A phase I pilot study of pre-operative radiotherapy for prostate cancer

DOI:
10.1016/j.ijrobp.2018.12.054

Document Version
Accepted author manuscript

Citation for published version (APA):

Published in:
International journal of radiation oncology, biology, physics

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
A phase I pilot study of pre-operative radiotherapy for prostate cancer: Long-term toxicity and oncologic outcomes

Rachel Glicksman, MD, Noelia Sanmamed, MD, John Thoms, MD, Alexandre R. Zlotta, MD, Antonio Finelli, MD, Theodorus van der Kwast, MD, Joan Sweet, MD, Michael Jewett, MD, Laurence H. Klotz, MD, Tara Rosewall, PhD, Neil E. Fleshner, MD, Robert G. Bristow, MD, Padraig Warde, MB, Alejandro Berlin, MD

PII: S0360-3016(19)30001-X
DOI: https://doi.org/10.1016/j.ijrobp.2018.12.054
Reference: ROB 25486

To appear in: International Journal of Radiation Oncology • Biology • Physics

Received Date: 6 November 2018
Revised Date: 22 December 2018
Accepted Date: 30 December 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A phase I pilot study of pre-operative radiotherapy for prostate cancer: Long-term toxicity and oncologic outcomes

Rachel Glicksman MD1, Noelia Sanmamed MD1,2, John Thoms MD3, Alexandre R Zlotta MD4, Antonio Finelli MD4, Theodorus van der Kwast MD5, Joan Sweet MD5, Michael Jewett MD4, Laurence H Klotz MD6, Tara Rosewall PhD1,2, Neil E Fleschner MD4, Robert G Bristow MD7, Padraig Warde MB1,2, Alejandro Berlin MD1,2,8

1 Department of Radiation Oncology, University of Toronto, Toronto, Canada.
2 Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
3 Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
4 Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
5 Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada.
6 Department of Surgery (Urology), Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
7 Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom.
8 Techna Institute, University Health Network, Toronto, Canada.

Corresponding author:
Alejandro Berlin
Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada, alejandro.berlin@rmp.uhn.ca (416) 946-4501 ext 2126

Rachel Glicksman
Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada, rachelmglicksman@gmail.com (416) 464-3372

Statistical analysis authors:
Alejandro Berlin
Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada, alejandro.berlin@rmp.uhn.ca (416) 946-4501 ext 2126
Rachel Glicksman
Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada,
rachelmglicksman@gmail.com (416) 464-3372

Conflicts of interest:
All authors report no conflicts of interest.

Financial support/funding statement:
None.

Short running title: Pre-operative radiotherapy in prostate cancer

Clinical trials information: clinicaltrials.gov identification number NCT00252447.
Abstract:

Background:

Neoadjuvant radiotherapy (RT) improves disease control in various cancers, and has become an established oncologic treatment strategy. During 2001-2004, we conducted a phase I pilot study assessing the role of short-course pre-operative RT (PreORT) for men with unfavourable intermediate- and high-risk localized prostate cancer. Herein, we present long-term follow-up toxicity and oncologic outcomes.

Materials and Methods:

Eligible patients had histologically proven prostate cancer, cT1-T2N0M0 disease, PSA >15-35 ng/ml regardless of Gleason score, or PSA 10-15 ng/ml with Gleason score ≥7. Patients received 25 Gy in five consecutive daily fractions (5 Gy per fraction) to the prostate-only, followed by radical prostatectomy within 14 days after RT completion. Primary outcomes were intra-operative morbidity, and late genitourinary (GU) and gastrointestinal (GI) toxicities.

Results:

In total, 15 patients were enrolled; 14 patients completed PreORT followed by radical prostatectomy, which also included bilateral lymph node dissections in 13 cases. Median follow-up was 12.2 years (range 6.7-16.3 years). Late GU toxicity was common, with 2 patients (13.3%) experiencing G2 toxicity, and 6 patients (40%) G3 toxicity. There were no patients with G4-5 late GU toxicity. Late GI toxicity was infrequent, with only 1 patient (6.7%) experiencing transient G2 proctitis. At last follow-up, 8 (53.3%) and 6 (40%) patients experienced biochemical and metastatic disease recurrence, respectively.

