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Abstract. This paper proposes a decentralised and privacy-preserving
local electricity trading market. The market employs a bidding proto-
col based on secure multiparty computation and allows users to trade
their excess electricity among themselves. The bid selection and trading
price calculation are performed in a decentralised and privacy-preserving
manner. We implemented the market in C++ and tested its performance
with realistic data sets. Our simulation results show that the market tasks
can be performed for 2500 bids in less than four minutes in the “online”
phase, showing its feasibility for a typical electricity trading period.

Keywords: Secure Multiparty Computation, Local Electricity Trading
Market, Smart Grid, Renewable Energy Source, Security and Privacy.

1 Introduction

The Smart Grid (SG) is an electricity grid supporting bidirectional communica-
tion between components in the grid. An important component of SG is Smart
Meters (SMs) which allow real-time grid management [1]. Potential benefits of
SG include improved grid efficiency and reliability, and seamless integration of
Renewable Energy Sources (RESs), e.g., solar panels, into the grid. When these
RESs generate more electricity than their owners need, the excess electricity is
fed back to the grid. Currently, users get some compensation from their suppliers
for such excess electricity at a regulated (low) price. However, users with such
excess electricity may be interested in selling directly to other users at a compet-
itive price for monetary gains. Enabling that would also incentivise more users
to own RESs. To address this, a local electricity market that allows RES owners
to trade their excess electricity with other households in their neighbourhood
has been proposed in [2]. However, such a market has user privacy risks, since
users’ bids/offers reveal private information about their lifestyle [3].

There are various proposals for an electricity trading market that allows users
to trade with each other or suppliers [4, 5]. However, none of these addresses the
privacy concerns. The security and privacy concerns in such a local market have
been analysed in [2], and initial ideas (without a concrete solution) for designing
one has been proposed in [6]. In this work, we not only propose a concrete secure
and privacy-preserving solution for such a local market for trading electricity,
but also test it in realistic scenarios.
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Fig. 1. A local MPC-based market for trading electricity from RESs.

Contributions. Our contributions are: (i) a concrete decentralised and privacy-
preserving protocol for a local electricity trading market using MPC, (ii) a se-
curity and complexity analysis of our protocol, and (iii) an implementation,
evaluation and analysis of the protocol using realistic bidding data sets.

2 Preliminaries

System Model and Market Overview. As shown in Fig. 1, a local elec-
tricity market comprises the following entities: RESs, SMs, users, suppliers and
computational servers. The market operation, as proposed in [2], consists of:

– Bid Submission: Prior to each trading period, users submit their bids to
the market to inform the market how much electricity they are willing to
sell or buy during the trading period and for what price per unit.

– Trading Price Computation: The local market performs a double auction
trading and generates the supply and demand curve. The intersection of
these two curves is used to determine the trading price, amount of electricity
traded, as well as which users will trade on the market.

– Informing Users/Suppliers: The market informs (i) the users about the
amount of electricity they traded and the trading price, and (ii) the suppliers
about the amount of electricity agreed to be traded by their respective users.

Threat Model and Assumptions. Users and suppliers are malicious. They
may try to modify data sent by SMs in an attempt to gain financial advantage
or influence the trading price on the market. Computational servers are honest-
but-curious. They follow the protocol specifications, but they may attempt to
learn individual users’ bids. External entities are malicious. They may eavesdrop
data in transit and/or modify the data in an attempt to disrupt the market. In
addition, we make the following assumptions: (i) each entity has a unique iden-
tity, (ii) SMs are tamper-evident, (iii) all entities are time synchronized, (iv) the
communication channels between entities are secure and authentic, and (v) users
are rational, i.e., they try to buy/sell electricity for the best possible price.
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Functional and Privacy Requirements. Our protocol should meet the fol-
lowing functional requirements: (i) the local market should receive users’ bids,
calculate the trading price, and inform the users and suppliers of the market
outcome, (ii) each user should learn if their bid was accepted and the vol. of
electricity they traded, as well as the trading price, and (iii) each supplier should
learn the amount of electricity traded by their customers on the market in each
trading period. It should also satisfy the following privacy requirements [2, 6]: (i)
confidentiality of users’ bids and amount of electricity traded, (ii) users’ privacy
preservation, i.e., RES and/or trading user identity and location privacy, and
trading session unlinkability, and (iii) minimum data disclosure.

