyclization cascade (Fig. 3). In almost all cases, products were obtained in good yield and with good diastereocontrol during the formation of four stereocenters. Alkene 3a (R1 = Ph, X = C(CO$_2$Et)$_2$) underwent radical cascade cyclization on gram scale upon treatment with only 5 mol% SmI$_2$ to give product 4a (0.91g, 83%). The presence of a variety of functional groups was tolerated, including chloro (4b), fluoro (4c), bromo (4d-e), trifluoromethyl (4f), methoxy (4g), acetoxy (4h), chloromethyl (4i), naphthyl (4j), benzothienyl (4k and 4m) and benzofuranyl (4l). Again, variation of the tether allowed access to less-substituted carbocyclic (4n) and heterocyclic products (4o and 4p). The relative stereochemistry of the cascade products 4n and 4o was confirmed by X-ray crystallography.
Fig. 3 | Substrate scope for alkenes. Reaction conditions: To a solution of 3 (0.1 mmol) in THF (4 mL, 0.025 M) at 65 °C under N₂ was added SmI₂ (5 mol\%). The reaction was quenched after 20 minutes by opening to the air. Isolated yields are given. Dr determined by ¹H NMR spectroscopy of crude product mixtures. "10 mol% SmI₂ required. "15 mol% SmI₂ required.
Catalytic dearomatizing radical cyclizations of heteroarenes. Catalytic
dearomatization is a particularly powerful strategy for the construction of complex
three-dimensional architectures from simple, two-dimensional starting materials.35–37
However, dearomatizing cascades involving radical intermediates are rare and no
SmI$_2$-catalyzed dearomatizing reactions have been reported.38 We have found that
heteroaromatic radical acceptors can also be employed and the SmI$_2$-catalyzed
cyclization cascades generate complex products of dearomatization (Fig. 4). Upon
treatment with 5 mol% SmI$_2$, benzofuran-containing substrate 5a (R1 = H, R2 = H, X
= C(CO$_2$Et)$_2$) gave complex, tetracyclic product 6a in 99% yield with 93:7 dr. A
gram-scale reaction gave 1.31 g of 6a in 97% yield. SmI$_2$-catalyzed dearomatizing
radical cyclization cascades typically proceeded in excellent yield and with high
dia stere ocontrol (Fig. 4). The presence of a variety of functional groups was tolerated,
including methoxy (6c, 6i, 6o, 6q), bromo (6d, 6j), fluoro (6e, 6m, 6p),
trifluoromethyl (6n) and naphthyl (6h, 6r). Again, variation of the tether allowed
access to less-substituted carbocyclic (6l) and heterocyclic products (6k). The relative
stereochemistry of 6k and 6l was confirmed by X-ray crystallographic analysis.
Notably, the cyclization cascade of 5s, bearing a 3-methylbenzofuran-2-yl moiety,
delivered 6s bearing two adjacent quaternary stereocenters in 70% isolated yield and
with virtually complete diastereocontrol. Finally, benzothiophene-derivative 5t gave
6t in 90% isolated yield and 81:19 dr.
Fig. 4 | SmI₂-catalyzed dearomatizing cyclization cascades. Reaction conditions:

To a solution of 5 (0.1 mmol), in THF (4 mL, 0.025 M) at 0 °C under N₂, was added SmI₂ (5 mol%). The reaction was quenched after 20 minutes by opening to the air. All yields are isolated yields, dr determined from ¹H NMR spectroscopy of crude product mixtures. a 10 mol% SmI₂. b Room temperature. c 20 mol% SmI₂. d 15 mol% SmI₂. e 65 °C.

Discussion

Mechanistic studies. Preliminary studies on the mechanism of the SmI₂-catalyzed cyclization cascade support a radical relay/electron catalysis process (Fig. 5). First, an
alternative mechanism involving Lewis acid-activation of the substrates was investigated; only starting material was recovered when 1a was exposed to a variety of Lewis acids, including Sm(III)I3 (Fig. 5A).

Furthermore, when radical inhibitor TEMPO was present <10% yield of 2a was obtained. Radical clock experiments were also performed using a cyclopropane-containing substrate and the corresponding ring opening product was detected and confirmed by high resolution accurate mass spectrometry (see Supplementary Figures 1 and 2). To probe the importance of radical addition to the Sm(III)-enolate moiety in III, we treated 1a with 10 mol% SmI2 in the presence of 200% TMSCl under our otherwise optimized conditions. It is known that TMSCl promotes cleavage of the SmIII-O bond to give silyl ethers. In the presence of TMSCl, only 10% yield of 2a was formed suggesting that the Sm(III)-enolate is trapped by TMSCl thus preventing closure of the catalytic cycle (Fig. 5A). We next sought to rule out a chain-type process initiated by reductive SET in which the ketyl radical intermediate IV reduces starting material 1a by an outer sphere process, to form product 2a and radical intermediate I, rather than regeneration of Sm(II) by back electron transfer to the metal. Chain-type processes involving SET are often characterized by promiscuity with regard to the electron-transfer reagents able to initiate the chain process. The attempted use of the SET reductant Cp*TiCl3, in place of SmI2, consistently gave only a low yield of 2a thus suggesting that Sm(II) and its regeneration plays a key role in the radical cyclization cascade and suggests that a chain-type process is not in operation (Fig. 5A). It is important to note that the reaction mixture typically retains the characteristic blue colour of SmI2 long after the starting material has been converted to product thus clearly indicating that Sm(II) is regenerated (see Supplementary Figure 3). Finally, an EPR study was performed using 1a and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Pleasingly,
trapped species 7 was observed by EPR and also by high resolution mass spectrometry (Fig. 5B). Similar trapped species were also observed using substrates 3a and 5a (see Supplementary Figures 9-18). Thus, our preliminary mechanistic studies on the cyclization cascades support a radical relay/electron catalysis process involving the regeneration of Sm(II).
Fig. 5 | Preliminary mechanistic studies. (A) Probing the importance of Sm(II) and its regeneration. (B) An EPR study using the spin trap DMPO.
Fig. 6 | Computational studies. Computed DFT free energy profile for the SmI$_2$-catalyzed cyclization cascades (PBE/Def2-SVP level).