Conclusion:
The use of PreORT in men with high-risk prostate cancer is associated with unexpected high-rates of late GU toxicity. Future studies examining the role of RT pre-radical prostatectomy must cautiously select RT technique and dose schedule. Importantly, long-term follow-up data is essential to fully determine the therapeutic index of PreORT in the management of localized disease.
Background:

Approximately one third of men who undergo radical prostatectomy (RadP) for localized prostate cancer (PCa) will experience biochemical relapse and require post-operative radiotherapy (PORT)\(^1\). Nonetheless, despite high-level evidence showing improved disease-free\(^2-4\) and overall survival\(^5\) with adjuvant PORT, it remains underutilized\(^6\). Therefore, novel radiotherapy (RT) approaches seem warranted to maximize PCa cure rates.

The conventional model of improving local control with PORT has been challenged in other malignancies such as locally advanced rectal cancer\(^7\) and sarcoma\(^8\), migrating the use of RT to the pre-operative setting. In PCa specifically, there are a number of theoretical advantages to pre-operative RT (PreORT). Firstly, the potential to down-stage and/or sterilize extra-prostatic clonogenic cells, decreasing the likelihood of residual viable cancer cells after surgery\(^9,10\). Secondly, in the pre-operative setting, there is a decreased proportion of radioresistant hypoxic cells, as the prostatic blood supply has not undergone surgical perturbation\(^10\). Lastly, PreORT may be delivered to a significantly smaller volume compared to PORT leading to potential decrease in RT-related toxicity\(^9,10\).

Given these theoretical advantages and favourable experiences in other malignancies, a phase I study to assess feasibility, safety and efficacy of PreORT followed by RadP was conducted in men with localized PCa harbouring high risk of extra prostatic extension. Initial results after a median follow up 45 months were previously reported\(^9\). Herein, we report long-term toxicity and oncologic outcomes.

Materials and Methods:

Patient eligibility:
This prospective study was approved (XXX REB) and registered (clinicaltrials.gov XXX). Eligibility criteria included patients with cT1-T2N0M0 PCa (UICC TNM classification system, 7th edition), with PSA >15-35 ng/ml regardless of Gleason score, or PSA 10-15 ng/ml with Gleason score ≥7. All patients underwent staging investigations including pelvic computed tomography (CT) and bone scan, within 4 months of enrollment.

Radiation therapy:

Patients received a course of hypo-fractionated PreORT consisting of 25 Gy in 5 consecutive daily fractions to the prostate only11-14. Planning parameters were previously described9. Daily image-guidance was employed based on orthogonal imaging registration to 3 intraprostatic fiducials.

Surgery:

All patients were planned to undergo non-nerve sparing retropubic RadP and bilateral pelvic lymphadenectomy by experienced urologic oncologists within 14 days of PreORT completion.

Follow-up:

Assessment and grading method for acute, intra- and post-operative toxicity have been previously described9. Patients were followed after surgery with PSA and clinical assessment at 1 and 6 months post-RadP, and every 6 months thereafter or sooner if clinically warranted.

Long-term toxicity was assessed and documented at each visit, and subsequently scored as per Common Terminology Criteria for Adverse Events (CTCAE) v4.0. Biochemical failure was determined based on two consecutive post-operative PSA values greater than 0.2 ng/ml.

Results:
Patient characteristics:

The pre- and post-operative patient characteristics are summarized in Table 1. Of the 15 patients enrolled in the study, all underwent planned PreORT [14 with 6-field conformal RT and 1 with intensity modulated RT (IMRT)] and were taken to the operating room at a median of 6 days (range 3-12 days) following PreORT. In total, 14 patients completed the RadP procedure, while 13 had bilateral lymphadenectomies.

Baseline clinicopathologic indices are included in Table 1. In brief, post-operatively, 5 patients had detectable PSA values (range 0.08-0.28 ng/mL), all had Gleason score 7 disease, 9 had pT3 disease, 7 had positive surgical margins, and 3 had pN1 disease. Acute RT, intra- and post-operative toxicities have been previously reported. In summary, no G3+ acute toxicities were observed during PreORT; a total of 4 patients required transfusion of 1-2 units of packed red blood cells during the intra- or post-operative periods.

Long-term outcomes:

Median follow-up was 12.2 years (range 2.0-16.3 years).

Late genitourinary (GU) toxicity occurred in 12 patients (Table 2 and Figure 1A-B): 3 patients had G0, 4 had G1, 2 had G2, and 6 had G3 toxicity. Eleven of the 12 patients with late GU toxicity developed their toxicity within 2 years of starting PreORT; with one patient developing G1 toxicity 3.6 years after treatment. Nevertheless, a significant proportion of G2-3 toxicity events (5 out of 8) resolved during the first 10 years following treatment (Figure 1A-B).