Security Definition under MPC. MPC allows any set of mutually distrust-
ful parties to compute any function such that no party learns more than their
original input and the computed output, i.e., parties p1, ..., pn can compute
y = f(x1, ..., xn), where xi is the secret input of pi, in a distributed fashion
with guaranteed correctness such that pi learns only y. MPC can be achieved
using secret sharing schemes [7, 8], garbled circuits [9] and homomorphic encryp-
tion [10].

On the security notion: a secure protocol over MPC discloses to an adver-
sary the same information as if the computations were carried out by a trusted
(non-corruptible) third party. This definition allows a variety of adversarial and
communication models offering various security levels: perfect, statistical or com-
putational. Seminal results prove that any functionality can be calculated with
perfect security against active and passive adversaries [7, 8] under the arithmetic
circuit paradigm. Other relevant recent contributions in the area include [11, 12].
Note that any oblivious functionality built in this way would be as secure as the
underlying MPC protocols used for its execution. Finally, note that under this
scenario, functionality, also referred to as sub-protocols, like the ones used in this
work, can be used for modular composition under the hybrid model introduced
by Canetti [13]. We make use of the following existing functionality:

- Secure Comparison: Methods for secure comparison using MPC offer ei-
ther perfect or statistical security and are constructed under the same as-
sumptions [14]. Moreover, mechanisms as [15] by Catrina and de Hoogh
introduced inequality tests at constant complexity.

- Secure Sorting: Secure Sorting using MPC can be achieved by sorting net-
works and other data-oblivious mechanisms, including the randomize shell-
sort from Goodrich [16]. Moreover, Hamada et al. [17] introduced a technique
to facilitate the use of comparison sorting algorithms. This technique con-
sists of randomly permuting the vector before sorting, so that the results of
some of the intermediate secure comparisons can be made public.

- Secure Permutation: Leur et al. [18] analysed various permutation mech-
anisms, like the use of vector multiplication by a permutation matrix and
sorting networks. Czumaj et al. [19] proposed alternatives for obliviously
permuting a vector in (almost) O(n× log(n)), when n is the vector size.
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Table 1. Notation.

Symbol Meaning
ti i-th time slot

[q]j electricity volume in absolute terms from the j-th bid
[p]j unit price enclosed in the j-th bid
[d]j binary value corresponding to the j-th bid: 1 indicates a demand bid

and 0 a supply bid
[s]j unique supplier identifier s ∈ {1, .., |S|} where S is the set of all sup-

pliers. Moreover, s is encoded in a {0, 1} vector, i.e, [s]jk ← 1 on
the k-th position corresponds to the suppliers unique identifier, and
[s]jk ← 0 otherwise, for all j ∈ B.

[b]j bid’s unique identifier from the j-th bid
[φ] volume of electricity traded on the market for period ti
[σ] market’s trading price (price of the lowest supply bid) for ti
[a]i binary value: 1 indicates the bid i was accepted, 0 otherwise

[S]φ set of the volume of electricity traded by supplier affiliation where [s]φi
stands for the summation of all the accepted bids from users affiliated
to the supplier i, for all i ∈ S

Notation. Square brackets denote encrypted or secretly shared values. Assign-
ments that are a result of any securely implemented operation are represented
by the infix operator: [z]← [x]+ [y]. This extends to any operation over securely
distributed data since its result would be of a secret nature too. Vectors are de-
noted by capital letters. For a vector, say B, Bi represents its i-th element and
|B| its size. The bids originated by SMs are considered as the initial input data.
Each bid is a tuple ([q], [p], [d], [s], [b]) and B is the vector of all bids. We assume
that (i) all bid elements belong to ZM , where M is a sufficiently large number so
no overflow occurs, and (ii) the number of bids (or at least their upper bound) is
publicly known. Any other data related to the bid is kept secret. If the protocol
admits a single supply and demand bid per SM, the computation of this upper
bound is trivial. Markets could opt for enforcing all SMs to submit a bid regard-
less of whether they participate or not in the market. Let > be a sufficiently big
number such that it is greater than any input value from the users but > << M .
In this scenario, non-participating SMs would have to replace their input values
by [0] and [>] accordingly. Table 1 lists the notations.