To further support the proposed catalytic radical relay/electron-catalysis mechanism, detailed DFT calculations were performed. Structures corresponding to the key intermediates in the catalytic cyclic and the barriers for their formation are shown in the free energy profile in Figure 6. Coordination of the samarium catalyst to the carbonyl group of 1a provides complex 1a•SmI$_2$(THF)$_4$. SET from Sm(II) then gives ketyl radical intermediate I ($\Delta G = +107.7$ kJ mol$^{-1}$). After ring opening ($\Delta G = +60.2$ kJ mol$^{-1}$), radical II is formed and undergoes 5-exo-dig cyclization ($\Delta G = +28.2$ kJ mol$^{-1}$). Vinyl radical III then undergoes a highly-favourable intramolecular addition.
to the Sm(III)-enolate moiety ($\Delta G = +6.9$ kJ mol$^{-1}$) to give new Sm(III)-ketyl radical IV. Finally, product complex 2a•SmI$_2$(THF)$_4$ is generated after back electron-transfer to Sm(III) to regenerate the Sm(II) catalyst. Calculated transition structures for the key events in the catalytic cycle – cyclopropane fragmentation ([I to II]†), 5-exo-dig cyclization ([II to III]†), and 5-exo-trig cyclization ([III to IV]†) – are also shown (Fig. 6, inset). Alternative Z-enolate intermediates were found to give rise to higher energy intermediates and transition states than those of the corresponding E-enolates.

Cyclization of III and formation of the major diastereoisomer observed in the cyclization cascade was calculated to proceed through a significantly lower energy transition state than that for the formation of the minor diastereoisomer (see Supplementary Figure 23).

Conclusion

Using a radical relay/electron-catalysis approach we have developed SmI$_2$-catalyzed radical cyclization cascades that operate without a stoichiometric co-reductant or additives. SmI$_2$ loadings as low as 5 mol% deliver complex three-dimensional polycyclic products containing up to four stereocenters, typically in high yields and with good diastereocontrol. Furthermore, dearomatizing radical cyclizations using catalytic SmI$_2$ were also successful using the approach. Our strategy provides a long-awaited solution to the problem of how to avoid the use of SmI$_2$ in stoichiometric amounts and establishes a conceptual platform upon which other catalytic radical processes using the ubiquitous reducing agent can be built.
References

18. Fazakerley, N. J., Helm, M. D. & Procter, D. J. Total Synthesis of

Methods

General procedure for the SmI₂-catalyzed cyclization cascades of alkynes and alkenes. An oven-dried vial containing a stirrer bar was charged with the substrate 1 or 3 (0.1 mmol, 1 equiv.) and placed under a positive pressure of nitrogen. THF (0.025 M, 4.0 mL) was added and the reaction heated to 65 °C. SmI₂ (typically 5 mol%, 0.1 M solution in THF, 0.05 mL) was then added. After the specified time (typically 20 min), the reaction was filtered through a pad of silica gel and washed with CH₂Cl₂ (3 × 5 mL). The organic layers were combined and concentrated *in vacuo* to give product (4 or 6) typically without the need for further purification. In some case, the product required purification by column chromatography on silica gel.

General procedure for the SmI₂-catalyzed dearomative cascades. An oven-dried vial containing a stirrer bar was charged with substrate 5 (0.1 mmol, 1 equiv.) and placed under a positive pressure of nitrogen. THF (0.025 M, 4.0 mL) was added and,
at the correct temperature (typically, 0 °C), SmI₂ (typically 5 mol%, 0.1 M solution in THF, 0.05 mL) was added. After the specified time (typically 20 min), the reaction was filtered through a pad of silica gel and washed with CH₂Cl₂ (3 × 5 mL). The organic layers were then combined and concentrated in vacuo to give the product 6. In some cases, the product was purified by column chromatography on silica gel.

Data availability

Materials and methods, optimization studies, experimental procedures, mechanistic studies, EPR spectra, NMR spectra and mass spectrometry data are available in the Supplementary Information. Crystallographic data for compounds 2k, 2m, 2o, 4n, 4o, 6k and 6l are available free of charge from the Cambridge Crystallographic Data Centre under references numbers CCDC 1866917-1866923. All other data is available from the authors upon reasonable request.

Acknowledgments

We thank Mr. Bin Wang, Dr. Amgalanbaatar Baldansuren and Prof. David Collison for assistance with EPR studies. We gratefully acknowledge funding from the UK Engineering and Physical Sciences Research Council (EPSRC; EP/M005062/01 – Postdoctoral Fellowships to H.-M. Huang and EPSRC Established Career Fellowship to D.J.P.). We also acknowledge the EPSRC UK National EPR Facility and Service at the University of Manchester (NS/A000055/1)
Author contributions

H.-M.H. and D.J.P. conceived and directed the project; H.-M.H. and D.J.P. designed the experiments; H.-M.H. performed and analyzed all the reactions; J.J.W.M. performed all computational studies; H.-M.H. and D.J.P and wrote the manuscript.

Competing interests The authors declare no conflicts of interest.

Additional information

Correspondence and requests for materials should be addressed to D.J.P (david.j.procter@manchester.ac.uk).