Transport and deposition of mud in deep-water environments: Processes and stratigraphic implications

DOI:
10.1111/sed.12614

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Sedimentology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
ABSTRACT

Deep-water mudstones are often considered as background sediments, deposited by vertical suspension fallout, and the range of transport and depositional processes are poorly understood compared to their shallow-marine counterparts. Here, we present a dataset from a 538.50 m-thick cored succession through the Permian muddy lower Ecca Group of the Tanqua depocentre (southwest Karoo Basin, South Africa). This study aims to characterize the range of mudstone facies, transport and depositional processes, and stacking patterns recorded in deep-water environments prior to deposition of the Tanqua Karoo sandy basin-floor fans. A combination of macroscopic and microscopic description techniques and ichnological analysis has defined nine sedimentary facies that stack in a repeated pattern to produce 2–26-m-thick depositional units. The lower part of each unit is characterized by
bedded mudstone deposited by dilute, low-density turbidity currents with evidence for hyperpycnal-flow processes and sediment remobilization. The upper part of each unit is dominated by more organic-rich bedded mudstone with common mudstone intraclasts, deposited by debris flows and transitional flows, with scarce indicators of suspension fallout. The intensity of bioturbation and burrow size increases upward through each depositional unit, consistent with a decrease in physicochemically stressed conditions, linked to a lower sediment accumulation rate. This vertical facies transition in the single well dataset can be interpreted to represent relative sea level variations, where the hyperpycnal stressed conditions in the lower part of the units were driven by sea level fall and the more bioturbated upper part of the unit represents backstepping, related to sea level rise. Alternatively, this facies transition may represent autogenic compensational stacking. The prevalence of sediment density flow deposits, even in positions distal or lateral to the sediment entry point, challenges the idea that deep-water mudstones are primarily the deposits of passive rainout along continental margins.

Keywords: Deep-water, depositional processes, Karoo Basin, mudstone, Permian, trace fossils, turbidite.

INTRODUCTION

Most sedimentological studies of mudstones—here defined as sedimentary rocks in which more than 50% of the grains are <62.5 µm (i.e. clay-size and silt-size particles; sensu Lazar et al., 2015)—have focused on successions deposited in shelf environments (e.g. Schieber, 1994; Macquaker and Taylor, 1996; Plint et al., 2012; Bohacs et al., 2014; Plint, 2014; Harazim and McIlroy, 2015; Wilson and Schieber, 2015; Birgenheier et al., 2017). These studies have improved current knowledge of the range of physical and biological processes responsible for the transport and accumulation of mud in shallow-water environments. In these systems, wave action has a major influence and may resuspend previously deposited mud particles to generate or enhance turbidity currents (Ichaso and Dalrymple, 2009; Macquaker et al., 2010). Recent flume experiments have demonstrated that flocculated mud can be transported as bedload at flow velocities that normally transport sand (Schieber et al., 2007; Schieber and Southard, 2009). Common aggregate grains (rip-up intraclasts, lithoclasts) in shallow-water
mudstones suggests intermittent sea floor reworking (Schieber, 1998, 1999; Schieber et al., 2010; Plint et al., 2012; Egenhoff and Fishman, 2013; Plint and Macquaker, 2013; Plint, 2014; Schieber, 2016; Li and Schieber, 2018). These observations demonstrate that mud can be transported and deposited in continental shelves by depositional processes as energetic as those for coarse-grained sediments.

Deep-water (i.e. below storm wave base) sedimentology has expanded rapidly because of the exploration and exploitation of hydrocarbons in sandy basin-floor fans and slope-channel complexes (e.g. Pettingill and Weimer, 2002; Shanmugam, 2006; Weimer et al., 2007). The focus, however, has mainly been on sandstones, whereas mudstone packages are usually described as background sedimentation, deposited by pelagic or hemipelagic vertical suspension fallout in low-energy environments with occasional turbidity currents (e.g. Scholle, 1971; Wynn et al., 2000; Southern et al., 2017; Pierce et al., 2018). This interpretation is mainly due to the generally poor exposure of mudstones at outcrop that usually precludes observation and interpretation of primary sedimentary structures and bed contacts at macroscopic scale. In sub-surface datasets, deep-water mudstones are rarely cored compared to deep-water sandstones, and where they are, they usually display a homogenous texture to the naked eye. Older studies focusing on deep-water mudstones (e.g. Stow and Shanmugam, 1980; Stow and Piper, 1984; Pickering et al., 1986) usually lack microscopic descriptions that are essential to fully characterize mudstone fabrics. More recent studies using a combination of macroscopic and microscopic description techniques have highlighted that a wide range of processes (i.e. turbidity currents, debris flows, transitional flows, mass-wasting processes) may be responsible for the transport and deposition of mud in deep-water environments (e.g. Schieber, 1999; Loucks and Ruppel, 2007; Trabucho-Alexandre, 2012; Konitzer et al., 2014; Knapp et al., 2017; Ayanci et al., 2018a; Newport et al., 2018). These findings have started to challenge the traditional view that suspension fallout is the dominant depositional process in deep-water mudstones, with major implications for the estimation of depositional rates and the correct interpretation of times of clastic starvation in deep-water environments. However, there remains a lack of detailed process-based studies focusing on long and continuous deep-water mudstone successions, that are essential to evaluate the long-term variability in depositional conditions within deep-water muddy environments.

This integrated study documents a deep-water mudstone succession using a continuous 538.50 m core section from the Lower Ecca Group of the Karoo Basin (South Africa) deposited during the
Permian icehouse-to-greenhouse transition. By combining macrofacies and microfacies descriptions, the main objectives of this study are to: (i) describe and interpret the range of facies, depositional processes, stacking patterns and trace fossils in a mudstone succession deposited in deep-water environment; (ii) document and discuss the resulting deposits of deep-water sediment density flows in the absence of sand; and (iii) discuss the controls on the stacking pattern of deep-water mudstones.

GEOLOGICAL SETTING

The Karoo Basin has been interpreted as a retro-arc foreland basin developed behind a fold-thrust belt (Cape Fold Belt) (De Wit and Ransome, 1992; Veevers et al., 1994; Visser and Praekelt, 1996; Catuneanu et al., 1998; López-Gamundi and Rossello, 1998; Viglietti et al., 2018). An alternative hypothesis is that subsidence during the deep-water phase of deposition was controlled by dynamic topography associated with the subduction of the palaeo-Pacific plate beneath Gondwana (Pysklywec and Mitrovica, 1999; Tankard et al., 2009). Mantle flow might have triggered movements along inherited basement structures that led to the development of the Tanqua and Laingsburg depocentres in the southwest Karoo Basin (Fig. 1A and B). This interpretation is consistent with provenance studies (Andersson and Worden, 2004; Van Lente, 2004) and radiometric dating (Blewett and Phillips, 2016), which indicate that the Cape Fold Belt was not emergent nor an important source of sediment for the Karoo Basin before the Triassic.

The basin fill comprises the 5500 m-thick Karoo Supergroup, deposited from Late Carboniferous to Early Jurassic (Fig. 1C) (Smith, 1990; Veevers et al., 1994). The Karoo Supergroup is composed of the glaciogenic Dwyka Group (Late Carboniferous-Early Permian), the deep-marine to shallow-marine Ecca Group (Permian) and the fluvial Beaufort Group (Permo-Triassic). The Dwyka Group is composed of four deglaciation sequences of basal diamictites overlain by rhythmites grading into mudstones (Theron and Blignault, 1975; Visser, 1997). The uppermost sequence grades into the Ecca Group, deposited approximately between 290 to 265 Ma (Belica et al., 2017). The transition from the Dwyka to Ecca Group was interpreted to mark the end of glaciations in the Karoo Basin (Bangert et al., 1999; Isbell et al., 2008).

This study focuses on the mudstone-dominated lower Ecca Group of the Tanqua depocentre,
which comprises the Prince Albert, Whitehill, Collingham and Tierberg formations (Fig. 1C) (Johnson et al., 2006). These formations were previously interpreted as deposited in a relatively sediment-starved, basin-floor environment (Visser, 1992, 1994; Viljoen, 2005), although water palaeodepth has not been defined due to the absence of diagnostic microfossils. Some authors have suggested a northern source for the Prince Albert, Whitehill and Collingham formations based on facies distribution and sparse palaeocurrent indicators (Chukwuma and Bordy, 2016) and palynology (Götz et al., 2018). Ash beds potentially derived from the Choiyoi volcanic province (Northern Patagonia) are interbedded in these formations, with a higher density in the Collingham Formation (McLachlan and Jonker, 1990; Veevers et al., 1994; Viljoen, 1994; McKay et al., 2015). These mudstone-rich formations are overlain by the well-studied, sandy basin-floor fans of the Skoorsteenberg Formation (Wickens, 1994; Johnson et al., 2001; Hodgson et al., 2006) and the upper slope to shelf deposits of the Waterford Formation (Wild et al., 2009; Dixon et al., 2012; Poyatos-Moré et al., 2016; Gomis-Cartesio et al., 2016, 2018) (Fig. 1C).