3 Privacy-preserving Protocol for Electricity Trading

In our protocol, users submit their private inputs to a virtualized entity consist-
ing of multiple computational servers that function as evaluators. The number
of evaluators depend on the application, and it could be as many as the num-
ber of parties involved in the computation. However, this is costly in terms of
performance. In our setting, we assume three computational parties: one comes
from the RES owners, another from the suppliers and a third one from a local
control agency. Depending on the underlying MPC protocol, some randomiza-
tions might be precomputed in an “offline” phase by a trusted dealer who is not
directly involved at any level of the computations [11]. The amount and purpose
of the randomly generated numbers depend on such MPC primitives and the
security model used by the market. Our protocol consists of five steps:
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Agorithm 1: Smart Market Clearance.
Input: Vector of n bid tuples B = ([q], [p], [d], [s], [b])
Output: Clearance price [σ], volume of traded electricity [φ], vector of accepted bids [A] of

size |B|, vector of aggregated volume traded by supplier Sφ of size |S|
1 for i← 1 to n do
2 [δ]← [δ] + [q]j × [d]j ;
3 end
4 [ν]← [0];

5 [Sφ]← {01, ..., 0|S|};
6 [A]← {01, ..., 0|B|};
7 for k ← 1 to n do
8 [c]← [ν] < [δ];
9 [σ]← ((1− [d]j)× [c])× ([p]j − [σ]) + [σ];

10 [φ]← ((1− [d]j)× [c])× [q]j + [φ];
11 for k ← 1 to |S| do
12 [s]φk ← ([s]jk × ((1− [d]j)× [c])× [q]j + [s]φk ;

13 end
14 [a]j ← [c];
15 [ν]← [ν] + [c]× [q]j ;

16 end

Preprocessing for trading period ti.
1. Bidders: Before the start of ti−2, each user prepares and sends his bid to

the computational parties. If a linear secure secret sharing scheme (e.g., [20])
is used, each user generates as many shares as the number of computational
parties, and sends each of the shares to a different computational party.

2. Evaluators: To randomly permute the bidders’ input, upon reception, each
share is multiplied with a column of a randomized permutation matrix which
was precomputed “offline”. This is still performed before the start of ti−2.
Evaluation for trading period ti.

3. Evaluation: The evaluation is performed at ti−2. In this phase, the trading
price and traded volume are computed, and accepted and rejected bids are
identified, in a data-oblivious fashion. Algorithm 1 gives a detailed overview
of our secure auction evaluation. It calculates the trading price [σ], the vol-
ume of electricity traded [φ] and the vector of adjudicated demand and
supply bids [A]. It does it by obliviously calculating the aggregation of the
demand bids [δ], and then iterating over the set of all bids in B using their
volume to match [δ]. To access the vector of accepted supply bids, it is enough
to compute [A]j × (1 − [d]j) × [b]j . To find the vector of accepted demand
bids, it is sufficient to calculate (1− [A]j)× ([d]j)× [b]j .
Inform Bidders and Suppliers (before the end of period ti−2).

4. Bidders: To hide the order of the bids, the vector of all bids [B], together
with the associated vector [A], are shuffled again. Then, the evaluators use
the open operation of the underlying MPC primitive on [σ] (for ti) and [b]j ,
for all j ∈ B. Each evaluator sends the shares corresponding to the tuple
Bbj to the bidder that originated the bid identified by bj . The bidder then
reconstructs the shares and learns if his bid was accepted or rejected.

5. Suppliers: Evaluators send the shares of the volume aggregation Sφj , for all
j ∈ S, to the corresponding supplier. Suppliers also learn the market trading
price. Both, bidders and suppliers are informed of the results at ti−2.
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Correctness and Complexity. The general goal of the protocol is to find the
trading price and to identify the accepted and rejected bids. Any supply bid
below the trading price, and any demand bid above this price is automatically
accepted and vice versa. The market equilibrium can be identified when the price
of a given supply allocation surpasses the price of the next cheapest available
demand allocation. In other words, when supply equals demand, the market
equilibrium can be identified if the price of supply is at least the price of demand.

