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Abstract The Hamilton-Slutsky endogenous timing methodology is applied to differentiated 

duopolies where, motivated by access pricing literature, one firm owns an essential input, 

sold wholesale to the rival. Both firms then set retail prices for their differentiated goods. The 

scenario and results are different from standard endogenous timing duopolies, encompassing 

three prices (one wholesale, two retail) rather than two, with unique timing game equilibrium 

which always entails retail price leadership by the input owner, thus providing a new and 

powerful rationalisation for “Stackelberg”. The results call into question the generic access 

pricing assumption that simultaneous moves determine retail (downstream) prices. 
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I Introduction 

In a Bertrand duopoly where each firm chooses the price of the differentiated good it 

produces, and where demand is linear and symmetric and marginal costs are constant and 

symmetric, it is well-known that firms would prefer to be involved in a sequential “basic 

game”
3
 where they move second as price followers to one where they are price leaders, which 

in turn is preferred to the basic game where prices are chosen simultaneously. Such 

preferences survive to different and considerably more general settings than those just 

described; see Gal-or (1985), Dowrick (1986), Hamilton and Slutsky (1990), Amir and Grilo 

(1999), van Damme and Hurkens (1999), van Damme and Hurkens (2004), Amir and 

Stepanova (2006). If one of the firms (the “strong” firm) has the exogenous advantage of a 

lower marginal cost then Amir and Stepanova (2006) show that this firm’s preference over 

the sequential basic games will reverse when the cost difference is large enough, but both 

remain preferred to the simultaneous move game; the preferences of the high cost (“weak”) 

firm do not change. 

Following the methodology of Hamilton and Slutsky (1990), Amir and Stepanova (2006) 

embed these basic games in an endogenous timing game
4
, where firms first choose the timing 

of their price decisions (two possibilities; “early” or “late”), and the relevant basic game is 

then played out. Again it is well-known that such a timing game has multiple (two) pure 

strategy subgame perfect equilibria, each entailing sequential moves, in either order. 

Adopting risk dominance as an equilibrium selection device, Amir and Stepanova (2006) 

show that the risk dominant equilibrium will be the one where the more efficient firm leads, 

thus allowing “… a simple and natural explanation for the endogenous emergence of price 

leadership, with the leader being the strong firm, as originally envisaged by von Stackelberg 

(1934)…” (Amir and Stepanova (2006, p.3-4)). For ease of reference we refer to the two 

price, two date model of existing endogenous timing literature as “standard duopoly”.  

The objective of this note is to bring the Hamilton and Slutsky methodology to bear on a 

duopoly scenario quite different from standard duopoly – the strength of our strong firm 

stems from ownership of an essential input, a specification derived from the literature on 

access pricing, foreclosure and upstream/downstream competition. Quite different 

endogenous timing conclusions emerge: in senses to be made precise, both firms will prefer 

price leadership, and timing game equilibria will be unique and will always entail price 

leadership by the strong firm, thus providing a new and powerful confirmation of the von 

Stackelberg vision. 

In our duopoly scenario the strong firm (firm 1) does not have an exogenous marginal cost 

advantage, but is exogenously endowed with ownership of an indivisible essential input, 

which is sold wholesale to the rival (firm 2, the weak firm), allowing both firms to produce 

                                                           
3
 The terminology is due to Hamilton and Slutsky (1990). 

4
 Hamilton and Slutsky (1990) propose 2 alternative formats for endogenous timing games: Amir and Stepanova (2006) 

assume the “observable delay” format – see also Amir and Grilo (1999); Van Damme and Hurkens (1999, 2004) employ the 

“action commitment” format. 
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differentiated goods and engage in retail price competition. Firm 1 chooses a wholesale per 

unit price ℎ1, providing it with wholesale revenue from firm 2 of  ℎ1 for each unit of firm 2’s 

sales. 𝑠1 and 𝑠2 denote retail prices chosen by the two firms, each receiving the resulting 

retail revenues; ℎ1 becomes the endogenous marginal cost differential
5
. Our endogenous 

timing game
6
 thus entails three prices, ℎ1, 𝑠1, 𝑠2, and, to capture all relevant sequential 

possibilities, three dates; price leadership will mean retail price leadership – firm 𝑖 is retail 

price leader if 𝑠𝑖 is chosen at a date prior to 𝑠𝑗. The scenario is clearly different from the two 

price, two date standard duopoly. However we assume there is symmetric, linear retail 

demand for the differentiated goods derived from a quadratic utility function representative 

consumer, similar to Amir and Stepanova (2006).  

The literature relevant to our scenario has studied a variety of industry structures and models, 

some with many upstream essential input providers (similar to our strong firm), some with 

many downstream rivals (similar to our weak firm), some with endogenous ownership of the 

essential input, and some with alternatives to wholesale per customer prices, such as lump 

sum charges or two-part tariffs; see for instance the handbook chapter by Rey and Tirole 

(2007). Our more specific structure has just one strong firm providing the exogenously 

owned input to one weak rival at a wholesale per customer price, and is a structure which has 

emerged as a benchmark for studies of the pay-TV market (see Weeds (2016)); there the 

essential input is some premium content programming (e.g. movies, sports) over which the 

strong firm has acquired initial exclusive access. A well-knownn example is the provision by 

BskyB of their Sky Sports channel. BskyB won more or less exclusive rights to televise live 

games from soccer’s English Premier League for at least the period 1992-2007, and sold 

access to the resulting Sky Sports channel (the essential input) at a wholesale per customer 

price, often to just one pay-TV rival. However in both this specific pay-TV literature and 

more generally, the assumption of simultaneous decisions on all downstream/retail prices 

seems to be more or less generic
7
; such an assumption is called into question by the results 

here.  

 

Section II describes in detail the basic and endogenous timing games for our scenario. 

Section III (plus Appendix A and the Online Appendix) provides the results and Section IV 

concludes. 

 

II The Model 

There are two profit-maximizing firms labelled 𝑖 = 1,2. Firm 1 owns an essential indivisible 

input which allows it to produce good 1 in any non-negative quantity, at constant marginal 

cost assumed to be zero, and which it sells wholesale to firm 2. Firm 2 can then produce the 

differentiated good 2 in any non-negative quantity at zero marginal (production) cost. Firm 1 

                                                           
5
 Other marginal costs are zero for both firms. 

6
 With observable delay, as in Amir and Stepanova (2006). 

7
 The only exception known to the authors is Madden and Pezzino (2013) who addressed some regulatory issues regarding 

Sky Sports, and where it was assumed that BSkyB was retail price leader.  
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chooses the retail price of good 1, 𝑠1 ≥ 0, and firm 2 chooses the retail price of good 2, 

𝑠2 ≥ 0. Firm 1 also chooses the wholesale per customer price ℎ1 ≥ 0 and receives from firm 

2 wholesale revenue of ℎ1x (sales of good 2). 

There is a representative consumer who derives quadratic utility from consuming the 

differentiated goods 1 and 2 in quantities 𝑞1 ≥ 0 and 𝑞2 ≥ 0 given by; 

                              𝑈(𝑞1, 𝑞2 ) = 𝑞1 + 𝑞2 − 
1

2
𝑞1
2 −

1

2
𝑞2
2 − 𝛾 𝑞1𝑞2  

𝛾 ∈ (0,1) is the substitutability parameter; the extremes 𝛾 = 1 and 𝛾 = 0 indicate 

respectively perfect substitutes (effectively perfect retail market competition) and 

independent goods (retail monopolies).  With quasi-linear full utility 𝑞0 + 𝑈(𝑞1, 𝑞2 ) where 

𝑞0 ≥ 0 is a numeraire good whose endowment is sufficient to ensure 𝑞0 > 0 always, the 

consumer’s demands for goods 1 and 2 are piecewise linear in prices. It is convenient for 

exposition and entails no loss (results are essentially unchanged, as is shown in the Online 

Appendix) to restrict each 𝑠𝑖 (and ℎ1) to the interval [0,1], in which case demands are
8
: 

                 𝐷1(𝑠1, 𝑠2) =

{
 
 

 
 1 − 𝑠1  if 𝑠1 <

𝑠2

𝛾
−
1−𝛾

𝛾
                                                            

                                                         
1

1+𝛾
−

1

1−𝛾2
𝑠1 +

𝛾

1−𝛾2
𝑠2  if 

𝑠2

𝛾
−
1−𝛾

𝛾
≤ 𝑠1 < 1 − 𝛾 + 𝛾𝑠2 

0  if 1 − 𝛾 + 𝛾𝑠2 ≤ 𝑠1                                                             
                                                           

      (1) 

                 𝐷2(𝑠1, 𝑠2) =

{
 
 

 
 

                                                            

1 − 𝑠2  if 𝑠2 <
𝑠1

𝛾
−
1−𝛾

𝛾
                                                           

1

1+𝛾
−

1

1−𝛾2
𝑠2 +

𝛾

1−𝛾2
𝑠1  if 

𝑠1

𝛾
−
1−𝛾

𝛾
≤ 𝑠2 < 1 − 𝛾 + 𝛾𝑠1

 0  if 1 − 𝛾 + 𝛾𝑠1 ≤ 𝑠2                                                              

      (2) 

When 𝑠𝑖 is in the low range of the top branches of (1) and (2), firm 𝑖 gets the whole retail 

market; for 𝑠𝑖 is in the middle range of the centre branches of (1) and (2) both firms get 

strictly positive share in the retail market; and when 𝑠𝑖 is in the high range of the bottom 

branches of (1) and (2) firm 𝑖 gets zero retail market share. 