A single patient had late G2 gastrointestinal (GI) toxicity (proctitis) three months following completion of RT, which resolved completely within 1 week of a single dose of intra-rectal corticosteroids. No patients experienced G3+ late GI toxicity (Figure 1C-D).
In total, 8 patients developed biochemical relapse (BCR) (Table 3 and Figure 2A). Of these, 7 received salvage ADT at a median of 57.5 months (range 0-130 months) following treatment, and 2 received second-generation hormonal agents. Six patients developed metastatic disease (Figure 2B), which was nodal, bony or mixed in 2, 1 and 3 cases respectively. All these 6 patients developed castrate-resistant disease. Four death events were recorded, 2 attributable to PCa.

Discussion:

Although PreORT is increasingly used in oncology, our long-term results demonstrate that short-course PreORT for localized PCa should be considered cautiously. The observed crude rate of G3 GU late toxicities is unexpectedly high (6 out of 14 [42.8%] patients), particularly when contrasted to those observed in the PORT setting. For example, the SWOG-8794/PR-2 trial reported rates of urethral stricture and total urinary incontinence of 17.8% and 6.5%, respectively15. Similarly, the EORTC-22911 trial reported 10-year cumulative incidence of G2+ GU toxicity of 21.3%2. Therefore, the use of PreORT for PCa should remain investigational, and future studies must aim to determine the optimal dose schedule and delivery techniques.

Rapidly evolving technologies, such as stereotactic body RT (SBRT), are enabling increasingly precise planning and delivery of RT, and may boost the interest for PreORT in PCa. Presently, there is an ongoing single-arm single-institution prospective trial (NCT02946008), aiming to determine the safety and maximum tolerated dose of pre-operative SBRT for high-risk PCa. In addition, advances in diagnostic imaging such as multiparametric MRI and prostate specific membrane antigen (PSMA) positron emission tomography (PET) may allow better
identification of patients at high-risk of harbouring adverse pathological features16,17, enhance tumor delineation17, and improve regional and distant staging18-20. In turn, these advances could enable tailored PreORT approaches based on overall and anatomically-mapped risk quantifications.

To our knowledge, only one additional modern-era study has explored PreORT in PCa. Koontz et al. evaluated long-course PreORT (with doses between 39.6-54 Gy in 1.8 Gy per fraction) followed by RadP within 4-8 weeks in a phase I trial of 13 men with high-risk disease21. At median follow-up of 46 months, 42\% of patients developed chronic grade 2+ GU toxicity and 17\% developed a symptomatic urethral stricture requiring dilatation21. We observed similarly high crude rates of G2+ GU toxicity (53.3\%; 8 out of 15 patients). Nonetheless, all of our G2+ events presented in the first 2 years after treatment, with continuously decreasing prevalence to 38\% and 33\% at 5- and 10-years of follow-up, respectively.

There are a number of limitations of this study. First, the small cohort size, reflecting the pilot nature of the study, limits the generalizability of the findings. Second, the study was conducted when modern RT techniques (i.e. IMRT) were not established as standard-of-care. Therefore, 93\% of patients received conformal RT, now known to be associated with higher toxicity rates22. Third, the study included unfavourable intermediate- and high-risk patients, selected based on poorer prognostic indices and high likelihood of requiring PORT, likely accounting for the oncologic results observed. Last, combinatorial hormonal therapy has shown to improve oncologic outcomes in patients with similar features treated with radical RT23 or PORT24, however was not included in this protocol as per status quo in patients managed with RadP.
In summary, we report the long-term toxicity and oncologic outcomes of a PreORT phase I study for unfavourable localized PCa. We observed considerable rates of G2-3 late GU toxicity. Future studies are needed to judiciously determine the optimal RT technique, dose and schedule, in order to define the potential role of pre-operative approaches in patients with locally aggressive PCa.
References:

9. XXX

Figures:

Figure 1. Cumulative incidence of G2+ genitourinary toxicity (1A) and prevalence of genitourinary toxicity within 2 years to 14 years following radiotherapy (1B); cumulative incidence of G2+ gastrointestinal toxicity (1C) and prevalence of gastrointestinal toxicity within 2 years to 14 years following radiotherapy (1D).