In our protocol, we proceed to sort all bids regardless of whether they are
demand or supply bids. Following Algorithm 1, we then proceed to identify and

select bids until the aggregated demand ([δ]←
∑|B|
i [q]i× [d]i) is matched (note

that to maintain secrecy we iterate over the set of all bids), choosing the bids
in ascending order of price. If a supply bid is selected, this implies that there is
no supply bid that could be allocated to reduce [δ], and hence is not part of the
market clearance. Using [d]i cancels the supply bid’s effect over [δ], and provides
us with sufficient tools to identify it. The opposite occurs when a demand bid is
selected. At the end of Algorithm 1, the bids used to reduce [δ] can be identified,
which correspond to all the supply and demand bids with prices below and above
the trading price, respectively. From this, the set of accepted and rejected bids
follows. The trading price is set to the price of the last selected supply bid. The
protocol complexity grows linearly with the number of bids, which is the main
factor influencing the performance. The number of suppliers rarely varies over
time, and is of limited size. The complexity of Algorithm 1 is O(|B| × |S|). Note
that secure vector permutation can be achieved in O(n× log(n)), where n is the
size of the vector (the vector of the Bids [B], in our case). Moreover, the sorting
methods used by our secure market can achieve O(n× log(n)).

Security Analysis. The MPC mechanisms used in protocol steps 1-5 consti-
tute a unique arithmetic circuit (addition and multiplication) with no leakage,
making privacy straight forward. Moreover, the protocol can be computed with
perfect security on the information theoretic model against passive and active
adversaries under Canetti’s hybrid model [13] by using available MPC protocols
such as BGW [7]. We refer the reader to [21] for a complete set of proofs of secu-
rity and composability for BGW. Indeed, results in BGW [7] and CDD [8] showed
that any function can be computed using MPC with the aforementioned secu-
rity levels by providing secure addition and multiplication under an arithmetic
circuit paradigm. There are also promising results on more restricted models,
e.g., dishonest majority [11] with computational security. Moreover, there ex-
ist privacy-preserving sub-protocols (arithmetic circuits) for sorting, comparison
and vector permutation over MPC that can be used, and that provide the same
security guarantees with no leakage. These are integrated into a single arithmetic
circuit in a modular fashion, i.e., our protocol. Thus, the security of our protocol
readily follows. In other words, the order of the operations (multiplications and
additions) is predetermined beforehand by the publicly available circuit, i.e., our
protocol simulation can be achieved by invoking the corresponding simulators of
the sub-protocols used, and/or atomic operations in its predefined order.
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4 Experimentation and Discussion

We executed our experimentation using the BGW-based MPC Toolkit [22] which
includes all the underlying crypto primitives and sub-protocols we report, to-
gether with our own introduced code. The library was compiled with NTL (Num-
ber Theory Library) [23] that itself was compiled using GMP (GNU Multiple
Precision Library). These two libraries are used for the modulo arithmetic that is
used by the underlying MPC protocols. Each instance of the prototype comprises
two CPU threads: one manages message exchanges and the other executes the
protocol. Moreover, each instance required little more than 1 MB of allocated
memory during our most memory demanding test.

Data Generation. We generated the data using a realistic data from Belgium.
First we picked a time slot and date, i.e., between 13:00h and 13:30h on 5-th of
May 2016, during which 2382 MW solar electricity was generated in Belgium by
Solar Panels (SPs) with total capacity 2953 MW [24], i.e., on average each SP
produced electricity approximately equal to 81.66% of its capacity. The average
electricity consumption data of a Belgian household for the same time slot was
0.637 kW [25], so for each user we generated a random consumption data for this
slot with mean equal to 0.637 kW, standard deviation equal to 0.20 and variance
equal to 0.04. Then, we randomly chose 30% of the users to have installed SPs
at their homes, and to each of the SPs we randomly assigned 2.3, 3.6 or 4,7 kW
electricity generation capacity. After that, we randomly generated the electricity
output of each SP during this time slot with a mean equal to the SP’s capacity
multiplied with the efficiency factor for the time slot, i.e., 81.66%, standard devi-
ation equal to 0.20 and variance equal to 0.04. Once we generated the electricity
consumption and generation data for each user with a SP, we simply subtracted
the latter from the first value to find the amount of each user’s excess electricity.

We assumed that there are 10 suppliers in the market and randomly as-
signed one to each user. We set the retail electricity sell price of the suppliers to
0.20 e/kWh and the retail buy price to 0.04 e/kWh. For the bid price selection,
we divided the retail electricity sell and buy price difference into nine ranges
each including several (overlapping) prices, e.g., range 2 includes three prices:
0.04, 0.05 and 0.06 e/kWh, whereas range 7 includes four prices: 0.17, 0.18, 0.19
and 0.20 e/kWh. Then, for each user, depending on how much excess electricity
she has for sell (or wants to buy), we picked randomly one of the prices from the
appropriate price range. For selecting the appropriate price range we assumed
that if users have a lot of excess electricity, they would choose a lower asking
price, but if they have a little, they would ask for a higher price. In summary,
for each user we generated: unique user ID, amount of electricity for the bid, bid
price, supply or demand bid indicator, and ID of the user’s contracted supplier.