The firms engage in a three date (𝑡 = 1,2,3) observable delay endogenous timing game. We 

assume, as seems completely natural, indeed necessary in the context, that firm 2 cannot 

make credible retail sale offers via announcement of 𝑠2 strictly before the wholesale price has 

been announced. Given this there is in fact no loss of generality in restricting feasible timing 

choices as follows. 

R1: Firm 1 always announces  ℎ1 at 𝑡 = 1. 

                                                           
8
 Without the restriction of 𝑠𝑖 to [0,1], 1 − 𝑠𝑖 in the top branches of (1) and (2) should be replaced with max(1 − 𝑠𝑖 , 0), 
𝑖 = 1,2. 
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R2: Firm 2 cannot announce 𝑠2 until strictly after ℎ1 has become common knowledge, so 𝑠2 

can only be announced at 𝑡 = 2 or 3, or 𝑡𝑠2 ∈ {2,3} in an obvious notation
9
. 

R3: Firm 1 can announce 𝑠1 at the same date as ℎ1, or later, so 𝑡𝑠1 ∈ {1,2,3}. 

Any feasible choice of (𝑡𝑠1 , 𝑡𝑠2) implies an extensive form Bertrand-style basic game where 

firms announce prices ℎ1, 𝑠1, 𝑠2, and meet any demand forthcoming, leading to payoffs
10

: 

        𝜋1(ℎ1, 𝑠1, 𝑠2) = 𝑠1𝐷1(𝑠1, 𝑠2) + ℎ1𝐷2(𝑠1, 𝑠2),   𝜋2(ℎ1, 𝑠1, 𝑠2) = (𝑠2 − ℎ1)𝐷2(𝑠1, 𝑠2)      

The subgame perfect equilibria (SPE) in all these extensive forms correspond to those in one 

of the following three games: 

Game A The 2-stage game denoted {(ℎ1, 𝑠1), 𝑠2}, meaning that ℎ1 and 𝑠1 are decided 

simultaneously at stage I, 𝑠2 at stage II. This is equivalent to 

(𝑡𝑠1 , 𝑡𝑠2) = (1,2), (1,3) or (2,3)11. Firm 1 is the retail price leader and firm 2 is the follower. 

Game B The 2-stage game {ℎ1, (𝑠1, 𝑠2)}, where ℎ1 is decided at stage I and 𝑠1 and 𝑠2 

simultaneously at stage II – equivalent to (𝑡𝑠1 , 𝑡𝑠2) = (2,2) or (3,3). Neither firm leads or 

follows. 

Game C The 3-stage game {ℎ1, 𝑠2, 𝑠1} with ℎ1 at stage I, 𝑠2 at stage II and 𝑠1 at stage III – 

equivalent to (𝑡𝑠1 , 𝑡𝑠2) = (3,2). Firm 2 is now the retail price leader and firm 1 the follower. 

Analysis will be based on SPE payoffs and prices in games A, B and C, which will be unique, 

and denoted respectively 𝜋𝑖𝐴
∗ , 𝜋𝑖𝐵

∗ , 𝜋𝑖𝐶
∗ , 𝑖 = 1,2, 𝑠𝑖𝐴

∗ , 𝑠𝑖𝐵
∗ , 𝑠𝑖𝐶

∗ , 𝑖 = 1,2 and ℎ1𝐴
∗ , ℎ1𝐵

∗ , ℎ1𝐶
∗ . 

In the endogenous timing game firms choose simultaneously a feasible timing for price 

announcements, after which the implied basic game is played, leading to its SPE payoffs 

𝜋𝑖𝐴
∗ , 𝜋𝑖𝐵

∗  or 𝜋𝑖𝐶
∗ , 𝑖 = 1,2. Figure 1 below shows the (reduced) extensive form - basic games 

have been replaced by their SPE payoffs (as in Hamilton and Slutsky, (1990), Figure 2)). As 

a result, equilibria (SPE) of the endogenous timing game correspond to Nash equilibria (NE) 

of the matrix game shown in Figure 2 below. 

 

 

 

                                                           
9
 R2 is an apparently non-trivial further restriction. The additional restriction is that firm 2 cannot time 𝑠2 at the same time as  

ℎ1, thus excluding from the analysis choice of 𝑡𝑠2 = 1 by firm 2, and games where ℎ1 and 𝑠2 are contemporaneous.  
However the next section (lemma 2) shows that allowing such choices introduces only strictly dominated strategies into the 

endogenous timing game, and such strategies can be ignored. Given R2 there is no further loss in R1 (and R3 below). 
10

 As noted in the introduction ℎ1 becomes an endogenous marginal cost for firm 2, chosen by firm 1. 
11

 The last of these equivalences relates to the game (in the new notation) {ℎ1, 𝑠1, 𝑠2}, where firm 1 decides ℎ1 and 𝑠1 

sequentially before 𝑠2 rather than simultaneously before 𝑠2; this has no effect on equilibrium profits or prices. 
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 𝒕𝒔𝟐 = 𝟐 𝒕𝒔𝟐 = 𝟑 

𝒕𝒔𝟏 = 𝟏 Game A payoffs Game A payoffs 

𝒕𝒔𝟏 = 𝟐 Game B payoffs Game A payoffs 

𝒕𝒔𝟏 = 𝟑 Game C payoffs Game B payoffs 

  Figure 2: Matrix game whose NE correspond to SPE of the endogenous timing game 

 

III The Results 

As noted earlier we restrict attention in the text, without loss of generality, to (ℎ1, 𝑠1, 𝑠2) ∈

[0,1]3. From (1) and (2) payoff functions for the two firms are: 

𝜋1(ℎ1, 𝑠1, 𝑠2)

=

{
 
 

 
 𝑠1(1 − 𝑠1) if 0 ≤ 𝑠1 <

1

𝛾
𝑠2 −

1 − 𝛾

𝛾
                                                                                                                                                                                                                         

𝑠1 [
1

1 + 𝛾
−

1

1 − 𝛾2
𝑠1 +

𝛾

1 − 𝛾2
𝑠2] + ℎ1 [

1

1 + 𝛾
−

1

1 − 𝛾2
𝑠2 +

𝛾

1 − 𝛾2
𝑠1]  if 

1

𝛾
𝑠2 −

1 − 𝛾

𝛾
≤ 𝑠1 < 1 − 𝛾 + 𝛾𝑠2  (3)                                                                        

ℎ1(1 − 𝑠2) if 1 − 𝛾 + 𝛾𝑠2 ≤ 𝑠1                                                                                                                                                                                                                                  

 

𝜋2(ℎ1, 𝑠1, 𝑠2) =

{
 

 (𝑠2 − ℎ1)(1 − 𝑠2) if 0 ≤ 𝑠2 <
1

𝛾
𝑠1 −

1−𝛾

𝛾
                                                           

(𝑠2 − ℎ1) [
1

1+𝛾
−

1

1−𝛾2
𝑠2 +

𝛾

1−𝛾2
𝑠1]  if 

1

𝛾
𝑠1 −

1−𝛾

𝛾
≤ 𝑠2 < 1 − 𝛾 + 𝛾𝑠1        

0 if 1 − 𝛾 + 𝛾𝑠1 ≤ 𝑠2                                                                                             

                            (4) 

These functions are continuous. Notice also that, for 𝑖 = 1,2,  𝜋𝑖(ℎ1, 𝑠1, 𝑠2) is a strictly concave 

differentiable function of  𝑠𝑖 for 𝑠𝑖 in its low range (top branches of (3) and (4)), a strictly 

concave differentiable function of  𝑠𝑖 for 𝑠𝑖 in its middle range (centre branches of (3) and (4)) 

° 

° ° ° 

Firm 1 

Firm 2 

 𝑡𝑠1 = 1                𝑡𝑠1 = 2            𝑡𝑠1 = 3 

 𝑡𝑠2 = 2                              𝑡𝑠2 = 3   𝑡𝑠2 = 2                           𝑡𝑠2 = 3 

°  

 

° ° ° ° °           𝜋1𝐴
∗ ,𝜋2𝐴

∗           𝜋1𝐴
∗ ,𝜋2𝐴

∗   𝜋1𝐵
∗ ,𝜋2𝐵

∗    𝜋1𝐴
∗ ,𝜋2𝐴

∗   𝜋1𝐶
∗ ,𝜋2𝐶

∗        𝜋1𝐵
∗ ,𝜋2𝐵

∗       

         Figure 1: The reduced extensive form of the endogenous timing game 

 𝑡𝑠2 = 2                𝑡𝑠2 = 3 
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and a concave differentiable function of  𝑠𝑖 for 𝑠𝑖 in its high range (bottom branches of (3) and 

(4)). However the payoff functions are neither globally concave nor globally differentiable, 

and may kink (upwards or downwards) as 𝑠𝑖 increases across boundaries between 

bottom/centre/top branches in (3) and (4); evaluation of best responses requires comparison 

across the three branches of the best payoff attainable in each. The appendix sets out the 

lengthy calculations, leading to: 

Lemma 1 For any  𝛾 ∈ (0,1), SPE profits and prices for games A, B and C are unique and 

given by: 

(a) 𝜋1𝐴
∗ =

3+𝛾

8(1+𝛾)
>

1

4
 ;  𝜋2𝐴

∗ =
1−𝛾

16(1+𝛾)
> 0; 