Figure 2. Oncologic outcomes. Kaplan-Meier curves of biochemical relapse-free survival (2A) and metastasis-free survival (2B).
Table 1. Baseline patient characteristics.

<table>
<thead>
<tr>
<th>Case ID number</th>
<th>Age</th>
<th>Surgery</th>
<th>ISUP grade group</th>
<th>PSA (ng/mL)</th>
<th>Stage Pre-op</th>
<th>Stage Post-op</th>
<th>Pre-op NCCN risk category</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>Yes</td>
<td>Yes</td>
<td>13.67</td>
<td><0.05</td>
<td>cT2b</td>
<td>pT3aN0</td>
<td>UI+</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>Yes</td>
<td>No</td>
<td>7.51</td>
<td>0.08</td>
<td>cT2b</td>
<td>pT2bNx</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>69</td>
<td>Yes</td>
<td>Yes</td>
<td>47.5</td>
<td>0.28</td>
<td>cT2b</td>
<td>pT3bN0</td>
<td>H+</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>Yes</td>
<td>Yes</td>
<td>26.02</td>
<td><0.05</td>
<td>cT1c</td>
<td>pT3bN0</td>
<td>H+</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>Yes</td>
<td>Yes</td>
<td>24.09</td>
<td><0.05</td>
<td>cT2b</td>
<td>pT3bN0</td>
<td>H+</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>Yes</td>
<td>31.4</td>
<td><0.05</td>
<td>cT2a</td>
<td>pT3bN0</td>
<td>H-</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>Yes</td>
<td>Yes</td>
<td>8.41</td>
<td><0.05</td>
<td>cT2a</td>
<td>pT2aN0</td>
<td>UI-</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>Yes</td>
<td>Yes</td>
<td>38.93</td>
<td><0.05</td>
<td>cT2a</td>
<td>pT3bN0</td>
<td>H+</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>Yes</td>
<td>Yes</td>
<td>26.91</td>
<td><0.05</td>
<td>cT1c</td>
<td>pT2cN0</td>
<td>H-</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
<td>Yes</td>
<td>Yes</td>
<td>28.9</td>
<td>0.93</td>
<td>cT2a</td>
<td>pT3aN0</td>
<td>H-</td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>No</td>
<td>No</td>
<td>18.1</td>
<td>0.7</td>
<td>cT2b</td>
<td>pTxN1</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>Yes</td>
<td>Yes</td>
<td>22.23</td>
<td>0.02</td>
<td>cT2b</td>
<td>pT3bN1</td>
<td>H+</td>
</tr>
<tr>
<td>13</td>
<td>58</td>
<td>Yes</td>
<td>Yes</td>
<td>11.25</td>
<td><0.05</td>
<td>cT2a</td>
<td>pT2cN0</td>
<td>UI-</td>
</tr>
<tr>
<td>14</td>
<td>63</td>
<td>Yes</td>
<td>Yes</td>
<td>15.78</td>
<td>0.14</td>
<td>cT2a</td>
<td>pT3aN1</td>
<td>UI+</td>
</tr>
<tr>
<td>15</td>
<td>62</td>
<td>Yes</td>
<td>Yes</td>
<td>17.8</td>
<td><0.05</td>
<td>cT1c</td>
<td>pT2cN0</td>
<td>UI-</td>
</tr>
</tbody>
</table>

RP, radical prostatectomy; PLA, pelvic lymphadenectomy; SM, surgical margins; NA, not assessed; NCCN, national comprehensive cancer network; UI, unfavorable intermediate risk; H, high risk; # all cases staged as N0M0 based on bone scan and CT abdomen-pelvis. * ≥ 50% of cores involved with adenocarcinoma.
Table 2. Late genitourinary toxicities and interventions details.