Some authors have proposed that the Ecca Group was deposited in an open marine basin with normal salinity based on the presence of marine fossils (McLachlan and Anderson, 1973; Visser, 1992; Götz et al., 2018). Fully marine conditions are also suggested by Rb/K palaeosalinity proxy (Scheffler et al., 2006; Geel et al., 2013). Others authors have suggested that the Ecca Group was deposited in a freshwater to brackish basin with intermittent connections with the open marine environment, based on ichnology (Buatois et al., 2010) and stable isotope data (Faure and Cole, 1999; Herbert and Compton, 2007). A multi-proxy approach combining geochemistry, palynology, and mineralogy suggests a climatic transition from a cold-arid climate during deposition of the Dwyka Group to a warm-humid climate for the Ecca Group (Scheffler et al., 2003, 2006).

MATERIALS AND METHODS

This study is based on a 948.50-m-thick continuous core from the vertical OR-01 research borehole drilled in the Tanqua depocentre (Fig. 1B). For the purpose of this paper, we focused on the lower 538.50-m-thick, mudstone-dominated succession (from 948.50 m up to 410 m), that includes the Prince Albert, Whitehill, Collingham and Tierberg formations (Fig. 1C).

A sedimentary log of the core was established through wet and dry observations to record
macroscopically visible features including: (i) lithology, (ii) colour, (iii) physical sedimentary structures, (iv) bed contacts, (v) bed thicknesses, (vi) deformation, (vii) trace fossils and (viii) bioturbation index. The bioturbation index (BI) of Taylor and Goldring (1993) was used macroscopically and semi-quantitatively to describe bioturbation intensity on a 0 to 6 scale where 0 corresponds to non-bioturbated material and 6 corresponds to completely bioturbated. The presence of calcium carbonate was assessed by placing 10% hydrochloric acid directly onto the core. High-resolution photographs of the different facies and features of interest were taken using a high-resolution Nikon AF-S Micro Nikkor 60 mm F-2.8 lens (Nikon, Tokyo, Japan). Enhanced contrast images of the core using Microsoft Office Picture Manager® captured subtle colour changes and bed contacts. A total of 124 samples were collected using an adjusted uniform sampling spacing method of one sample per 5 m to include all facies and significant features of interest (i.e. stratigraphic surfaces, concretionary horizons, facies contacts, trace fossils).

A total of 27 samples were selected to represent the range of facies described from the core. Oriented polished thin sections (24×46mm) were prepared normal to bedding at 20 to 25 µm thickness to improve textural information. Thin sections were scanned using an Epson Perfection V600 photo scanner at 3200 dpi resolution (Epson, Suwa, Japan). Microscopic descriptions were done using an optical Nikon Eclipse LV100N POL microscope fitted with a Nikon DS-Fi2 camera (Nikon, Tokyo, Japan). Grain sizes were refined from the core observations using visual estimate. Mudstones were classified into different facies based on the combination of macroscopic and microscopic descriptions. Mudstones consisting of more than half of grains <10 µm are defined as fine mudstone and those with more than half of grains 10 to 62.5 µm as coarse mudstone (McCave et al., 1995). Following the guidelines of Lazar et al. (2015), a composition modifier (e.g., siliceous, calcareous, argillaceous and carbonaceous) is added depending on the dominant grain type (quartz, carbonate, clay and organic matter, respectively). Trends in burrow size, ichnodiversity and bioturbation intensity are used qualitatively to infer sea floor physicochemical conditions (i.e. oxygen level, type of medium, salinity, sediment accumulation rate and frequency of flow events) (e.g. Bromley, 1996; MacEachern et al., 2007).

Following optical microscope descriptions, thin sections were carbon coated for electron microscope analysis. High-resolution imaging and compositional analysis were done on 5 samples using a FEI XL30 environmental scanning electron microscope (ESEM) (FEI, Hillsboro, OR, USA) with a
Total organic carbon (TOC) was determined in 42 samples in a targeted part of the core (from 649.20 m up to 624.95 m) using a LECO SC-144DR (LECO Corp., St. Joseph, MI, USA) to evaluate the vertical evolution of organic enrichment. Samples were powdered using a mortar and pestle. Empty sample tubes used for analysis were weighted (m_{tube}). 0.8 g (± 10 %) of sediment per sample was added to the tubes. The tubes with sediment were weighted (m_{initial}). Samples were then prepared for total organic carbon analysis by adding 10 % HCL to remove any carbonate content. They were rinsed using distilled water and a centrifuge and dried in an oven at 60°C overnight. The tubes with sediment were weighted after drying (m_{final}). 0.3 g of acid-washed sediment per samples was placed into the LECO to obtain the percentage carbon (P_{OC}). Total organic carbon (TOC) in the samples after carbonate removal was calculated using the formula:

\[
\text{TOC} = P_{\text{OC}} \times \frac{(m_{\text{final}} - m_{\text{tube}})}{(m_{\text{initial}} - m_{\text{tube}})}. \tag{1}
\]

RESULTS

Facies and depositional processes

Nine facies (F1 to F9) were determined from the combination of macroscopic and microscopic characteristics. Facies-stacking pattern is presented in Fig. 2. Facies are described below, illustrated at similar scales in Figure 3 and additional data are presented in Figs 4 to 8. The range of trace fossils is illustrated in Fig. 9. Around 90% of the succession (490 m of a total of 538.50 m) consists of coarse mudstone, whereas ~10 % consist of fine mudstone (Fig. 2). These results, however, are based on visual estimates from thin sections and continuous grain size analysis may indicate a more heterogeneous pattern. Mineralogy consists mainly of quartz and clay with subordinate feldspar, mica and wood fragments.

Facies 1: very thin-bedded mudstone

Description.
Facies 1 (F1) consists of light grey to mid-grey, continuous, siliceous-argillaceous, fine- to coarse-grained bedded mudstone (Figs 3A to C and 4A). Beds are 0.1 to 2 cm thick but usually less than 1 cm thick. Two bed types with a tripartite organization are recognized (Fig. 5). Bed type I is most common and characterized by a sharp and erosional base (Figs 4D and 5). The lower subdivision consists of structureless or continuous to discontinuous, planar-parallel to low-angle, laminated coarse mudstone. The middle subdivision is structureless and consists of normally graded to ungraded coarse mudstone. The upper subdivision consists of mottled, fine mudstone. A grain-size break is common between the middle and upper subdivisions but some beds show a conformable upper subdivision. Bed type II is characterized by a sharp and erosional or gradational base (Figs 4E and 5). The lower subdivision consists of inversely graded, planar-parallel laminated, fine to coarse mudstone. The middle and upper subdivisions are similar to bed type I. Some beds are truncated by the overlying bed (Fig. 5). Rare small-scale scours are observed (Fig. 4B). Post-depositional features include soft-sediment deformation (convolute laminations) (Fig. 4C), carbonate cement and rare pyrite nodules (Fig. 4B). Bioturbation is low to moderate (BI: 2 to 3) and increases upward in individual beds. Trace fossils consist of small *Helminthopsis* and *Phycosiphon* (<1 cm diameter) with subordinate *Chondrites*, *Conichnus*, *Cosmorhaphe*, *Planolites* and *Thalassinoides* (<3 cm diameter) (Fig. 9).

Interpretation.

Based on the erosional bases, normal-grading and increasing-upward bioturbation, Facies 1 is interpreted as sediment-density flow deposits. Bed type I is interpreted to represent deposition from waning, dilute, low-density turbidity currents (Lowe, 1982). The lower subdivision indicates deposition by turbulent traction transport (Stow and Piper, 1984). The middle and upper subdivisions indicate suspension settling from a waning flow. The common grain-size break between the middle and upper subdivisions suggests sediment bypass (e.g. Poyatos-Moré *et al*., 2016). Bed type II is interpreted to represent deposition from waxing-waning, dilute, low-density turbidity currents. The lower subdivision is interpreted as deposited from waxing flow by turbulent traction transport. The middle and upper subdivisions indicate deposition by suspension settling from waning flow. Bed type II resembles river-derived hyperpycnites (e.g. Mulder and Alexander, 2001; Mulder *et al*., 2003; Plink-Björklund and Steel, 2004; Bhattacharya and MacEachern, 2009; Zavala *et al*., 2011). Direct river input is also suggested by common wood fragments (Fig. 4F) and rhythmic bedding (Nakajima, 2006; Zavala *et al*., 2012). The low
to moderate bioturbation, small burrow size and moderate ichnodiversity suggest sea floor physicochemical stressed conditions for organisms potentially linked to a high sediment accumulation rate with frequent flow events in a fully oxygenated bottom-water environment (MacEachern et al., 2007; Bhattacharya and MacEachern, 2009; Flaig et al., 2016; Jackson et al., 2016). Moreover, common freshwater river input to the sea floor may have generated salinity fluctuations, and potentially the development of intermittent bottom-water brackish conditions. Common soft-sediment deformation suggests high sediment accumulation rate with a soft sea floor medium that is easily remobilized (Bhattacharya and MacEachern, 2009; Flaig et al., 2016).