𝑠1𝐴
∗ =

1

2
 ;  𝑠2𝐴

∗ =
3−𝛾

4
;  ℎ1𝐴

∗ =
1

2
 

(b) 𝜋1𝐵
∗ =

12+4𝛾+𝛾2+𝛾3

4(1+𝛾)(8+𝛾2)
>

1

4
 ;  𝜋2𝐵

∗ =
(1−𝛾)(2+𝛾2)2

(1+𝛾)(8+𝛾2)2
> 0 

𝑠1𝐵
∗ =

8+2𝛾−𝛾2

2(8+𝛾2)
;  𝑠2𝐵

∗ =
12−4𝛾+2𝛾2−𝛾3

2(8+𝛾2)
;  ℎ1𝐵

∗ =
(2+𝛾)(𝛾2−2𝛾+4)

2(8+𝛾2)
  

(c) 𝜋1𝐶
∗ =

12+4𝛾−9𝛾2−𝛾3+2𝛾4

4(1+𝛾)(8−5𝛾2+𝛾4)
>

1

4
 ; 𝜋2𝐶

∗ =
2(1−𝛾)(2−𝛾2)

(1+𝛾)(8−5𝛾2+𝛾4)2
> 0; 

𝑠1𝐶
∗ =

16+4𝛾−14𝛾2−2𝛾3+4𝛾4

4(8−5𝛾2+𝛾4)
;  𝑠2𝐶

∗ =
12−4𝛾−6𝛾2+𝛾3+𝛾4

2(8−5𝛾2+𝛾4)
;  ℎ1𝐶

∗ =
8−6𝛾2+𝛾3+𝛾4

2(8−5𝛾2+𝛾4)
 

Proof See Appendix A. 

The model has not explicitly included a prior decision by the strong firm to foreclose the rival 

from the retail market (imposing 𝐷2 = 0), something that is often found in the literature on 

access pricing (etc.). Such a decision would face the strong firm with monopoly retail 

demand of 1 − 𝑠1, payoff 𝑠1(1 − 𝑠1), and hence 𝑠1 =
1

2
, 𝜋1 =

1

4
 (𝜋2 = 0). However without 

this prior foreclosure decision there are prices in our model which produce foreclosure, 

namely ℎ1 ∈ [0,1], 𝑠1 =
1

2
 and 𝑠2 ≥ 1 −

𝛾

2
 effectively foreclose with 𝐷2 = 0, 𝜋1 =

1

4
 and 

𝜋2 = 0. It is conceivable that the timing of price decisions could lead to such an outcome; 

indeed lemma 2 below shows this is the case. Either way, immediately from lemma 1, 

foreclosure is a bad thing for the industry. 

Proposition 1 For all 𝛾 ∈ (0,1) and for each firm the outcomes of games A, B and C are 

strictly preferred to foreclosure. 

The failure of foreclosure to emerge with a single upstream essential input provider has been 

found in the pay-TV models of Harbord and Ottaviani (2001), Weeds (2016), both with game 

B timing, and Madden and Pezzino (2013) with game A timing
12

. Proposition 1 shows that 

this conclusion holds in the current model irrespective of timing. It is also independent of the 

degree of differentiated good substitutability. Even if the goods are arbitrarily close 

                                                           
12

 Weeds (2016) shows how foreclosure may become desirable with one upstream provider (and game B timing again) if 

some dynamic element (e.g. switching costs) is added. Alternatively foreclosure emerges at some parameters in Bourreau et 

al (2011) with two input providers (and game B timing). 
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substitutes the strong firm allows the rival some small positive profit possibility because of 

the expanded market and wholesale revenue that result
13

. 

The restriction R2 imposed in Section II removed choice by firm 2 of 𝑡𝑠2 = 1, and the 

contemporaneous (ℎ1, 𝑠2) games {(ℎ1, 𝑠1, 𝑠2)} (all prices simultaneously chosen) and 

{(ℎ1, 𝑠2), 𝑠1} (𝑠1 at stage II, after ℎ1 and 𝑠2 at I). In both cases the competition between ℎ1 

and 𝑠2 is fierce: if firm 2 is getting positive market share, then firm 1 will want to increase ℎ1 

to increase its wholesale revenue, causing firm 2 to raise 𝑠2, in a process that can only 

terminate (in both games) with foreclosure profits as the equilibrium outcome
14

:  

Lemma 2 For any 𝛾 ∈ (0,1), the unique SPE profits are 𝜋1 =
1

4
 and 𝜋2 = 0 for the games 

{(ℎ1, 𝑠1, 𝑠2)} and {(ℎ1, 𝑠2), 𝑠1} where ℎ1 and 𝑠2 are chosen simultaneously. 

Proof See Online Appendix. 

If 𝑡𝑠2 = 1 were included it would become an extra strategy for firm 2 in the endogenous 

timing game summarised in figure 2, but one which, because of lemma 2 and proposition 1, is 

strictly dominated and can therefore be ignored.  Thus restriction R2 does entail no loss of 

generality for our argument. 

The following lemma 3 identifies firm preferences over their payoffs in games A, B and C, 

from which follow our main results on their preferences over retail market leading/ 

following/simultaneity in proposition 2 and equilibria of the endogenous timing game in 

proposition 3: 

Lemma 3 Rankings of  SPE profits and prices for games A, B and C are: 

(i) 𝜋1𝐴
∗ > 𝜋1𝐵

∗ > 𝜋1𝐶
∗  for all 𝛾 ∈ (0,1) 

𝜋2𝐶
∗ > 𝜋2𝐴

∗  and 𝜋2𝐶
∗ > 𝜋2𝐵

∗  for all 𝛾 ∈ (0,1) 

          𝜋2𝐵
∗ > 𝜋2𝐴

∗  if and only if 𝛾 > �̃� ≈ 0.84. 

(ii) 𝑠2𝐴
∗ > 𝑠1𝐴

∗ = ℎ1𝐴
∗  for all 𝛾 ∈ (0,1) 

𝑠2𝐵
∗ > 𝑠1𝐵

∗ > ℎ1𝐵
∗  for all 𝛾 ∈ (0,1) 

𝑠2𝐶
∗ > 𝑠1𝐶

∗ > ℎ1𝐶
∗  for all 𝛾 ∈ (0,1) 

(iii) 𝑠1𝐵
∗ > 𝑠1𝐶

∗ > 𝑠1𝐴
∗  for all 𝛾 ∈ (0,1) 

𝑠2𝐶
∗ > 𝑠2𝐵

∗ > 𝑠2𝐴
∗  for all 𝛾 ∈ (0,1) 

ℎ1𝐴
∗ > ℎ1𝐵

∗ > ℎ1𝐶
∗  for all 𝛾 ∈ (0,1) 

                                                           
13

  The models of Harbord and Ottaviani (2001) and Weeds (2016) allow the weak firm to attain positive market share 

without the essential input, via their basic as opposed to premium programming. In our model this is not so – the essential 

input is absolutely essential. On the other hand the earlier papers are mostly based on a Hotelling retail demand specification, 

which for coverage reasons means that the differentiated goods cannot be too close substitutes; an exception is the appendix 

in Weeds (2016) which uses a similar demand specification to ours.   
14 In the simpler double marginalisation model, firm 1 controls ℎ1 and receives wholesale revenue from firm 2, as in our 

model, but only firm 2 operates (as monopolist) in the retail market, controlling  𝑠2 with demand  𝐷2 = 1 − 𝑠2. If ℎ1is 

chosen before  𝑠2 then SPE is ℎ1 =
1

2
 , 𝑠2 =

3

4
, 𝜋1 =

1

8
, 𝜋2 =

1

16
, and both firms earn positive profit, as seen in the standard 

textbook expositions. However, If ℎ1 and  𝑠2 are chosen simultaneously, the same fierce competition that lies behind lemma 

2 produces a unique NE with ℎ1 = 1 , 𝑠2 = 1, 𝜋1 = 0, 𝜋2 = 0. 

 



9 
 

Proof Each of the inequalities claimed in lemma 3 reduces to the strict positivity of a 

polynomial in 𝛾 after substitution of the required formulae from lemma 1, and rearrangement 

and simplification. Lemma 3 follows from study of the values of 𝛾 which create the strict 

positivity.                                                                                                                        ∎                                                                           

Lemma 3 describes a situation in which both firms experience a first-mover advantage, in the 

sense that they both would earn higher profits when they are the price leader in a sequential 

move game. This result may appear surprising at first; one would expect that, due to the 

strategic complementarity of Bertrand duopolies, firms would prefer to move second rather 

than be leaders (Gal-Or (1985)). This would be indeed the case if the wholesale price were 

exogenously set equal to zero. However, since firms 1 is allowed to endogenously select the 

wholesale price, the asymmetric nature of the competition considered here reverses the result 

(in line with the insights of Amir and Stepanova (2006)). The role played by the presence of a 

first/second mover advantage in an endogenous timing game has been discussed in Hamilton 

and Slutsky (1990). Notice, however, as Amir (1995) and von Stengel (2010) point out, that 

the results described in Hamilton and Slutsky (1990) require monotonicity of the profit 

functions of the players with respect to the action variable of the rival. This condition is not 

satisfied in our model. It follows that our main results, summarised in propositions 2 and 3 

below, are different from existing results. Indeed, immediate from the first two lines of 

lemma 3(i): 

Proposition 2 For all 𝛾 ∈ (0,1) each firm strictly prefers to be retail price leader rather than 

either retail price follower or to simultaneous retail pricing. 