<table>
<thead>
<tr>
<th>Case ID number</th>
<th>Late GU toxicity grade</th>
<th>Late GU toxicity</th>
<th>Intervention for late GU toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G2</td>
<td>Urinary urgency; urge incontinence</td>
<td>Cystoscopy; metal surgical clip found in bladder neck (removed); urge incontinence managed with solifenacin, oxybutynin</td>
</tr>
<tr>
<td>2</td>
<td>G3</td>
<td>VUA stricture</td>
<td>Three VIUs</td>
</tr>
<tr>
<td>3</td>
<td>G0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4</td>
<td>G1</td>
<td>Mild incontinence</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>G0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>G1</td>
<td>Mild incontinence</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>G1</td>
<td>Mild incontinence</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>G3</td>
<td>Incontinence</td>
<td>Sling procedure</td>
</tr>
<tr>
<td>9</td>
<td>G3</td>
<td>VUA stricture, incontinence</td>
<td>Two VIUs, three cystoscopies with bladder neck dilatation</td>
</tr>
<tr>
<td>10</td>
<td>G2</td>
<td>Bladder neck contracture, urge incontinence</td>
<td>Cystoscopy; no dilatation</td>
</tr>
<tr>
<td>11</td>
<td>G0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>12</td>
<td>G1</td>
<td>Mild incontinence</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>G3</td>
<td>Incontinence</td>
<td>Sling procedure, insertion of artificial urinary sphincter</td>
</tr>
<tr>
<td>14</td>
<td>G3</td>
<td>Incontinence</td>
<td>Dorsal slit procedure, one VIU, urethral dilatation</td>
</tr>
<tr>
<td>15</td>
<td>G3</td>
<td>VUA stricture, urinary retention</td>
<td>Two VIUs, one TURBT</td>
</tr>
</tbody>
</table>

VUA, vesicourethral anastamotic; VIU, visual internal urethrotomy; TURBT, transurethral resection of a portion of the bladder.
Table 3. Oncologic outcomes.

<table>
<thead>
<tr>
<th>Case ID number</th>
<th>BCR</th>
<th>Time to BCR (months)</th>
<th>ADT</th>
<th>Second generation hormonal therapies</th>
<th>Metastases</th>
<th>Time to metastases (years)</th>
<th>CRPC</th>
<th>Vital status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Alive</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>14</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>7.9</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>31</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>9.0</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>62</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>11.4</td>
<td>Yes</td>
<td>Dead*</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Alive</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Alive</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Dead</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Dead</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>72</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>10.9</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>10</td>
<td>Yes</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>--</td>
<td>No</td>
<td>Alive</td>
</tr>
<tr>
<td>11</td>
<td>Yes</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>7.0</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>12</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Alive</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>122</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>--</td>
<td>No</td>
<td>Alive</td>
</tr>
<tr>
<td>14</td>
<td>Yes</td>
<td>101</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>10.8</td>
<td>Yes</td>
<td>Dead*</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>Alive</td>
</tr>
</tbody>
</table>

BCR, biochemical relapse; ADT, androgen deprivation therapy; CRPC, castrate-resistant prostate cancer; *PCa-related death.
1A Late GU Toxicity

1B Prevalence of Late GU Toxicity

1C Late GI Toxicity

1D Prevalence of Late GI Toxicity

Late GU Toxicity

- G0-1
- G2
- G3-4

Time since starting RT (years)

- 2
- 4
- 6
- 8
- 10
- 12
- 14

Prevalence of Late GU Toxicity

- # at risk: 15, 15, 15, 15, 13, 13, 9, 6

Late GI Toxicity

- G0-1
- G2
- G3-4

Time since starting RT (years)

- 2
- 4
- 6
- 8
- 10
- 12
- 14

Prevalence of Late GI Toxicity

- # at risk: 15, 15, 15, 15, 13, 13, 9, 6

Graph Descriptions

1A: Cumulative incidence of late GU toxicity over time since starting RT. The graph shows the percentage of patients experiencing late GU toxicity by grade (G0-1, G2, G3-4) over time.

1B: Bar chart showing the prevalence of late GU toxicity at different time points since starting RT. The chart displays the number of patients at risk over time.

1C: Cumulative incidence of late GI toxicity over time since starting RT. Similar to 1A, it shows the percentage of patients experiencing late GI toxicity by grade (G0-1, G2, G3-4) over time.

1D: Bar chart showing the prevalence of late GI toxicity at different time points since starting RT. Similar to 1B, it displays the number of patients at risk over time.
Summary

We report the long-term results of a phase I pilot study assessing short-course pre-operative radiotherapy (PreORT) followed by radical prostatectomy in 15 unfavourable intermediate and high-risk prostate cancer (PCa) patients. With median follow-up of 12 years, the incidence of grade 2+ genitourinary and gastrointestinal toxicity were 53.3% and 6.7%, respectively. Biochemical and metastatic disease recurrence occurred in 53.3% and 40% of patients, respectively. Future studies must cautiously select PreORT technique and dose schedule.