Facies 2: mottled very thin-bedded mudstone

Description.

Facies 2 (F2) consists of light to dark grey, continuous to discontinuous, siliceous-argillaceous, fine-grained to coarse-grained bedded mudstone intercalated with dark grey, intensely bioturbated, coarse mudstone (Fig. 3D to F). Beds are 0.1 to 2 cm thick and characterized by a sharp and erosional or gradational base. Preserved sedimentary structures are identical to F1 (Fig. 3E). Bioturbation is high to intense (BI: 4 to 5) and the trace fossil assemblage is similar to F1. Burrows are usually larger (<5 cm).

Interpretation.

F2 is interpreted to be deposited by waning and waxing-waning, dilute, low-density turbidity currents, potentially derived from hyperpycnal input, based on similar sedimentological characteristics to F1. The higher bioturbation intensity and larger burrow size suggest a lower sediment accumulation rate and lower frequency of flow events in a fully oxygenated bottom-water environment. This bioturbation pattern may also be linked to a decrease in freshwater river input to the sea floor that may have led to more favourable bottom-water environment for benthic organisms (e.g. Flaig et al., 2016; Jackson et al., 2016).

Facies 3: intraclast-bearing thin-bedded to medium-bedded mudstone
Description.

Facies 3 (F3) consists of mid-grey to dark grey, siliceous-argillaceous, fine-grained to coarse-grained bedded mudstone (Figs 3G and 6A). Beds are 5 to 15 cm thick, structureless and ungraded, and characterized by a sharp and erosional base. F3 sometimes overlies partially cemented mudstone (F7) deposits (Figs 3G and 6A). Coarse mud-sized to pebble-sized mudstone clasts are common (Figs 3G and I and 6A). The pebble-sized clasts are usually concentrated in the lower part of the beds (Figs 3G and 6A). Microscopic inspection, however, shows that coarse mud-sized to sand-sized clasts are pervasive across the entire beds (Figs 3I, 6C and D). Clasts mineralogy is similar to the mudstone matrix (quartz, clay and wood fragments), but they usually contrast in colour with the surrounding matrix (Figs 3I, 6C and D). They are usually flattened with a sharp edge and a few clasts are characterized by a stringer-type texture (Fig. 3H). Some clasts are characterized by a calcium phosphate and calcium carbonate cement. The mudstone matrix does not show significant differential compaction around the mudstone clasts (Fig. 6D). Beds with mudstone clasts aligned along coarser grained horizons are observed (Fig. 6B). Pyrite aggregates are observed in the lower part of some beds (Fig. 3H). Bioturbation is low to moderate (BI: 1 to 3) and increases upward in individual beds (Fig. 6A). Trace fossils are predominantly small (<1 cm diameter) and mainly consist of Helminthopsis and Phycosiphon.

Interpretation.

The sharp and erosional base, presence of outsize mudstone clasts, and the absence of obvious grading suggest laminar flow and rapid en masse deposition by moderate-strength, cohesive debris flows (equivalent to D_M-2 of Talling et al., 2012), preventing the development of bedforms or grading. The clasts are interpreted as rip-up mudstone intraclasts based on similar mineralogy as the mudstone matrix (e.g. Schieber et al., 2010; Schieber and Bennett, 2013). However, the colour difference between the clasts and the matrix indicates a different composition that may be linked to the presence of early cement (calcium phosphate and calcium carbonate). The texture of the pebble-sized clasts in the beds in Fig. 3H and Fig. 6A is similar to the underlying partially cemented mudstone (F7) texture. This suggests that some of these clasts may have been eroded from a sea floor characterized by early cementation processes and consolidation.
Facies 4: intraclast-bearing very thin to thin-bedded mudstone

Description.

Facies 4 (F4) consists of light grey to dark grey, siliceous-argillaceous, fine-grained to coarse-grained mudstone (Figs 3J, 7A and B). Beds are generally hard to recognize due to the absence of clear bed contacts (Fig. 7A and B). When recognized, beds are 1 to 5 cm thick with a diffuse or sharp and erosional base (Figs 3K, 7A and B). Some beds are characterized by a two-part stratigraphy: (i) thin, normally graded, coarse mudstone lower subdivision (usually less than 1 cm thick); and (ii) thicker, ungraded and structureless, coarse mudstone upper subdivision (usually 1 to 5 cm thick) with common mudstone intraclasts (Fig. 7A). Some beds are ungraded with common mudstone intraclasts. Rarely preserved continuous to discontinuous planar-parallel to low-angle laminations occur in some beds (Fig. 7B). Millimetre-thick, brown banding is observed in places (Fig. 7B). Similar to those described in F3, the mudstone intraclasts are flattened with a sharp edge and contrast in colour with the surrounding mudstone matrix (Figs 3L and 7C to E). They are, however, usually smaller (from coarse mud to fine sand-sized). Some clasts are partially cemented by calcium phosphate and calcium carbonate (Fig. 7E). No significant differential compaction is observed in the mudstone matrix around the mudstone intraclasts (Fig. 7C to E). Calcium phosphate fragments with an internal organization (parallel lines) are observed (Fig. 7F). Common rounded, coarse mud to very fine-sand-sized quartz and feldspar are also observed with differential compaction of the surrounding mudstone matrix (Fig. 7D). Pyrite nodules and carbonate-rich concretions are common. Bioturbation is low to intense (BI: 2 to 5) and the trace fossil assemblage consists of small to large (<5 cm diameter) Helminthopsis and Phycosiphon with subordinate Chondrites, Conichnus, Cosmorhaphe, Planolites and Thalassinoides.

Interpretation.

The diffuse but commonly sharp and erosional bed contacts, planar-parallel to low-angle laminations, and common mudstone intraclasts indicate deposition by sediment density flows. Beds characterized by a thin, normally graded, lower subdivision overlain by a thicker, ungraded intraclast-rich mudstone upper subdivision (Fig. 7A) may represent deposition from flows that are transitional between turbulent and laminar (Baas et al., 2009; Sumner et al., 2009; Kane and Pontén, 2012). The lower normally-graded section may represent deposition by turbulent flow while the upper ungraded and intraclast-rich
section may represent deposition by laminar flow. Ungraded beds with mudstone intraclasts may represent rapid *en masse* deposition by low-strength, cohesive debris flows (equivalent to D_{M-1} of Talling *et al.*, 2012). The rare, planar-parallel to low-angle laminations suggest turbulent transport, potentially by dilute, low-density turbidity currents. Similar to F3, the mudstone intraclasts are interpreted to be eroded from partially consolidated sea floor sediments. Calcium-phosphate fragments with an internal organization are interpreted as reworked bone fragments. The low to intense bioturbation intensity, large burrow size, and high ichnodiversity indicate relatively low sediment accumulation rate and low frequency of flow events in a fully oxygenated bottom-water environment.

Facies 5: homogenous mudstone

Description.

Facies 5 (F5) consists of light grey to mid-grey, siliceous-argillaceous, fine-grained to medium-grained mudstone (Fig. 3M and N). No bed contacts are recognized. Similar to F3 and F4, coarse mud to fine sand-sized mudstone intraclasts are observed (Fig. 3O). Bioturbation has destroyed all primary sedimentary structures (BI: 6) and the trace fossil assemblage consists of small to large (<5 cm diameter) *Helminthopsis* and *Phycosiphon* with subordinate *Cosmorhaphe, Planolites* and *Teichichnus* (Fig. 9).

Interpretation.

The absence of preserved bed boundaries and physical sedimentary structures prevent an interpretation of the primary sedimentary processes. The observed mudstone intraclasts suggest either: (i) primary deposition dominantly *en masse* from low-strength cohesive debris flows (similar to F3 and part of F4); or by (ii) transitional flows (similar to F4). Deposition by dilute, low-density turbidity currents (similar to F1 and F2) or by vertical suspension fallout cannot be ruled out where mudstone intraclasts are not identified. Following deposition, sediment was homogenised by bioturbation, indicating deposition in a fully oxygenated bottom-water environment with low sediment accumulation rate.