Lemma 3(i) also allows immediately the following conclusion about equilibria of the 

endogenous timing game, equivalently NE of the matrix game in figure 2: 

Proposition 3 The equilibrium outcomes of the endogenous timing game entail timing 

choices (𝑡𝑠1 , 𝑡𝑠2) = (1,2), (1,3) or (2,3) if 𝛾 < �̃�(≈ 0.84), (𝑡𝑠1 , 𝑡𝑠2) = (1,2) or (1,3) if 

𝛾 > �̃�. For all 𝛾 ∈ (0,1) equilibrium in the endogenous timing game implies retail price 

leadership by the strong firm 1.  

As noted above propositions 2 and 3 are quite different from existing standard duopoly 

results, which warrants further comment
15

. 

If firm 2 is retail price follower in our model, the retail market is at its most competitive; both 

retail prices are lower than in any other feasible timing (first 2 lines of lemma 3(iii)). But 

compared to the standard duopolies of existing literature, firm 1 has the extra control over the 

wholesale price, and that price is highest when firm 2 is the retail follower (line 3 of lemma 

3(iii)). Because of firm 1’s extra control (essentially over firm 2’s marginal cost), firm 2 is 

always forced to be the higher retail price firm, from lemma 3(ii). In the simple models, firm 

2 always wants to follow: as van Damme and Hurkens (2004, p.3-4) argue when marginal 

                                                           
15

 It is also worth noting that there is always an equilibrium in which firm 1 chooses to announce ℎ1 and 𝑠1 simultaneously 

(𝑡𝑠1 = 1). Recalling the Sky Sports example, for a period in the 1990’s, BskyB adopted a “rate card” whereby it tied its 

wholesale price to be a fraction of its retail price, thus effectively choosing 𝑡𝑠1 = 1. 



10 
 

costs are equal or similar, the reason is that (given the strategic complementarity of the 

differentiated Bertrand duopolies), each firm in fact prefers the rival to optimize against their 

best response, rather than vice versa, leading them to prefer to be the low retail price firm, or, 

as Amir and Stepanova (2006) put it, firms like the undercutting power afforded to second-

movers. In our scenario, firm 2 can never be the low retail price firm “undercutting” firm 1, 

and following leads to the highest wholesale price (firm 2’s marginal cost), and firm 2’s 

lowest retail price 𝑠2. The advantages to firm 2 from following in the standard models 

disappear, and firm 2 prefers to lead in our retail market. 

As Amir and Stepanova (2006) show the strong firm prefers to lead in the retail market in 

standard duopolies if the marginal cost differential is large enough. It is then not too 

surprising that the strong firm 1 prefers this leadership in our model too, where it has control 

over the marginal cost differential and also receives wholesale revenue. In the endogenous 

timing game firm 1 can ensure that that it will be retail leader in equilibrium by choosing to 

announce its wholesale and retail prices simultaneously – firm 2 would always then choose to 

be follower, since announcing at the same date would create zero profit (lemma 2), and it 

cannot announce earlier since credibility in the retail market requires that the wholesale price 

is known. Thus the fact that all our endogenous timing equilibria have firm 1 as the retail 

leader is natural and intuitive.  

IV Conclusions 

The paper studied an endogenous timing game in a differentiated Bertrand duopoly with 

symmetric, linear retail demand, where one of the firms owns an essential input charging a 

wholesale per customer price to provide access to the rival. We showed that both firms have a 

definite preference to be retail price leaders, and that pure strategy equilibria of our 

endogenous timing game are payoff unique and all entail retail price leadership by the 

essential input provider. The results provide some powerful support for Stackelberg style 

price leadership compared to existing literature, where price following is often desirable, and 

multiple equilibria naturally occur, necessitating equilibrium selection mechanisms. The 

results also call into question the assumption of simultaneous determination of 

downstream/retail prices employed in the literature on access pricing, foreclosure and 

upstream/downstream competition.  
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Appendix A: Proof of Lemma 1 

We start with some analysis of two best response problems. 

Best response 𝒔𝟐 ∈ [𝟎, 𝟏] by firm 2 to (𝒉𝟏, 𝒔𝟏) ∈ [𝟎, 𝟏]
𝟐 

Suppose ℎ1 < 1 and 𝑠1 < 1, and define the following regions shown in figure A1 below;  

𝑎 = {(ℎ1, 𝑠1) ∈ [0,1)
2: 𝑠1 >

2−𝛾

2
+
𝛾

2
ℎ1}, 

𝑏 = {(ℎ1, 𝑠1) ∈ [0,1)
2:
2−𝛾

2
+
𝛾

2
ℎ1 ≥ 𝑠1 >

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾

2−𝛾2
ℎ1}, 

𝑐 = {(ℎ1, 𝑠1) ∈ [0,1)
2:
(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾

2−𝛾2
ℎ1 ≥ 𝑠1 >

1

𝛾
ℎ1 −

1−𝛾

𝛾
},  

𝑑 = {(ℎ1, 𝑠1) ∈ [0,1)
2:
1

𝛾
ℎ1 −

1−𝛾

𝛾
≥ 𝑠1}     

The low 𝑠2 range (top branch of (4)) defines 𝜋2 as a strictly concave function of  𝑠2 with 

stationary point (
𝜕𝜋2

𝜕𝑠2
= 0) at 𝑠2 =

1

2
+
1

2
ℎ1 which lies in the low 𝑠2 range when 𝑠1 >

2−𝛾

2
+

𝛾

2
ℎ1, shown as region a in Figure A1 (with 𝜋2 =

1

4
(1 − ℎ1)

2 > 0). Thus, if (ℎ1, 𝑠1) has been 

chosen in region a by firm 1, 𝜋2(ℎ1, 𝑠1, 𝑠2) has a positive profit maximum with respect to 𝑠2 

over the low 𝑠2 range at 𝑠2 =
1

2
+
1

2
ℎ1; if (ℎ1, 𝑠1) is not in region a (in b,c or d),the stationary 

point occurs to the right of the low 𝑠2 range, and 𝜋2(ℎ1, 𝑠1, 𝑠2) is increasing with respect to 𝑠2 

throughout the low 𝑠2 range. 

 

 

 

 

 

 

 

 

 

The middle 𝑠2 range (centre branch of (4)) again defines 𝜋2 as a strictly concave function of 

𝑠2, now with stationary point at 𝑠2 =
1−𝛾

2
+
𝛾

2
𝑠1 +

1

2
ℎ1 which lies in the middle 𝑠2 range 

                    

                           𝑠1 

                              1 

                          
2−𝛾

2
 

                                      

               
(1−𝛾)(2+𝛾)

2−𝛾2
 

 

                                                      1 − 𝛾                                   1                    ℎ1 

              

 a                                                   

b 

                                     d 

c      

            

                              

           Figure A1 
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when 1 − 𝛾 + 𝛾𝑠1 > ℎ1 and (1 − 𝛾)(𝛾 + 2) + 𝛾ℎ1 ≥ (2 − 𝛾
2)𝑠1, shown as region c in 

Figure A1 (with 𝜋2 =
1

4(1−𝛾2)
(1 − 𝛾 + 𝛾𝑠1 − ℎ1)

2 > 0). Thus, if (ℎ1, 𝑠1) is in region c, since 

𝜋2 is then increasing with respect to 𝑠2 throughout the low 𝑠2 range, 𝜋2 has a positive profit 

maximum with respect to 𝑠2 over the union of the low and middle 𝑠2 ranges at 𝑠2 =
1−𝛾

2
+

𝛾

2
𝑠1 +

1

2
ℎ1. And since 𝜋2 = 0 throughout the high 𝑠2 range, it follows that;  

(I) If (𝒉𝟏, 𝒔𝟏) is in region c, then 𝒔𝟐 =
𝟏−𝜸

𝟐
+
𝜸

𝟐
𝒔𝟏 +

𝟏

𝟐
𝒉𝟏 is firm 2’s best response 

In region b (below a, above c) 𝜋2(ℎ1, 𝑠1, 𝑠2) is increasing with respect to 𝑠2 throughout the 

low 𝑠2 range and decreasing with respect to 𝑠2 throughout the middle 𝑠2 range, with a “kink” 

maximum over the union of the low and middle 𝑠2 ranges at their common boundary 

𝑠2 =
1

𝛾
𝑠1 −

1−𝛾

𝛾
 (with 𝜋2 =

1

𝛾2
[𝑠1 − (1 − 𝛾) − ℎ1](1 − 𝑠1) > 0). Since 𝜋2 = 0 throughout 

the high 𝑠2 range, it follows that; 

(II) If (𝒉𝟏, 𝒔𝟏) is in region b, then 𝒔𝟐 =
𝟏

𝜸
𝒔𝟏 −

𝟏−𝜸

𝜸
 is firm 2’s best response 

Returning to region a (above b, above c) we can now add that 𝜋2 is decreasing with respect to 

𝑠2 throughout the middle 𝑠2 range, 0 (as always) throughout the high 𝑠2 range, and so; 

(III) If (𝒉𝟏, 𝒔𝟏) is in region a, then 𝒔𝟐 =
𝟏

𝟐
+
𝟏

𝟐
𝒉𝟏 is firm 2’s best response 

Next suppose ℎ1 ≥ 1 − 𝛾 + 𝛾𝑠1, which corresponds to the residual region d in figure A1. 