Security. Our security target was to build a prototype for the classic scenario of
semi-honest adversaries under the information theoretic model (private authen-
ticated channels) and threshold corruption. This is achieved by the underlying
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Table 2. List of Primitives used by secure prototype.

Primitive Protocol
Sharing Shamir Secret Sharing [20]
Multiplication Gennaro et al. [26]
Inequality Test Catrina and Hoogh [15]
Random Bit Generation Damg̊ard et al. [14]
Sorting: QuickSort Hamada et al. [17]
Permutation: Sorting Network Lai et al. [18]

BGW primitives and Shamir Secret Sharing (honest majority). This is a neces-
sary configuration to achieve perfect security as long as the adversary does not
corrupt more than halve of the parties. However, the prototype offers statistical
security on the size of its input given that it uses the same comparison method
as in [15]. The security of such method depends on input parameters l and k, l
is the bit-size of the numbers and k a security parameter. Under the assumption
that the channel is perfect, this task is decoupled from the prototype operation.

Characteristics, Environment and Setting. Our prototype was built in
C++ following an object oriented approach, with modularity and composability
in mind. It has an engine that separates communication and cryptographic tasks.
Table 2 shows the list of the sub-protocols we used. We executed our tests
on a single 64-bit Linux server with 2*2*10-cores with Intel Xeon E5-2687W
microprocessors at 3.1GHz and 25 MB of cache available, and with memory of
256 GB. All our tests were performed under a 3-party setting, with two available
cores for each instance. We ran our tests starting with a baseline of a realistic
scenario with 100 bids and then monotonically increased the number of bids to
2500. Each test scenario was repeated 10 times to reduce the impact of the noise.

Results. Our prototype requires bit randomization for the comparison meth-
ods. The task of generating such values could be executed beforehand, in an
“offline” phase. The “online” phase would execute the remaining tasks and uti-
lize the randomization values generated during the “offline” phase. For a case
with 2500 bids, the prototype took 678.50 sec. for either sending or waiting for
other parties’ messages (as our prototype is synchronous) and 215.52 sec. for
other computational tasks (crypto primitives). Hence, ca. 75% of the compu-
tational time was for transmission related tasks. We have also measured the
computational cost at every test instance. Table 3 shows a more complete break
down of our results. From these results we can conclude the following.

– The 2500-bids instance total time on the “online” phase is less than 4 min-
utes, and less than 15 minutes with the “offline” phase included, which is
still less than a typical trading period of 30 minutes.

– The asymptotic behaviour on the growth of the computational time seems
to adjust to the behaviour included in the complexity analysis.

– The performance of the prototype could be improved by the use of techniques
such as, PRSS [27], to reduce the cost of generating random bits. Moreover,
other optimizations can be put in place based on the experimental setting.
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Table 3. Overall Results

Bids Com. Rounds Comparisons CPU Time (sec) On-line Phase (sec)

100 ≈ 1.40 · 105 965 2.96 1.01
500 ≈ 1.96 · 106 14628 40.40 11.35
1000 ≈ 7.03 · 106 53508 147.76 39.80
1500 ≈ 15.61 · 106 118956 320.79 86.14
2000 ≈ 26.97 · 106 208132 562.50 145.78
2500 ≈ 43.15 · 106 330912 894.01 235.82

– During our tests ca. 95% of the computational time was spent on sorting the
bids. As suppliers are not involved in this, their influence on the computa-
tional costs is limited, i.e., our prototype can be adjusted to scenarios with
larger supplier sets without much overhead.

5 Conclusions

We proposed a privacy-preserving protocol for a local market that allows users to
trade their excess electricity among themselves. Our protocol employs a bidding
scheme based on MPC, and the bid selection and the trading price calculation
are performed in a decentralised and privacy-preserving manner. We also imple-
mented the protocol in C++ and tested its performance with realistic data. Our
simulation results show its feasibility for a typical electricity trading period of 30
minutes as the market tasks are performed (for 2500 bids) in less than 4 minutes
in the “online” phase. Future work will include balancing suppliers’ accounts
based on the electricity traded by users without violating users’ privacy.
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