Facies 6: carbonaceous mudstone
Description.

Facies 6 (F6) consists of dark grey to black, carbonaceous-argillaceous-siliceous, fine-grained to coarse-grained mudstone (Fig. 3P). Diffuse bed boundaries and remnant planar-parallel to low-angle laminations are suggested by thin-section observation (Fig. 3Q). No obvious grading is observed. Rare mudstone intraclasts and coarse mud to very fine sand-sized quartz and feldspar are recognized (Fig. 3R). The mudstone matrix shows differential compaction around the outsize quartz and feldspar (Fig. 3R). The concentration of carbonate-rich concretions and pyrite nodules is the highest of the succession (Fig. 2). This facies is characterized by an orthoconic nautiloid that represents the only macrofossil preserved in the succession. Bioturbation is moderate to intense (BI: 3 to 5) and the trace fossil assemblage is exclusively composed of very small (<1 mm diameter) Helminthopsis and Phycosiphon (cryptobioturbation).

Interpretation.

Diffuse bed boundaries and outsize grains indicate deposition influenced by sediment density flows. The common presence of carbonate-rich concretions and only rarely observed physical sedimentary structures, however, suggest dominant low energy processes. The presence of mudstone intraclasts and outsize grains suggests occasional deposition en masse by low-strength, cohesive debris flows or by transitional flows. The presence of the orthoconic nautiloid, which does not show evidence of transport, suggests deposition by vertical suspension fallout for part of this facies. Significant breaks in sediment accumulation took place to account for the development of carbonate-rich concretions (Taylor and Curtis, 1995). The pervasive presence of cryptobioturbation, the very low ichnodiversity and the very small burrow size all point toward deposition in a dysoxic bottom-water environment.

Facies 7: partially cemented mudstone

Description.

Facies 7 (F7) consists of light grey to mid-grey partially cemented mudstone (Fig. 3S to U). Cement consists of calcium carbonate and calcium phosphate. No physical sedimentary structures are recognized. Bioturbation is intense (BI: 6) and the trace fossil assemblage is dominated by large (<5 cm
diameter) *Helminthopsis* and *Phycosiphon* with subordinate *Chondrites, Conichnus, Cosmorhaphe* and *Planolites* (Fig. 9).

Interpretation.

The high cement content and intense bioturbation suggests a significant break in sediment accumulation rate that is associated with early diagenetic processes (Taylor and Curtis, 1995). These levels could potentially be associated with starved basin floor condensed horizons.

Facies 8: deformed deposits

Description.

Facies 8 (F8) consists of 5 to 6-m-thick, deformed material (Fig. 8A and B) stratabound by undeformed units. Three distinct deformed intervals are recognized in the core (Fig. 2). The lower deformed interval is 6.6 m thick (from 725.50 to 718.90 m; Fig. 2) and is dominated by plastic deformation with common soft-sediment deformation (Fig. 8A). Decimetre-thick blocks of ash-rich sandstone (F9) and macroscopic mudstone intraclasts similar to those described in F3 are observed (Fig. 3V and W). The middle deformed interval is 5 m thick (from 714.50 to 709.50 m; Fig. 2) and is characterized by a combination of plastic and brittle deformation (Fig. 8B). Plastic deformations consist of soft-sediment deformation (Fig. 3X). Brittle deformations consist of normal faults (mainly listric) and reverse faults with common fractures (Fig. 3Y). The upper deformed interval is 5.65 m thick (from 595.25 to 589.60 m; Fig. 2) and is characterized by intense brittle and plastic deformation similar to that of the middle-deformed section. Internal facies and trace fossils are similar to the rest of the stratigraphy.

Interpretation

The presence of both brittle and plastic deformation in stratabound units indicates slump or slide processes, and sea floor remobilization. The autochthonous nature of the material (facies and trace fossil assemblage) suggests an intrabasinal origin and relatively short travel distance.

Facies 9: ash-rich sandstone.
Description.

Facies 9 (F9) consists of ash-rich sandstone beds. Beds are 1 to 15 cm thick, sharp, erosional and normally graded (Fig. 3Z). The lower part of the bed usually consists of planar-parallel to low-angle current ripple laminated, very fine-grained sandstone. The middle part of the bed consists of normally graded, structureless sandstone with rare soft-sediment deformation. The upper part of the bed is strongly bioturbated and consists of fine-grained to medium-grained mudstone. Post-depositional cementation is common. Some observed carbonate-rich concretions (Fig. 2) may correspond to completely cemented, ash-rich sandstone beds.

Interpretation.

Based on the erosional base, normal grading and planar-parallel to low-angle laminations, the ash-rich sandstone beds are interpreted to be deposited by ash-rich, low-density turbidity currents. The higher porosity and permeability of this facies compared to the muddy facies may explain its preferential cementation.

Depositional environments

The range of depositional processes described here—low-density turbidity currents, debris flows, transitional flows, slumps and slides, and vertical suspension fallout, in combination with the stratigraphic context of overlying basin floor fans—suggests that this succession was deposited in a lower slope to basin-floor environment strongly influenced by sediment-density flows. The common slumps, slides, and tilted intervals (Fig. 2) suggest localized tilting and post-depositional sediment remobilization. The absence of wave-generated structures indicates deposition below storm wave-base. A deep-water environment is also suggested by the trace fossil assemblage (dominance of Helminthopsis and Phycosiphon with subordinate Chondrites, Conichnus, Cosmorhaphe, Planolites, Teichichnus and Thalassinoides; Fig. 9) that has been described in other deep-water marine successions (e.g. Loucks and Ruppel, 2007; Hubbard et al., 2009; Knaust and Bromley, 2012; Heard et al., 2014). The overall trace fossil assemblage is consistent with the distal Cruziana to proximal Zoophycus ichnofacies (MacEachern et al., 2007). The ichnodiversity is relatively low but bioturbation
intensity is highly variable (BI: 2–6; Fig. 2), suggesting intermittently stressed sea floor physicochemical conditions (MacEachern et al., 2007; Bhattacharya and MacEachern, 2009). Following deposition, the soft sediment was colonized by deposit-feeding and surface-grazing organisms (Bhattacharya and MacEachern, 2009).

Primary mud is interpreted to have been sourced via deltaic input based on the dominance of detrital grains (quartz, feldspar, mica), and common wood fragments. The location and size of the sediment delivery system is unknown due to uplift and erosional removal of the time equivalent shelf during the Cape Fold Belt orogeny during the Triassic. The absence of sand delivery into the system except for the ash-rich sandstone (F9) may be explained by: i) a dominance of mud-grade sediment delivered to the basin; or ii) a distal position relative to the feeder systems and/or time-equivalent sandstone deposits.

Depositional units

The 538.50-m-thick studied succession shows a repeatable, consistent arrangement of facies into 2–26-m-thick depositional units (Figs 2 and 10).

Description

The base of a depositional unit is defined at the transition (abrupt to gradational) from intraclast-bearing, very thin- to thin-bedded mottled mudstone (F4), homogenous mudstone (F5) or carbonaceous mudstone (F6) to very thin-bedded mudstone (F1) or more rarely mottled very thin-bedded mudstone (F2), that is marked by a dark to light colour change (Fig. 10). This transition is also marked by an abrupt decrease in bioturbation intensity and TOC (Fig. 10). The lower part of a unit is dominated by F1 intercalated with rare F2, muddy deformed deposits (F8) and tilted intervals. Beds usually thin upward and gradually become more bioturbated (transition from F1 to F2). Some rare units are characterized by a lower part dominated by mottled, very thin-bedded mudstone (F2) grading into very thin-bedded mudstone (F1) and then grading back into F2 (from 816.50 m up to 806 m for example; Fig. 2). In the unit targeted for TOC analysis, the lower part TOC values increase upward and range from 0.62 to 1.72 wt.% with an average of 0.93 wt.% TOC (n = 23) (Fig. 10).

In the upper part of the units, F2 grades to darker intraclast-bearing, very thin- to thin-bedded mottled mudstone (F4) and carbonaceous mudstone (F6) intercalated with rare mottled very thin-bedded
mudstone (F2), homogenous mudstone (F5), intraclast-bearing, thin- to medium-bedded mudstone (F3), and partially cemented mudstone (F7). The intensity of bioturbation, burrow size, concentration of pyrite and carbonate-rich concretions are usually higher than in the lower part of the units (Figs 2 and 10). However, grain-size is similar between the lower and upper parts. The upper part TOC values are higher and range from 1.06 to 2.28 wt.% with an average of 1.71 wt.% (n = 19) (Fig. 10). Ash-rich sandstone beds (F9) are found in both the lower and upper parts of the units (Figs 2 and 10).