Since 𝑠2 ≥ 1 − 𝛾 + 𝛾𝑠1 implies 𝜋2 = 0, and since 𝑠2 < 1 − 𝛾 + 𝛾𝑠1 ≤ ℎ1 implies 𝐷2 > 0 

and so 𝜋2 = (𝑠2 − ℎ1)𝐷2 < 0 it follows that: 

(IV) If (𝒉𝟏, 𝒔𝟏) is in region d then any 𝒔𝟐 ∈ [𝟏 − 𝜸 + 𝜸𝒔𝟏, 𝟏] is a best response by 

firm 2 

Finally, if 𝑠1 = 1 then 𝐷1 = 0, 𝜋2 = (𝑠2 − ℎ1)(1 − 𝑠2), and the best response is as in region 

a, whilst ℎ1 = 1 reproduces the region d conclusion. 

Best response 𝒔𝟏 ∈ [𝟎, 𝟏] by firm 1 to (𝒉𝟏, 𝒔𝟐) ∈ [𝟎, 𝟏]
𝟐 

Define the following regions shown in figure A2 below: 

𝑒1 = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 >

2−𝛾

2
, 𝑠2 >

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1},                                             

𝑒2 = 𝑓2 = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 >

2−𝛾

2
, 𝑠2 ≤

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1, 𝑠2 > ℎ1 −

1−𝛾

𝛾
},         

𝑒3 = 𝑔1 = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 >

2−𝛾

2
, 𝑠2 ≤ ℎ1 −

1−𝛾

𝛾
},                                                    

𝑓1 = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 ≤

2−𝛾

2
, 𝑠2 ≤

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1, 𝑠2 > ℎ1 −

1−𝛾

𝛾
},                  

𝑔2 = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 ≤

2−𝛾

2
, 𝑠2 ≤ ℎ1 −

1−𝛾

𝛾
},    
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ℎ = {(ℎ1, 𝑠2) ∈ [0,1]
2: 𝑠2 ≤

2−𝛾

2
, 𝑠2 >

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1}                                                    

The region labelled 𝑒3, 𝑔1 is non-empty if and only if 𝛾 > √3 − 1 ≅ 0.73, and region 𝑔2 is 

non-empty if and only if 𝛾 > 0.5; other regions are always non-empty. 

 

 

 

 

 

 

 

 

 

 

The low 𝑠1 range (top branch of (3)) defines 𝜋1 as a strictly concave function of 𝑠1 with 

stationary point at 𝑠1 =
1

2
, which lies in the low 𝑠1 range when 𝑠2 >

2−𝛾

2
, shown as region e in 

figure A2 where 𝑒 = 𝑒1 ∪ 𝑒2 ∪ 𝑒3. Thus, if (ℎ1, 𝑠2) have been chosen in region e, 

𝜋1(ℎ1, 𝑠1, 𝑠2) has a maximum with respect to 𝑠1 over the low 𝑠1 range at 𝑠1 =
1

2
; if (ℎ1, 𝑠2) is 

not in region 𝑒, then 𝜋1(ℎ1, 𝑠1, 𝑠2) is increasing with respect to 𝑠1throughout the low 𝑠1 

range. The middle 𝑠1 range (centre branch of (3)) defines 𝜋1 as a strictly concave function of 

𝑠1, with stationary point at 𝑠1 =
1−𝛾

2
+
𝛾

2
𝑠2 +

𝛾

2
ℎ1 which lies in the middle 𝑠1 range when 

1 − 𝛾 + 𝛾𝑠2 > 𝛾ℎ1 and (1 − 𝛾)(𝛾 + 2) + 𝛾2ℎ1 ≥ (2 − 𝛾
2)𝑠2, shown as region 𝑓 = 𝑓1 ∪ 𝑓2 

in figure A2. In the high 𝑠1 range (bottom branch of (3))  𝜋1 = ℎ1(1 − 𝑠2) and does not vary 

with 𝑠1. Thus 𝜋1 is constant with respect to 𝑠1throughout the high 𝑠1 range. In region 𝑒1, 𝜋1 

has a maximum at 𝑠1 =
1

2
 over the low 𝑠1range, is decreasing (above 𝑓) over the middle 𝑠1 

range, and is constant (as always) over the high 𝑠1 range. Hence: 

(V) If (𝒉𝟏, 𝒔𝟐) is in region e1, then 𝒔𝟏 =
𝟏

𝟐
 is firm 1’s best response 

In region 𝑓1, 𝜋1 is increasing over the low 𝑠1range (below 𝑒), has a maximum over the 

middle 𝑠1range at 𝑠1 =
1−𝛾

2
+
𝛾

2
𝑠2 +

𝛾

2
ℎ1, and is constant thereafter. Hence: 

     (V1)    If (𝒉𝟏, 𝒔𝟐) is in region 𝒇𝟏, then 𝒔𝟏 =
𝟏−𝜸

𝟐
+
𝜸

𝟐
𝒔𝟐 +

𝜸

𝟐
𝒉𝟏 is firm 1’s best response 

𝑠2 

    1 

 

               
2−𝛾

2
 

 (1−𝛾)(2+𝛾)
2−𝛾2

    

 

                

 
1−𝛾

𝛾
      𝛾

2
                     

2−𝛾

2
    

2−𝛾2

2𝛾
  2+𝛾

2(1+𝛾)
    1             ℎ1    

            Figure A2 

           𝒆𝟏 

 

           𝒇𝟏 

  𝒆𝟐,𝒇𝟐 

 

            

𝒉 

 

 

  𝒆𝟑,𝒈𝟏 

 

            𝒈𝟐 
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In region ℎ, 𝜋1 has a “kink” maximum at the border between low and middle 𝑠1ranges, as in 

region b for firm 2: 

(VII) If (𝒉𝟏, 𝒔𝟐) is in region 𝒉, then 𝒔𝟏 =
𝟏

𝜸
𝒔𝟐 −

𝟏−𝜸

𝜸
 is firm 1’s best response 

In the region labelled 𝑒2, 𝑓2, 𝜋1 has a maximum over the low 𝑠1range at 𝑠1 =
1

2
 and a 

maximum over the middle 𝑠1range at  𝑠1 =
1−𝛾

2
+
𝛾

2
𝑠2 +

𝛾

2
ℎ1 (constant over the high range). 

Hence: 

(VIII) If (𝒉𝟏, 𝒔𝟐) is in the region labelled 𝒆𝟐, 𝒇𝟐, then firm 1’s best response is 

either 𝒔𝟏 =
𝟏

𝟐
, or 𝒔𝟏 =

𝟏−𝜸

𝟐
+
𝜸

𝟐
𝒔𝟐 +

𝜸

𝟐
𝒉𝟏 whichever produces the larger 𝝅𝟏. 

In region 𝑔2, below 𝑒 and 𝑓, 𝜋1 is increasing with respect to 𝑠1throughout the low and 

middle 𝑠1 ranges. Its maximum is therefore the constant value attained anywhere in the high 

𝑠1 range: 

(IX) If (𝒉𝟏, 𝒔𝟐) is in region 𝒈𝟐, then firm 1’s best response is any 𝒔𝟏 ∈ [𝟏 − 𝜸 +

𝜸𝒔𝟐, 𝟏] 

In the region labelled 𝑒3, 𝑔1, 𝜋1 has a maximum over the low 𝑠1range  (in 𝑒) at 𝑠1 =
1

2
, but is 

increasing (below 𝑓) over the middle range (constant over the high range). Hence: 

(X) If (𝒉𝟏, 𝒔𝟐) is in the region labelled 𝒆𝟑, 𝒈𝟏, then firm 1’s best response is 

either at 𝒔𝟏 =
𝟏

𝟐
 or at any 𝒔𝟏 ∈ [𝟏 − 𝜸 + 𝜸𝒔𝟐, 𝟏], whichever produces the 

larger 𝝅𝟏. 

Proof of (a) In game A, if firm 1 chooses (ℎ1, 𝑠1) in region d at stage I then, then the stage II 

subgame Nash equilibrium (NE) is given by 2’s best response in (IV) above, and firm 1’s 

reduced form
16

 stage I profit is 𝜋1 = 𝑠1(1 − 𝑠1) which is maximized at the foreclosure values 

𝑠1 =
1

2
 and 𝜋1 =

1

4
.  If firm 1 chooses (ℎ1, 𝑠1) in region a at stage I then firm 1’s 

corresponding reduced form profit is 𝜋1 =
1

2
ℎ1(1 − ℎ1) whose maximum cannot exceed 

1

8
.  If 

firm 1 chooses (ℎ1, 𝑠1) in region b then reduced form profit is 𝜋1 =
1

𝛾
ℎ1(1 − 𝑠1). The 

maximum of 𝜋1 over region b is at ℎ1 =
1

2
, 𝑠1 =

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾

2(2−𝛾2)
 with 𝜋1 =

1

4(2−𝛾2)
<

1

4
. If 

firm 1 chooses (ℎ1, 𝑠1) in region c then substituting 𝑠2 =
1−𝛾

2
+
𝛾

2
𝑠1 +

1

2
ℎ1into 𝜋1 = 𝑠1𝐷1 +

ℎ1𝐷2 produces the expression for reduced form profit; 

2(1 − 𝛾2)𝜋1 = 𝑠1[(1 − 𝛾)(2 + 𝛾) − 𝑠1(2 − 𝛾
2) + 𝛾ℎ1] + ℎ1[1 − 𝛾 + 𝛾𝑠1 − ℎ1] 

The strictly concave function of (ℎ1, 𝑠1) on the right hand side has a global maximum at its 

stationary point whose first-order conditions are; (1 − 𝛾)(2 + 𝛾) − 2𝑠1(2 − 𝛾
2) + 2𝛾ℎ1 = 0 

                                                           
16

 This is firm 1’s stage I payoff after backward induction of the stage II subgame NE. The reduced form term is used 

analogously throughout. 
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and 1 − 𝛾 + 2𝛾𝑠1 − 2ℎ1 = 0. Hence this maximum is at ℎ1 = 𝑠1 =
1

2
, which is in region c. It 

follows that the maximum of 𝜋1over region c is also at ℎ1 = 𝑠1 =
1

2
, with value given by 

2(1 − 𝛾2)𝜋1 =
3

4
−
1

2
𝛾 −

1

4
𝛾2. Hence 𝜋1 =

3+𝛾

8(1+𝛾)
>

1

4
 for all  𝛾 ∈ (0,1). 𝑠2 =

1−𝛾

2
+
𝛾

2
𝑠1 +

1

2
ℎ1 =

3

4
−
1

4
𝛾, and substituting into 𝜋2(ℎ1, 𝑠1, 𝑠2), 𝜋2 =

1−𝛾

16(1+𝛾)
> 0. It follows that, for all  

𝛾 ∈ (0,1), the unique SPE outcome for game A has prices and payoffs:   

ℎ1𝐴
∗ = 𝑠1𝐴

∗ =
1

2
 ; 𝑠2𝐴

∗ =
3

4
−
1

4
𝛾 ; 𝜋1𝐴

∗ =
3+𝛾

8(1+𝛾)
>

1

4
 ; 𝜋2𝐴

∗ =
1−𝛾

16(1+𝛾)
> 0. 