Interpretation

These repeated and relatively well-organized mudstone depositional units show some variability in thickness and facies-binning pattern (Fig. 2), but all contain a lower part dominated by facies interpreted to record dilute, low-density turbidity currents, potentially derived from hyperpycnal input (F1, F2), together with occasional sediment remobilization (F8). The upper part is dominated by more bioturbated and organic-rich facies with common mudstone intraclasts (F3 to F6), interpreted as transitional flows and debris flow deposits with scarce indicators of suspension fallout processes.

The low bioturbation intensity and small burrow size in the lower part of a depositional unit (dominated by F1 and F2) suggest bottom-water physicochemically stressed conditions that may be linked to high sediment accumulation rate from relatively frequent low-density turbidity currents (Fig. 11) (e.g. MacEachern *et al.*, 2007; van der Kolk *et al.*, 2015). Freshwater input from hyperpycnal flows may have decreased bottom-water salinity and increased the stressed conditions for benthic organisms (e.g. MacEachern *et al.*, 2007; Flaig *et al.*, 2016). The deformed deposits (F8) suggest occasional and localized shelf or slope instabilities (Fig. 11) which may be related to the interpreted high sediment flux. The high sediment accumulation rate is also suggested by common soft-sediment deformations (Fig. 4C) and tilted intervals (Fig. 10). The vertical transition from F1 to F2 associated with an increase in bioturbation intensity and burrow size and a decrease of bed thickness (Fig. 12) suggests a gradual decrease in hyperpycnal flow activity with more time available between depositional events for benthic organisms to disturb the primary sedimentary fabric (e.g. Wetzel, 1991; MacEachern *et al.*, 2007; Heard *et al.*, 2014). The decrease in direct freshwater river input may have led to an increase of bottom-water salinity, therefore, decreasing bottom-water stressed conditions. The rare units characterized by F2 grading into F1 and grading into F2 suggests waxing-then-waning sediment flux.

The higher bioturbation intensity, bigger burrow size and organic enrichment of the debrites and
transitional flow deposits (F3 to F6) in the upper part of the depositional units suggest lower sediment
accumulation rate and frequency of flow events (Fig. 12). The debris flows and transitional flows may
have originated from shelf or slope instabilities (Fig. 11) or from the transformation of low-density
turbidity currents (e.g. Kane et al., 2017). The more common carbonate-rich concretions and partially
cemented mudstone (F7) indicate occasional depositional breaks associated with early diagenetic
processes and condensed horizons.

These observations suggest a gradual decrease in sediment accumulation rate and frequency of flow
events at the scale of a single depositional unit (Fig. 12) associated with a decrease in physicochemical-
stressed bottom-water conditions. The lower part of a depositional unit dominated by low-density
turbidites therefore represents relatively proximal deposits related to high rates of sediment input while
the upper part, dominated by transitional flow deposits and debrites, represents deposition in a more
distal or lateral position (Fig. 11). No significant grain size variations are observed between the lower
and upper part of a depositional unit, which suggests no major variations of sediment calibre supplied
to the deep-water environment. Possible controls on facies stacking pattern and unit organisation are
discussed below.

DISCUSSION

The record of hyperpycnal flows in deep-water mudstones

Hyperpycnal flow processes are interpreted to be common in the lower part of the depositional units
(Figs 10 and 12) marked by inversely-to-normally graded sections in bed type II on F1 (Fig. 4E). The
co-occurrence of both normally graded beds (bed type I) and inversely-to-normally graded beds (bed
type II) in F1 may be explained by the evolution of the flow structure during a sediment-density-flow
event. In distal basinal locations, the faster moving part of a hyperpycnal flow (generated during the river
flood peak discharge) tends to overtake the slower moving part of the flow such that the velocity
distribution pattern is similar to that of a surge-type current (Kneller and McCaffrey, 2003). As a
consequence, waxing-waning flow is usually only preserved in proximal location whereas distal basinal
location only records waning flow, and the resulting deposits resemble classic low-density turbidites
(Kneller and McCaffrey, 2003). Both normally graded and inversely-to-normally graded beds, however,
have been observed 700 km away from a river mouth in the Central Japan Sea (Nakajima, 2006). The latter study proposed that the presence of inversely-to-normally graded beds in such a distal basinal location was explained by a long-term lag between the beginning and the peak discharge of the flow such that the faster moving part of the flow does not overtake the slower moving part of the flow within the travel distance between the river mouth and the site of deposition.

It is proposed that the relatively scarce (but usually thicker) inversely-to-normally graded bed type II may have been deposited during larger flood events while the more common normally graded bed type I may have been deposited by lower-magnitude floods. A waxing-waning flow depositing bed type II is expected to wane in distal positions depositing normally graded beds (similar to bed type I). Bed type I and II may, therefore, be genetically linked and bed type I may represent the distal expression of bed type II (Fig. 13A). The common sharp contact between the middle and upper subdivisions in bed type I (Figs 4D and 5) may indicate that sediment was bypassed to more distal locations. Bed type I without a bypass surface may, therefore, represent the distal-most expression of river-derived turbidity currents recognized in this succession (Fig. 13A). Another potential mechanism for the deposition of bed type I is related to surge-type intrabasinal flows, induced by gravitational failure following rapid deposition of sediments in the delta front or slope during a flood event (Talling et al., 2013). This process, however, cannot account for the development of waxing-waning flows and the deposition of inversely-to-normally graded bed type II.

Hyperpycnites are widely described in the marine realm from shelf to basin-floor environments (Nemec, 1995; Mutti et al., 2003; Plink-Björklund and Steel, 2004; Petter and Steel, 2006; Bhattacharya and MacEachern, 2009; Zavala et al., 2011; Van der Kolk et al., 2015). This type of deposit may be more common than previously thought in the mudstone record as noted previously by Soyinka and Slatt (2008). A careful microscopic characterisation of thin beds—grading, sedimentary structures, stacking pattern, continental organic fragment content—may, therefore, help to recognize evidence for deposition by hyperpycnal flows in deep-water mudstones.

Origin and transport of mudstone intraclasts

A common feature recognized in F3, F4, F5 and F6 in the upper part of a depositional unit (Figs 10 and
is the presence of mudstone intraclasts. Recent studies have demonstrated that mudstone intraclasts are relatively common in mudstone successions deposited in a wide range of environments and that they can be eroded from water-rich mudstone at the sea floor, transported for tens to hundreds of kilometres as bed load, and deposited when the flow decelerates (Schieber et al., 2010; Plint et al., 2012; Schieber and Bennett, 2013; Plint, 2014; Schieber, 2016). When mudstone intraclasts are abundant, a diagnostic microscopic lenticular fabric is observed within the resultant deposits (e.g. Schieber et al., 2010; Schieber, 2016). Mudstone intraclasts can also form lags at the base of beds (e.g. Schieber, 1998; Plint et al., 2012). However, the deep-water mudstone facies described here are devoid of a lenticular fabric and the mudstone intraclasts are usually scattered in centimetre to decimetre thick beds rather than concentrated as lags. The interpreted range of depositional processes transporting and depositing these intraclasts (debris flows and transitional flows) have been observed in coarser grained, deep-water sediments from the Gulf of Mexico (Kane and Pontén, 2012). Kane et al. (2017) have shown that a turbulent flow can evolve into a debris flow (laminar) or a transitional flow with the entrainment of sea floor mud and flow deceleration. Here, the mudstone intraclasts are found mainly in the upper part of the depositional units interpreted to be deposited in a distal or lateral position relative to sediment input (Fig. 11). They are flattened but do not show bending or squeezing between more resistant particles. Moreover, some mudstone intraclasts are partially cemented by calcium phosphate and calcium carbonate. Post-depositional bioturbation of the clasts is usually limited compared to the mudstone matrix. Mechanisms for the incorporation, transport and deposition of these mudstone intraclasts (Fig. 13B) are:

1 Because of the interpreted distal or lateral position relative to the sedimentation input (Fig. 11), time was available between sediment density flows for early consolidation of mud on the sea floor (either on the shelf, the slope, or the basin-floor). This process is interpreted to generate the consolidation of the partially cemented mudstone (F7). Early consolidation of pre-compacted sea floor mud may have occurred due to bacterial mediated precipitation of calcite and phosphate cements in the pore space (Curtis, 1980; Plint and Macquaker, 2013).

2 Occasional muddy-sediment-density flows (turbulent or laminar) may have been triggered through shelf or slope instabilities (Fig. 11).
3 These sediment density flows may have eroded and entrained mudstone clasts from the partially consolidated sea floor (Figs 3G and 6A). These rip-up intraclasts may have travelled for tens to hundreds of kilometres (e.g. Schieber, 2010) and may have been abraded and disintegrated due to particle collision.

4 The generation of smaller particles may have increased cohesion of the flow, triggering transformation into a debris flow (laminar) or transitional flow (laminar and turbulent) (Baas et al., 2009; Sumner et al., 2009; Kane et al., 2017). Flow transformation may have also occurred due to flow deceleration linked to the presence of sea floor topography (Sumner et al., 2009).

5 Depending on the flow state during flow deceleration, either debrites or transitional flow deposits were preserved.

6 The relatively flat shape of the mudstone intraclasts suggests that they were subsequently compacted during burial (Schieber, 2016). Alternatively, the clasts may have been eroded from consolidated sea floor mudstone as relatively flat rip-up intraclasts. The limited post-depositional bioturbation of the mudstone intraclasts compared to the mudstone matrix suggests that they were deposited as partially consolidated particles, to be able to resist biogenic disruption.

Debrites and transitional flow deposits have also been recently recognized in other deep-water mudstone successions (Konitzer et al., 2014; Harazim and McLlroy, 2015; Newport et al., 2018). Therefore, these energetic flows, usually associated with sandy deep-water systems, may be more common in deep-water mudstone successions than previously thought. Moreover, distal or lateral positions, usually interpreted to be characterized by vertical suspension fallout processes in deep-water environments, may include significant volumes of the deposits of higher energy sediment density flow processes.
Allogenic and autogenic controls on the depositional units

The vertical facies stacking pattern observed within a single depositional unit may be related to allogenic and/or autogenic controls, both of which are discussed below. The upward increase in bioturbation intensity, burrow size and early cementation processes within most depositional units is interpreted to represent a decrease in sediment accumulation rate and frequency of flow events (Fig. 12). This suggests deposition in a gradually more distal or lateral environment relative to the sediment input.

A commonly presented allogenic control on deep-water systems is relative sea-level (e.g. Posamentier et al., 1991; Posamentier and Kolla, 2003; Flint et al., 2011). The usually sharp base to each depositional unit, with dominance of hyperpycnal flows and low bioturbation (Figs 10 and 12) can be interpreted as consistent with times of lowered sea-level. Hyperpycnal flows preferentially develop during lowstand when deltas are at the shelf edge or at the canyon head, providing a frequent supply of low-density turbidity currents downslope (e.g. Mitchum et al., 1977; Mutti, 1985; Shanmugam et al., 1985; Mutti and Normak, 1991; Posamentier et al., 1991). Moreover, muddy sediments near the shelf edge at lowstand are prone to collapse, generating mass-wasting processes, possibly recorded by the deformed deposits (F8). The collapse scars generated on the shelf edge or the slope may have acted as conduits for hyperpycnal flow, thus increasing runout distance (Henriksen et al., 2011). Other authors have proposed that hyperpycnal flow activity decreases at lowstand because rivers tend to merge and drain larger catchment areas, which decreases the river sediment load (Mulder and Syvitski, 1995, 1996). The usually low bioturbation intensity, small burrow size and common instability indicators (soft sediment deformations, tilting) in the interpreted hyperpycnites (F1 and F2; Figs 10 and 12) suggest a high frequency of flow events and a high sediment accumulation rate that are more likely to occur during relative sea-level fall.

The upper part of a depositional unit is always dominated by more bioturbated debrites and transitional flow deposits (Figs 2, 10 and 12). The interpreted lowered sediment flux to the deep-water environment is consistent with the reduced sediment supply expected during highstands of relative sea level, due to increased shelf accommodation and sediment storage. This reduction in sediment supply may have promoted early consolidation of sea floor mud, and occasional sediment density flows derived from shelf or slope instabilities may have reworked the sea floor to deposit rip-up mudstone intraclasts.

Highstands in deep-water environments are usually characterized by anoxic to dysoxic conditions, high
TOC content and common pyrite (e.g. Wignall, 1994; Bohacs, 1998; Abouelresh and Slatt, 2012; Ayranci et al., 2018b). Hemipelagic and pelagic vertical suspension fallout is usually the dominant interpreted depositional processes with only rare sediment-density flows (e.g. Konitzer et al., 2014). The dataset for this study strongly challenges this generalized model insofar as the upper part of each depositional unit is mostly characterized by the product of sediment-laden flows (mostly debris flows and transitional flows; Fig. 12). Moreover, the pervasive presence of bioturbation indicates a persistent oxygenated sea floor. Recent studies of shelf mudstone successions indicate the presence of active sedimentary processes (storms, geostrophic currents, wave-enhanced gravity flows) that re-suspend previously deposited mud to generate turbidity currents moving downslope by gravity (Ichaso and Dalrymple, 2009; Macquaker et al., 2010; Denommee et al., 2016; Poyatos-Moré et al., 2016; Birgenheier et al., 2017). Shelf sedimentary processes may therefore have generated intermittent sediment density flows, which reached basin-floor environments in the Lower Ecca Group during highstand conditions, allowing oxygenation of the sea floor.

Another common mechanism controlling deep-water stacking pattern is autogenic compensational stacking (e.g. Mutti and Sonnino, 1981; Deptuck et al., 2008; Prélat et al., 2009; Prélat and Hodgson, 2013). In this model, successive muddy low-density turbidites (F1 and F2) created depositional topography. Through time, the generation of topography may have re-routed later low-density turbidity currents laterally into topographic lows. Due to the gradual decreasing sediment flux, in a vertical 1D stratigraphic section, bed thickness is expected to decrease upward, while bioturbation intensity and burrow size are expected to increase, as observed in our dataset within a single depositional unit (Figs 10 and 12). The high bioturbation intensity and larger burrows observed in the upper part of the depositional units (dominated by F3 to F7) may, therefore, be related to a more lateral position relative to the sediment entry point (Fig. 11). In this environment further from the main sediment input, the lower sediment accumulation rate may have favoured early consolidation of sea floor mud and the growth of early cements with occasional erosion and entrainment of rip-up intraclasts by flows derived from shelf or slope instabilities. The usually abrupt base of the overlying unit (Fig. 10) may indicate avulsion of the sediment entry point in the upstream part of the system (e.g. Gervais et al., 2006; Prélat et al., 2009).

In summary, the well-ordered and repeated nature of the depositional units is consistent with a
regular control mechanism. The 1D nature of the core dataset limits the analysis of autogenic and allogenic controls, which requires regional mapping of units and key surfaces to assess whether the strongly organized nature of the stratigraphy is present at a larger scale.

Stacking pattern of depositional units

The thickness of depositional units and proportion of facies vary stratigraphically (Fig. 2). This stacking pattern is interpreted to record long-term changes in depositional conditions in the deep-water environment of the Karoo Basin. The core succession is linked to existing lithostratigraphy (Johnson et al., 2006), based on sedimentological and stacking pattern differences (Fig. 2). The dominance of carbonaceous mudstone (F6) in the Prince Albert and Whitehill formations (Fig. 2) suggests a distal position relative to the sediment entry point. This is also suggested by common concretions (Fig. 2). The upward decreasing proportion of F6, increasing proportion of very thin-bedded mudstone (F1) and mottled very thin-bedded mudstone (F2), and increasing depositional units thickness in the Collingham and lower Tierberg formations suggest a progressive increase of energy in the deep-water environment, likely produced by long-term progradation of the sediment delivery system. The middle Tierberg Formation records the thickest depositional units and the lowest bioturbation intensity of the succession. The proportion of F1 and F2 within each depositional unit is the highest of the succession. Indicators of sediment instability (deformed deposits and tilted intervals) are also common. This part of the succession, therefore, records the highest energy conditions and sediment flux associated with the maximum progradation. Decreasing unit thickness in the upper Tierberg Formation, associated with the decreasing proportion of F1 and F2, increasing bioturbation intensity and transition from coarse to fine mudstone, suggests decreasing sediment flux consistent with a retrogradation of the sediment delivery system. The decreasing grain size could also be related to a change of sediment calibre delivered to the deep-water environment, linked to a major rearrangement of the basin margin.

To summarize, the stacking pattern of successive depositional units indicate a long-term progradation of the sediment delivery system, followed by a major retrogradation, before the emplacement of the overlying sandy basin floor fans of the Skoorsteenberg Formation (Johnson et al., 2001; Hodgson et al., 2006). This demonstrates that a detailed multi-scale characterization of thick and
continuous deep-water mudstone successions may help to evaluate the evolution of depositional conditions within deep-water environments.