Proof of (b)  Stage II of game B is now a simultaneous move game between the firms, 

choosing 𝑠1 and 𝑠2 after some ℎ1 given at stage I. The first step towards the backward 

induction solution is to find NE for this second stage subgame. A first result is: 

(XI) There is a stage II subgame NE after any 𝒉𝟏 ≥
𝟐−𝜸

𝟐
 with 𝒔𝟏 =

𝟏

𝟐
, 𝒔𝟐 ∈

[
(𝟏−𝜸)(𝟐+𝜸)

𝟐−𝜸𝟐
+

𝜸𝟐

𝟐−𝜸𝟐
𝒉𝟏, 𝟏] and 𝝅𝟏 =

𝟏

𝟒
, 𝝅𝟐 = 𝟎. 

To see why, note that when 𝑠1 =
1

2
 and ℎ1 ≥

2−𝛾

2
 then (ℎ1, 𝑠1) is in region d of figure A1; from 

(IV) any 𝑠2 ∈ [1 −
1

2
𝛾, 1] is a firm 2 best response. In particular any 𝑠2 ∈ (

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1, 1] is a firm 2 best response since 

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1 > 1 −

1

2
𝛾. In addition if 

𝑠2 ∈ (
(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1, 1] then (ℎ1, 𝑠2) is in region e1 of figure A2, and from (V) 𝑠1 =

1

2
 

is a firm 1 best response, establishing (XI). 

The above derived from pairing the best response formulae in (IV) and (V) respectively for 

regions d and 𝑒1 in figures A1 and A2, and checking that their intersection belongs to those 

required regions. Next we pair similarly (I) and (VI) for regions c and 𝑓1, where the 

corresponding intersection and associated payoffs become: 

 𝑠1 =
1−𝛾

2−𝛾
+

3𝛾

4−𝛾2
ℎ1     (A3i);  𝑠2 =

1−𝛾

2−𝛾
+
2+𝛾2

4−𝛾2
ℎ1    (A3ii) 

𝜋1 =
1−𝛾

(1+𝛾)(2−𝛾)2
+

4−2𝛾+𝛾2

(2−𝛾)(4−𝛾2)
ℎ1 −

8+𝛾2

(4−𝛾2)2
ℎ1
2   (A4i);   𝜋2 =

1

1−𝛾2
[
1−𝛾

2−𝛾
−
2(1−𝛾2)

4−𝛾2
ℎ1]

2    (A4ii) 

It helps to clarify arguments if we import the graphs of the linear functions (A3i) and (A3ii) 

into (respectively) figures A1 and A2, shown as bold, dashed lines in figures A3 and A4: 
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It follows from (I) that 𝑠2 in (A3ii) is a best response to 𝑠1 in (A3i) if ℎ1 ∈ [0,
2+𝛾

2(1+𝛾)
) since the 

dashed line then lies in region c.        

From figure A4 below and from (VI) it follows that 𝑠1 in (A3i) is a best response to 𝑠2 in 

(A3ii) if ℎ1 ∈ [0,
4−2𝛾+𝛾3

2(2+𝛾2)
] since the dashed line then lies in region 𝑓1. Hence; 

(XII) There is a stage II subgame NE after any 𝒉𝟏 ∈ [𝟎,
𝟒−𝟐𝜸+𝜸𝟑

𝟐(𝟐+𝜸𝟐)
] with 𝒔𝟏 given by 

(A3i), 𝒔𝟐 given by (A3ii), 𝝅𝟏 given by (A4i) and 𝝅𝟐 given by (A4ii). 

 

 

 

 

 

 

 

 

 

 

                   

                    

                           𝑠1 

                              1 

 

 

                          
1−𝛾

2−𝛾
            

 

              

 a                                                (A3i)     

b 

  

                                 d 

c                 

                                2+𝛾

2(1+𝛾)
       1                      ℎ1 

           Figure A3 

𝑠2 

    1 

 

1 − 𝛾

2 − 𝛾
 

                

  

 

                

                 
𝛾

2
       

4−2𝛾+𝛾3

2(2+𝛾2)
            

2+𝛾

2(1+𝛾)
        1             ℎ1    

                    Figure A4 

   (A3ii)  

 𝒆𝟐,𝒇𝟐 

 

𝒇𝟏 
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Result (XII) extends to larger values of ℎ1, from (VIII), if the value of 𝜋1 in (A4i) exceeds ¼. 

This will be the case if and only if the following strictly concave, quadratic function of ℎ1 is 

positive; 

  𝜑(ℎ1) ≡
1−𝛾

(1+𝛾)(2−𝛾)2
−
1

4
+

4−2𝛾+𝛾2

(2−𝛾)(4−𝛾2)2
ℎ1 −

8+𝛾2

(4−𝛾2)2
ℎ1
2      (A5) 

The following properties of this function can be checked: 

(a) The maximum is at ℎ1 = ℎ1
∗ ≡

(2+𝛾)(𝛾2−2𝛾+4)

2(8+𝛾2)
 with 𝜑(ℎ1

∗) > 0, implying a payoff value 

𝜋1 = 𝜑(ℎ1
∗) +

1

4
= 𝜋1

∗ ≡
12+4𝛾+𝛾2+𝛾3

4(1+𝛾)(8+𝛾2)
>

1

4
 

(b) ℎ1
∗ <

4−2𝛾+𝛾3

2(2+𝛾2)
(<

2−𝛾

2
<

2+𝛾

2(1+𝛾)
) 

(c) 𝜑(ℎ1
∗) > 𝜑 (

4−2𝛾+𝛾3

2(2+𝛾2)
) > 𝜑 (

2−𝛾

2
) > 0 > 𝜑 (

2+𝛾

2(1+𝛾)
)  

(d) Letting  ℎ̃1 denote the larger root of 𝜑(ℎ1) = 0, ℎ̃1 ∈ (
2−𝛾

2
,
2+𝛾

2(1+𝛾)
) 

(e) Therefore 𝜑(ℎ1) > 0 if ℎ1 ∈ [
4−2𝛾+𝛾3

2(2+𝛾2)
, ℎ̃1) and 𝜑(ℎ1) < 0 if ℎ1 ∈ (ℎ̃1,

2+𝛾

2(1+𝛾)
] 

The extension to (XII) now follows: 

(XIII) There is a stage II subgame NE after any 𝒉𝟏 ∈ [𝟎, �̃�𝟏] with 𝒔𝟏 given by (A3i), 

𝒔𝟐 given by (A3ii), 𝝅𝟏 given by (A4i) and 𝝅𝟐 given by (A4ii). 

One can check (details omitted) that no other pairing of (I)-(IV) with (V)-(X) produces stage 

II subgame NE. Hence if ℎ1 ∈ [0,
2−𝛾

2
) there is a unique stage II NE as described in 

(XII)/(XIII); if ℎ1 ∈ [
2−𝛾

2
, ℎ̃1] there are two stage II NE, one as described in (XII)/(XIII), and 

the other as described in (XI); if ℎ1 ∈ (ℎ̃1, 1] there is a unique stage II NE as described in 

(XI). 

Given these stage II subgame NE, it is clear that the maximum of firm 1’s reduced form 

profit occurs at ℎ1 = ℎ1
∗. It follows that, for all  ∈ (0,1), the unique SPE outcome for game B 

has prices and payoffs:   

ℎ1𝐵
∗ =

(2+𝛾)(𝛾2−2𝛾+4)

2(8+𝛾2)
 ; 𝑠1𝐵

∗ =
1−𝛾

2−𝛾
+

3𝛾

4−𝛾2
ℎ1𝐵
∗  ;  𝑠2𝐵

∗ =
1−𝛾

2−𝛾
+
2+𝛾2

4−𝛾2
ℎ1𝐵
∗  ; 

 𝜋1𝐵
∗ =

12+4𝛾+𝛾2+𝛾3

4(1+𝛾)(8+𝛾2)
>

1

4
 ; 𝜋2𝐵

∗ =
(1−𝛾)(2+𝛾2)2

(1+𝛾)(8+𝛾2)2
> 0. 