CONCLUSIONS

This study documents an exceptionally thick and continuous deep-water mudstone succession from the Permian Karoo Basin. The combination of macroscopic and microscopic descriptions allowed for the definition of nine sedimentary facies deposited by a wide range of processes—low-density turbidity currents, debris flows, transitional flows, slumps, slides, vertical suspension fallout—in a dominantly oxic to dysoxic environment. Facies stack to produce repeated and well-organized 2 to 26-m-thick depositional units. Each unit is characterized by a lower part dominated by low-density turbidites, with evidence for hyperpycnal flow processes and sediment remobilization, and an upper part dominated by debrites and transitional flow deposits with common mudstone intraclasts. These units show an internal upward increase in bioturbation intensity, burrow size, total organic carbon, and early cementation processes interpreted to indicate a gradual decrease in sediment accumulation rate and frequency of flow events. This vertical pattern suggests deposition in gradually more distal or lateral environments relative to the sediment input. At the larger scale, successive depositional units thicken-upward and then thin-upward, interpreted to represent a long-term progradational to retrogradational stratigraphic trend. This thick deep-water mudstone successions contains no clear evidence for volumetrically significant deposition by pelagic and hemipelagic suspension fallout, challenging the traditional view that deep-water mud are deposited by slow rainout in quiescent environments. Conversely, this study suggests that most deep-water mud can be transported and deposited by tractive transport processes along continental margins, which has implications for the correct interpretation of time of clastic starvation and depositional rates in deep-water environments. More systematic descriptions of deep-water mudstones using a range of techniques—conventional core logging, optical microscopy, electron microscopy, ichnology—similar to the characterization of shallow-water mudstones is, therefore, needed to fully capture their heterogeneity, which may also have a major impact on seal capacity or unconventional reservoir characterization, as well as on palaeoenvironmental reconstructions.
ACKNOWLEDGMENTS

The work presented here is part of the SLOPE Project, Phase 4. We thank the consortium of sponsors (Anadarko, BHPBilliton, BP, CNOOC-Nexen, ConocoPhillips, Equinor, Maersk, Murphy, Neptune Energy, Petrobras, Premier Oil, Shell, Total, VNG Norge and Woodside) for financial support. We also thank the AAPG Foundation Grant-in-Aid program for the award of the Institut Francais du Pétrole Grant, which part-funded this project. We thank De Ville Wickens for field support and the Karoo farmers for access to their land. We thank Andy Connelly for support for the geochemical analysis and for the access to the Cohen Laboratory at the University of Leeds. Rachel Healy, Charlotte Allen and Luz Gomis Cartesio are thanked for their assistance in the core store. The manuscript greatly benefited from thorough and constructive reviews by Associate Editor Kyle Straub and two anonymous reviewers.

References

Ayranci, K., Harris, N.B. and Dong, T. (2018b) High resolution sequence stratigraphic reconstruction of mud-dominated systems below storm wave base; a case study from the Middle to Upper Devonian Horn River Group, British Columbia, Canada. Sed. Geol., 373, 239–253.

Catuneanu, O., Hancox, P.J. and Rubidge, B.S. (1998) Reciprocal flexural behaviour and contrasting...
stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa.

Figure captions

Fig. 1. Study area. (A) Satellite view of southwest South Africa with location of study area (Tanqua depocentre) indicated by white square. (B) Satellite view of Tanqua depocentre situated along eastern side of N–S Cederberg Branch of the Cape Fold Belt. Black square indicates location of zoomed map. Red dot indicates location of OR-01 core presented in this study. (C) Schematic stratigraphic log of Karoo Supergroup in Tanqua depocentre with stratigraphic extent of core presented in this study indicated by red dotted square. Adapted from Wickens (1994).

Fig. 2. Summarized sedimentary log of the OR-01 core (from 948.5 m to 410 m), including facies, bioturbation intensity, tilted intervals, pyrites nodules, concretions and thin section locations. Dotted lines in ash column indicate where an ash bed is not preserved in core but ash material was recovered during drilling. See Fig. 1 for geographical location. Bioturbation intensity scale from Taylor and Goldring (1993). The Tierberg Formation has been subdivided into three parts based on variations in depositional units stacking pattern. fm = fine mudstone, cm = coarse mudstone.

Fig. 3. Illustrations of the nine facies identified in OR-01 core. White dotted squares in core views indicate locations of thin-section views. White dotted squares in thin-section views indicate locations of optical microscope views. **Facies 1:** very thin-bedded mudstone. (A) Dry core photograph (641.60 m). (B) Thin-section scan. Erosional beds, normally graded or inversely-to-normally graded and characterized by planar-parallel laminations. Detailed sedimentary log of thin section presented in Fig. 4A. (C) Optical microscope photograph. Coarse mudstone dominated by quartz (Q) and clay. Common wood fragments (WF) and micas (M). **Facies 2:** mottled very thin-bedded mudstone. (D) Dry core photograph (753.65 m). Beds usually discontinuous. (E) Thin-section scan. Erosional beds with laminations rarely preserved (yellow arrows). (F) Optical microscope photograph. Texture similar to F1. Potential mudstone intraclast (yellow-dotted line). **Facies 3:** intraclast-bearing thin-bedded to medium-bedded mudstone. (G) Dry core photograph (508.80 m). Erosional dark grey medium mudstone bed overlying partially cemented mudstone (F7). Pebble-sized mudstone intraclasts located in basal part of bed (yellow-dotted lines). (H) Thin-section scan. Erosional contact. Note stringer-type texture of mudstone intraclast and pyrite aggregate above basal erosional surface. (I) Optical microscope photograph. Poorly sorted texture
dominated by quartz (Q) floating in matrix of clay and wood fragments (WF). Note medium sand-sized intraclast (yellow-dotted lines). **Facies 4**: intraclast-bearing, very thin-bedded to thin-bedded mudstone.

(J) Dry core photograph (609.90 m). Bed boundaries usually faint and hard to spot at core scale. (K) Thin-section scan. Two bioturbated beds recognized in upper part without clear grading (bed bases indicated by yellow arrows). (L) Optical microscope photograph. Coarse mudstone. Dominance of quartz (Q) and clay. Common wood fragments (WF). Note fine sand-sized mudstone intraclast (yellow dotted lines). **Facies 5**: homogenous mudstone. (M) Dry core photograph (486.40 m). Fine to coarse mudstone. No physical sedimentary structures recognized due to intense bioturbation. (N) Thin-section scan. Mottled texture. (O) Optical microscope photograph. Texture consists of dominance of quartz (Q), clay and wood fragments (WF). Note medium sand-sized intraclast (yellow dotted line). **Facies 6**: carbonaceous mudstone. (P) Dry core photograph (930.54 m). Dark grey coarse mudstone, structureless at core scale. (Q) Thin-section scan. Subtle bed contacts (yellow arrows). White arrows indicate remnant low-angle to planar-parallel laminations. (R) Optical microscope photograph. Texture dominated by quartz floating in matrix of wood fragments and clays. Note fine sand-sized feldspar grain. **Facies 7**: partially cemented mudstone. (S) Dry core photograph (782.85 m). Intensely bioturbated cemented mudstone. (T) Thin-section scan. (U) Optical microscope photograph. Cement consists of calcium carbonate and calcium phosphate. **Facies 8**: deformed deposits. (V) Dry core photograph (725.60 m) showing base of lower deformed interval. Base indicated by white-dotted line. Note presence of mudstone intraclasts (yellow arrows) and similar texture observed in F3. (W) Dry core photograph (723.50 m) showing internal deformation of lower deformed interval. Note overturned strata below ash-rich sandstone block as well as the soft-sediment deformation into ash-rich sandstone bed. (X) Dry core photograph (711.70 m) showing internal deformations of middle deformed interval. Note combination of plastic and brittle deformation. (Y) Dry core photograph (593.30 m) showing internal deformations of upper deformed interval. Note combination of plastic and brittle deformation. **Facies 9**: ash-rich sandstone. (Z) Wet core photograph (552.20 m). Sharp-based, normally graded, ash-rich, very fine-grained sandstone bed. Lower part characterized by planar-parallel to low-angle laminated very fine sandstone passing upward into bioturbated, structureless to deformed very fine sandstone with carbonate cemented top. Sharp contact between the very fine sandstone and bioturbated (Helminthopsis) coarse mudstone (mud cap) is present.

Fig. 4. Facies 1 (very thin-bedded mudstone): examples of key features. (A) Wet core photograph
(700.15 m). Fine to coarse mudstone with continuous mm-thick normally graded, inversely graded or inversely-to-normally graded beds. Bioturbation dominated by Helminthopsis (He) and Phycosiphon (Ph). (B) Wet core photograph (771.92 m). Scour (black dotted line) with coarse sand-sized mudstone clasts (white arrows). Carbonate-cemented bed with pyrite nodule located above scour. Bioturbation dominated by Helminthopsis (He). (C) Wet core photograph (620.80 m). Soft-sediment deformation. Black dotted lines indicate planes of deformation. (D) Optical microscope photograph (641.60 m). Example of bed type I. Erosional basal contact (black dotted line); lower subdivision (1) coarse mudstone with discontinuous planar-parallel laminations (yellow arrows indicate laminae); middle subdivision (2) structureless and normally graded coarse mudstone; upper subdivision (3) sharp-based ungraded bioturbated fine mudstone. (E) Optical microscope photograph (619.64 m). Example of bed type II. Gradational basal contact (black dotted line); lower subdivision (1) inversely graded fine to coarse mudstone with continuous planar-parallel laminations (yellow arrows indicate laminae); middle subdivision (2) structureless and normally graded fine to coarse mudstone; upper subdivision (3) sharp-base ungraded fine bioturbated mudstone. (F) BSE SEM image (641.60 m). Coarse mudstone, siliceous-argillaceous. Common wood fragments. Common quartz (Q) with minor mica (M), pyrite (Py) and feldspar.