Substitution of ℎ1𝐵
∗  into 𝑠1𝐵

∗  and 𝑠2𝐵
∗  produces the statement in Lemma 1(b). 

Proof of (c)  For game C stage II subgame NE are themselves equilibria of a 2-stage game 

where firm 2 chooses 𝑠2 followed by firm 1’s 𝑠1 choice. Analysis of these subgames below 

leads to derivation of the firm 1 stage I reduced form payoff (to be denoted 𝜋1𝑅(ℎ1)), and 

hence the SPE payoffs for the whole game. 
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Suppose first that ℎ1 ∈ (
2+𝛾

2(1+𝛾)
, 1] at stage I. If firm 2 chooses  𝑠2 ∈ (

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1, 1] 

at stage II then (ℎ1, 𝑠2) is in region 𝑒1 of figure A2, and firm 1’s stage III best response is 

𝑠1 =
1

2
 , with 𝜋1 =

1

4
 and 𝜋2 = 𝐷2 = 0. If firm 2 chooses any 𝑠2 ∈ [0,

(1−𝛾)(2+𝛾)

2−𝛾2
+

𝛾2

2−𝛾2
ℎ1] 

then 𝑠2 < ℎ1 which cannot improve on 𝜋2 = 0, and 𝜋2 = 0 only if 𝐷2 = 0, in which case 

𝐷1 = 1 − 𝑠1, 𝑠1 =
1

2
, 𝜋1 =

1

4
 again follows at stage III.. Thus: 

                                𝜋1𝑅(ℎ1) =
1

4
  if  ℎ1 ∈ (

2+𝛾

2(1+𝛾)
, 1]      

Next, for reasons that become clear shortly, consider the line 𝑠2 =
(1−𝛾)(2+𝛾)

2(2−𝛾2)
+

1

2−𝛾2
ℎ1 added 

to figures A2 (and A4). Like the bold dashed line in figure 4 this line goes through the point 

ℎ1 = 𝑠2 =
2+𝛾

2(1+𝛾)
 and has a vertical axis intercept of ℎ1 = 0 and 𝑠2 =

(1−𝛾)(2+𝛾)

2(2−𝛾2)
∈

(
(1−𝛾)

2−𝛾
,
(1−𝛾)(2+𝛾)

2−𝛾2
). Also when 𝑠2 = 

2−𝛾

2
, then ℎ1 = ℎ̂1 ≡

2−𝛾−𝛾2+𝛾3

2
∈ (

𝛾

2
,
4−2𝛾+𝛾3

2(2+𝛾2)
). . 

Suppose now that ℎ1 ∈ [0, ℎ̂1] at stage I. At stage II firm 2 can choose so that (ℎ1, 𝑠2) is in 

regions 𝑒1, ℎ, 𝑔2 or in 𝑓1 or in the region labelled 𝑒2, 𝑓2. In the first 3 cases it can be 

checked that firm 2’s stage II best response to firm 1’s best response at stage III always leads 

to 𝜋2 = 𝐷2 = 0 at II and 𝑠1 =
1

2
 , 𝜋1 =

1

4
 at III. If (ℎ1, 𝑠2) is in region 𝑓1 then from (VI) firm 

1’s stage III best response is 𝑠1 =
1−𝛾

2
+
𝛾

2
𝑠2 +

𝛾

2
ℎ1. Given this, firm 2 can attain the 

following payoff at stage II by choosing (ℎ1, 𝑠2) in region 𝑓1: 

                 𝜋2 = (𝑠2 − ℎ1)[
2+𝛾

2(1+𝛾)
+

𝛾2

2(1−𝛾2)
ℎ1 −

2−𝛾2

2(1−𝛾2)
𝑠2]                (A6) 

This strictly concave function of 𝑠2 has a stationary point that corresponds to the line 

introduced earlier; 

                                    𝑠2 =
(1−𝛾)(2+𝛾)

2(2−𝛾2)
+

1

2−𝛾2
ℎ1                                  (A7) 

Moreover with 𝑠2 as in (A7), 𝜋2 > 0 and (ℎ1, 𝑠2) is in region 𝑓1 when ℎ1 ∈ [0, ℎ̂1]. It follows 

that the stage II subgame NE after ℎ1 ∈ [0, ℎ̂1] is indeed given by (A7), since alternatives in 

regions 𝑒1, ℎ, 𝑔2 give 𝜋2 = 0, and alternatives in the region labelled 𝑒2, 𝑓2 either also 

produce 𝜋2 = 0, or a lower positive profit than  (A7). Thus, substituting (A7) and 𝑠1 =
1−𝛾

2
+

𝛾

2
𝑠2 +

𝛾

2
ℎ1 into (A1) shows;  

   𝜋1𝑅(ℎ1) =
(4+2𝛾−𝛾2)2

16(2−𝛾2)2
+
(8−6𝛾2+𝛾3+𝛾4)

4(2−𝛾2)2
ℎ1 −

(8−5𝛾2+𝛾4)

4(2−𝛾2)2
ℎ1
2 if ℎ1 ∈ [0, ℎ̂1]     (A8) 

This strictly concave quadratic function has a stationary point where: 

                                     ℎ1 = ℎ1
∗∗ ≡

8−6𝛾2+𝛾3+𝛾4

2(8−5𝛾2+𝛾4)
< ℎ̂1  
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                                𝜋1 = 𝜋1
∗∗ ≡

12+4𝛾−9𝛾2−𝛾3+2𝛾4

4(1+𝛾)(8−5𝛾2+𝛾4)
>

1

4
 

Moreover, by analogous reasoning to above, if ℎ1 ∈ (ℎ̂1,
2+𝛾

2(1+𝛾)
], then stage II subgame NE 

will either have 𝜋1𝑅(ℎ1) =
1

4
 or the value given by the (A8) quadratic; but the latter is smaller 

than the global maximum stationary point value 𝜋1
∗∗.  

It follows that, for all  ∈ (0,1), the unique SPE outcome for game C has prices and payoffs:   

ℎ1𝐶
∗ =

8−6𝛾2+𝛾3+𝛾4

2(8−5𝛾2+𝛾4)
 ; 𝑠2𝐶

∗ =
(1−𝛾)(2+𝛾)

2(2−𝛾2)
+

1

2−𝛾2
ℎ1𝐶
∗  ; 𝑠1𝐶

∗ =
1−𝛾

2
+
𝛾

2
𝑠2𝐶
∗ +

𝛾

2
ℎ1𝐶
∗  ; 

 𝜋1𝐶
∗ =

12+4𝛾−9𝛾2−𝛾3+2𝛾4

4(1+𝛾)(8−5𝛾2+𝛾4)
>

1

4
 ; 𝜋2𝐶

∗ =
2(1−𝛾)(2−𝛾2)

(1+𝛾)(8−5𝛾2+𝛾4)2
> 0. 

Substitution of ℎ1𝐶
∗  into 𝑠2𝐶

∗  and ℎ1𝐶
∗ , 𝑠2𝐶

∗  into 𝑠1𝐶
∗  produces the statement in Lemma 1(c).    ∎                                                                                                      

 

  



20 
 

 

References 

Amir, R. and Grilo, I., (1999), “Stackelberg versus Cournot equilibrium”, Games and 

Economic Behaviour, vol. 26, p. 1-21. 

Amir, R. and Stepanova, A., (2006), “Second-mover advantage and price leadership in 

Bertrand duopoly”, Games and Economic Behaviour, vol. 55, p. 1-30. 

Bourreau, M., Hombert, J., Pouyet, J., and Schutz, N., (2011), “Upstream competition 

between vertically integrated firms”, Journal of Industrial Economics, vol. 59(4), p. 677-713. 

van Damme, E. and Hurkens, S., (1999), “Endogenous Stackelberg leadership”, Games and 

Economic Behaviour, vol. 28, p. 105-129. 

van Damme, E. and Hurkens, S., (2004), “Endogenous price leadership”, Games and 

Economic Behaviour, vol. 47, p. 404-420. 

Dowrick, S., (1986), “Von Stackelberg and Cournot duopoly: choosing roles”, Rand Journal 

of Economics, vol.17, p. 251-260. 

Gal-Or, E., (1985), “First mover and second mover advantages”, International Economic 

Review, vol. 26, p. 649-652. 

Hamilton, J. and Slutsky, S., (1990), “Endogenous timing in duopoly games: Stackelberg or 

Cournot equilibria”, Games and Economic Behaviour, vol. 2, p. 29-46. 

Harbord, D. and Ottaviani, M., (2001), “Contracts and competition in the pay-TV market” , 

LBS, Department of Economics, Working Paper No. DP 2001/5. Available at SSRN: 

https://ssrn.com/abstract=289334  

Madden, P. and Pezzino, M., (2013), “Sports league quality, broadcaster TV rights bids and 

wholesale regulation of sports channels”, Working Paper, University of Manchester. 

Rey, P. and Tirole, J., (2007), “A primer on foreclosure”, Handbook of Industrial 

Organization, vol. 3, editors Armstrong, M. and Porter, R., North Holland, p. 2145-2220. 

Weeds, H., (2016), “TV wars: exclusive content and platform competition in pay TV”, The 

Economic Journal, vol. 126, p. 1600-1633. 

 

 

  

https://ssrn.com/abstract=289334


21 
 

 

Online Appendix  

This appendix assumes extended action sets (ℎ1, 𝑠1, 𝑠2) ∈ ℝ+
3  rather than the original 

(ℎ1, 𝑠1, 𝑠2) ∈ [0,1]
3. It proves: (i) that Lemma 1 continues to hold, and (ii) Lemma 2. 