Fig. 5. Facies 1 (very thin-bedded mudstone) microstratigraphy. Bed types (I or II) indicated close to graphic log. Note dominance of bed type I in the two examples. (A) Dry core photograph (left) and thin section scan (right) (641.60 m). Note complex microstratigraphy and pervasive presence of small burrows (mainly Helminthopsis and Phycosiphon). (B) Dry core photograph (left) and thin section scan (right) (814.70 m). Note soft-sediment deformations in thick bed at 1.6 cm. fm = fine mudstone; cm = coarse mudstone.

Fig. 6. Facies 3 (Intraclast-bearing thin- to medium-bedded mudstone) example of key features. (A) Wet core photograph (825.73 m). Intraclast-bearing, ungraded coarse mudstone. Largest intraclasts concentrated in lower part of bed (yellow arrows). Middle part of bed characterized by structureless coarse mudstone with smaller intraclasts. Upper part more pervasively bioturbated (Helminthopsis). Underlying partially cemented mudstone (F7) characterized by Conichnus (Co). Note similar texture between the mudstone intraclasts and the underlying cemented mudstone facies (B) Wet core photograph (500.74 m) of intraclast-bearing coarse mudstone. Intraclasts aligned along coarser grained
Fig. 7. Facies 4 (intraclast-bearing very thin to thin-bedded mudstone) examples of key features. (A) Wet core photograph (568.34 m). Coarse-grained mudstone beds. Beds with two subdivisions: (i) normally graded coarse mudstone; and (ii) ungraded intraclast-bearing coarse mudstone (intraclasts indicated by yellow arrows). (B) Wet core photograph (665.15 m) of faintly bedded coarse mudstone. Note brown banding and laminae (white arrows). (C) Optical microscope photograph (946.58 m) of argillaceous-siliceous coarse mudstone. Note very fine sand-sized intraclast (yellow-dotted lines). (D) Optical microscope photograph (672.41 m) of poorly sorted argillaceous-siliceous coarse mudstone. Note intraclasts (yellow-dotted lines) and very fine sand-sized quartz (Q). (E) BSE-SEM image (672.41 m). Close-up view of an intraclast partially cemented by calcium phosphate and calcium carbonate in a matrix dominated by quartz and clay. (F) BSE-SEM image (672.41 m). Close-up view of calcium phosphate-rich elongated fragment, with internal structure, interpreted as a reworked bone fragment.

Fig. 8. Facies 8 (deformed deposits) examples of key features. Some deformations have been highlighted by black lines. (A) Dry core photograph of the lower deformed interval (from 725.50 to 718.90 m). Deformed interval bounded by white dotted lines. Dominance of plastic deformation (soft-sediment folding, liquefaction and sand injections). Note presence of decimetre thick, ash-rich sandstone blocks. (B) Dry core photograph of the middle-deformed interval (from 714.50 to 709.50 m). Base indicated by white dotted line. Plastic and brittle deformation. Plastic deformation consists of soft-sediment folding, liquefaction and sand injectites. Brittle deformation consists of normal faults (mainly listric) and reverse faults.

Fig. 9. Wet core photographs of trace fossils encountered in OR-01 succession. (A) Phycosiphon in F7 (555 m). (B) Helminthopsis in F1 (668.57 m). (C) Conichnus in F2 (743.70 m). (D) Planolites in F1 (695.31 m). (E) Thalassinoides in F2 (948.40 m). (F) Cosmorhaphe in F2 (847.90 m). (G) Chondrites in F2 (701 m). (H) Teichichnus in F5 (429 m). Note the different scales of the illustrations.

Fig. 10. Example of a deep-water mudstone depositional unit (from 646.15 to 628.65 m). See Fig. 2 for stratigraphic position. Note vertical transition from dominance of F1 to dominance of F2 and F4 as...
observed in other depositional units in rest of succession. Facies transition accompanied with increase of bioturbation intensity and TOC. Bioturbation intensity scale from Taylor and Goldring (1993).

Fig. 11. Depositional model of Lower Ecca Group in southwest Karoo Basin. Low-density turbidity currents predominant near the sediment entry point (depositing F1 and F2), whereas debris flows and transitional flows predominant in a lateral or distal position (depositing F3, F4, F5 and F6). Early cementation processes (F7) in areas of low sediment accumulation rate in lateral or distal position.

Fig. 12. Summary conceptual schematic of deep-water mudstone depositional unit. Bed expressions of different facies illustrated. Bioturbation intensity scale from Taylor and Goldring (1993).

Fig. 13. Interpreted depositional processes depositing deep-water mudstones in the Lower Ecca Group of the southwest Karoo Basin. (A) In lower part of depositional units, depositional processes dominated by river-derived, dilute, low-density turbidity currents (hyperpycnal flows). Normally graded bed type I interpreted to represent distal expression of inversely-to-normally graded bed type II. (B) In upper part of depositional units in a lateral or distal position relative to the sediment input, depositional processes dominated by debris flows and transitional flows. Blue colour indicates early cementation and consolidation of the mud at the sea floor.
Figure 1
Figure 2
<table>
<thead>
<tr>
<th>Facies 1</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very thin-bedded mudstone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facies 2</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottled very thin-bedded mudstone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facies 3</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraclast-bearing thin- to medium-bedded mudstone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 (part 1)
<table>
<thead>
<tr>
<th>Facies 4</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraclast-bearing very thin to thin-beded mudstone</td>
<td>1 cm</td>
<td>5 mm</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facies 5</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogenous mudstone</td>
<td>1 cm</td>
<td>5 mm</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facies 6</th>
<th>Core</th>
<th>Thin Section</th>
<th>Optical Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaceous mudstone</td>
<td>1 cm</td>
<td>5 mm</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

Figure 3 (part 2)
<table>
<thead>
<tr>
<th>Facies 7</th>
<th>Facies 8</th>
<th>Facies 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially cemented mudstone</td>
<td>Deformed deposits</td>
<td>Ash-rich sandstone</td>
</tr>
</tbody>
</table>

Core

- S
- F4
- F7
- F4

Thin Section

- T
- 5 mm

Optical Microscope

- U
- 100 μm

Figure 3 (part 3)
<table>
<thead>
<tr>
<th>Core</th>
<th>Thin Section</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Thin Section Image](5 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5

- **Bed type**
 - Structureless bed
 - Inversely-graded bed
 - Erosional base
 - Bioturbated top (Heimarthropod)
 - Bed truncation
 - Normally-graded bed
 - Inversely-to-normally graded bed
 - Gradational bed base
 - Planar-parallel laminations
 - Bioturbated top (Heimarthropod)
 - Normally-graded bed
 - Soft sediment deformation
 - Planar-parallel laminations
 - Inversely-to-normally graded bed
 - Strongly-bioturbated beds
 - Bed truncation
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Volcanic activity (Cholyol Volcanic Arc Province)

Accumulation of ash materials on the shelf

Karoo Basin

Not to scale

Low-density turbidity currents
Transitional flows / Debris flows

Figure 11
Figure 12

Depositional Unit Scale

Bed Scale

Depositional Processes

1. Low-density turbidity current
2. Transitional flow
3. Debris flow

- Low-density turbidity current
- Transitional flow
- Debris flow

Waning and waning-waning low-density turbidity current

Waning low-density turbidity current

Waxing-waning low-density turbidity current

Legend:

- Very thin-beded mudstone
- Mottled very thin-beded mudstone
- Intraclast-bearing thin- to medium-beded mudstone
- Intraclast-bearing very thin to thin-beded mudstone
- Carbonaceous mudstone
- Partially cemented mudstone
- Deformed deposit
- Ash-rich sandstone
- Burrow
- Macroscopic pyrite
- Mudstone intraclast
- Planar-parallel lamination

Figures:

- Fig. 3A
- Fig. 3B
- Fig. 3C
- Fig. 3D
- Fig. 3E
- Fig. 4A
- Fig. 4B
- Fig. 4C
- Fig. 4D
- Fig. 4E
Figure 13