(i) Proof that Lemma 1 continues to hold with action sets (𝒉𝟏, 𝒔𝟏, 𝒔𝟐) ∈ ℝ+
𝟑  

It is useful to separate statement (OA1) below. Define the set ℱ = {(ℎ1, 𝑠1, 𝑠2) ∈

ℝ+
3 : (ℎ1, 𝑠1, 𝑠2) ∉ [0,1]

3 and 𝜋2(ℎ1, 𝑠1, 𝑠2) ≥ 0}. Then: 

(OA1)        (ℎ1, 𝑠1, 𝑠2) ∈ ℱ ⇒ 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤
1

4
  

The reasons are as follows: 

(1) Suppose (ℎ1, 𝑠1, 𝑠2) ∈ ℱ and 𝑠2 > 1. Then 𝐷2(𝑠1, 𝑠2) = 0, 𝐷1(𝑠1, 𝑠2) = max (1 −

𝑠1, 0), 𝜋1(ℎ1, 𝑠1, 𝑠2) = 𝑠1max (1 − 𝑠1, 0) ≤
1

4
. 

(2) Suppose (ℎ1, 𝑠1, 𝑠2) ∈ ℱ and ℎ1 > 1. If 𝑠2 ≥ ℎ1(> 1) then 𝐷2(𝑠1, 𝑠2) = 0 and 

𝜋1(ℎ1, 𝑠1, 𝑠2) ≤
1

4
, as in (1). If 𝑠2 < ℎ1 then 𝐷2(𝑠1, 𝑠2) = 0 (since 𝜋2(ℎ1, 𝑠1, 𝑠2) ≥ 0) 

and 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤
1

4
, again as in (1). 

(3) Suppose (ℎ1, 𝑠1, 𝑠2) ∈ ℱ and 𝑠1 > 1. Then 𝐷1(𝑠1, 𝑠2) = 0 and 𝐷2(𝑠1, 𝑠2) = max (1 −

𝑠2, 0). If 𝑠2 ≥ 1 then 𝐷2(𝑠1, 𝑠2) = 0 = 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤
1

4
. If 𝑠2 < 1 then 𝑠2 ≥ ℎ1 

(otherwise 𝜋2(ℎ1, 𝑠1, 𝑠2) < 0) and 𝜋1(ℎ1, 𝑠1, 𝑠2) = ℎ1max (1 − 𝑠2, 0) ≤ 𝑠2max (1 −

𝑠2, 0) ≤
1

4
. 

Consider game A; {(ℎ1, 𝑠1), 𝑠2}. Consider the prices ℎ1𝐴
∗ , 𝑠1𝐴

∗ , 𝑠2𝐴
∗  defined earlier. If 

(ℎ1𝐴
∗ , 𝑠1𝐴

∗ ) has been chosen by firm 1 at stage I of the extended game, the choice of 𝑠2 > 1 by 

firm 2 at stage II leads to 𝐷2 = 𝜋2 = 0, and 𝑠2 = 𝑠2𝐴
∗  remains firm 2’s best response in the 

extended game. Thus stage I reduced form payoff for firm 1 remains at 𝜋1𝐴
∗ >

1

4
 if (ℎ1𝐴

∗ , 𝑠1𝐴
∗ ) 

is chosen. Whatever (ℎ1, 𝑠1) are chosen at stage I, firm 2’s best response must imply 𝜋2 ≥ 0; 

for instance 𝑠2 ≥ 1 ensures 𝜋2 = 0. We know that any choice by firm 1 at stage I other than 

(ℎ1𝐴
∗ , 𝑠1𝐴

∗ ) offers lower stage I reduced form payoff than 𝜋1𝐴
∗ >

1

4
 when choices are restricted 

to the original action sets (ℎ1, 𝑠1, 𝑠2) ∈ [0,1]
3. But (OA1) implies that if (ℎ1, 𝑠1) and firm 2’s 

stage II best response 𝑠2 are such that (ℎ1, 𝑠1, 𝑠2) ∉ [0,1]
3 then 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤

1

4
. In the 

extended game it follows that the stage I reduced form payoff for firm 1 is lower than 𝜋1𝐴
∗  if 

(ℎ1, 𝑠1) ≠ (ℎ1𝐴
∗ , 𝑠1𝐴

∗ ) and Lemma 1(a) continues to hold. 

Consider game B; {ℎ1, (𝑠1, 𝑠2)}. Consider the prices ℎ1𝐵
∗ , 𝑠1𝐵

∗ , 𝑠2𝐵
∗  defined earlier. If ℎ1𝐵

∗  has 

been chosen by firm 1 at stage I of the extended game, Nash deviation (given 𝑠1𝐵
∗ ) to 𝑠2 > 1 

by firm 2 at stage II leads to 𝐷2 = 𝜋2 = 0, and 𝑠2 = 𝑠2𝐵
∗  remains firm 2’s stage II best 

response to 𝑠1𝐵
∗  in the extended game; similarly Nash deviation (given 𝑠2𝐵

∗ ) to 𝑠1 > 1 by firm 

1 at stage II leads to 𝐷1 = 𝜋1 = 0, and 𝑠1 = 𝑠1𝐵
∗  remains firm 1’s stage II best response to 𝑠2𝐵

∗  
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in the extended game. Thus stage I reduced form payoff for firm 1 remains at 𝜋1𝐵
∗ >

1

4
 if ℎ1𝐵

∗  

is chosen. Whatever ℎ1 is chosen at stage I, the stage II subgame NE must imply 𝜋2 ≥ 0; for 

instance again, 𝑠2 ≥ 1 ensures 𝜋2 = 0. We know that any choice by firm 1 at stage I other 

than ℎ1𝐵
∗  offers lower stage I reduced form payoff than 𝜋1𝐵

∗ >
1

4
 when choices are restricted to 

the original action sets (ℎ1, 𝑠1, 𝑠2) ∈ [0,1]
3. But (OA1) implies that if ℎ1 and subsequent 

stage II NE (𝑠1, 𝑠2) are such that (ℎ1, 𝑠1, 𝑠2) ∉ [0,1]
3 then 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤

1

4
. In the extended 

game it follows that the stage I reduced form payoff for firm 1 is lower than 𝜋1𝐵
∗  if ℎ1 ≠ ℎ1𝐵

∗  

and Lemma 1(b) continues to hold. 

Consider game C; {ℎ1, 𝑠2, 𝑠1}. Consider the prices ℎ1𝐶
∗ , 𝑠2𝐶

∗ , 𝑠1𝐶
∗  defined earlier. If ℎ1𝐶

∗ , 𝑠2𝐶
∗  

have been chosen at the first 2 stages of this 3-stage game, the choice of 𝑠1 > 1 by firm 1 at 

stage III leads to 𝐷1 = 𝜋1 = 0, and 𝑠1 = 𝑠1𝐶
∗  remains firm 1’s best response in the extended 

game. If ℎ1𝐶
∗  has been chosen at the first stage, the choice of 𝑠2 > 1 by firm 2 at stage II leads 

to 𝐷2 = 𝜋2 = 0, and 𝑠2 = 𝑠2𝐶
∗  remains firm 2’s best response in stage II of the extended 

game. Thus stage I reduced form payoff for firm 1 remains at 𝜋1𝐶
∗ >

1

4
 if ℎ1𝐶

∗  is chosen. 

Whatever ℎ1 is chosen at stage I, the stage II subgame NE must imply 𝜋2 ≥ 0; for instance 

once again, 𝑠2 ≥ 1 ensures 𝜋2 = 0. We know that any choice by firm 1 at stage I other than 

ℎ1𝐶
∗  offers lower stage I reduced form payoff than 𝜋1𝐶

∗ >
1

4
 when choices are restricted to the 

original action sets (ℎ1, 𝑠1, 𝑠2) ∈ [0,1]
3. But (OA1) implies that if ℎ1 and subsequent stage II 

subgame NE 𝑠1 followed by 𝑠2 are such that (ℎ1, 𝑠1, 𝑠2) ∉ [0,1]
3 then 𝜋1(ℎ1, 𝑠1, 𝑠2) ≤

1

4
. In 

the extended game it follows that the stage I reduced form payoff for firm 1 is lower than 𝜋1𝐶
∗  

if ℎ1 ≠ ℎ1𝐶
∗  and Lemma 1(c) continues to hold. 

(ii) Proof of Lemma 2 

Consider first the game {(ℎ1, 𝑠1, 𝑠2)}where all prices are chosen simultaneously, and the 

statement: ℎ1 ≥ 1, 𝑠2 ≥ 1, 𝑠1 =
1

2
 is a NE (SPE) with 𝜋1 =

1

4
, 𝜋2 = 0. To prove this, note that 

𝑠2 ≥ 1 ⇒ 𝐷2 = 0,𝐷1 = max{1 − 𝑠1, 0} , 𝜋1 = 𝑠1𝐷1 ⇒ 𝑠1 =
1

2
 for 1’s best response. Hence, in 

particular, ℎ1 ≥ 1, 𝑠1 =
1

2
 are best responses for firm 1 to 𝑠2 ≥ 1. Next suppose ℎ1 ≥ 1, 𝑠1 =

1

2
. Then 𝑠2 < 1(≤ ℎ1) ⇒ 𝜋2 ≤ 0, but 𝑠2 ≥ 1 ⇒ 𝜋2 = 0. Hence 𝑠2 ≥ 1 are best responses for 

firm 2 to ℎ1 ≥ 1, 𝑠1 =
1

2
, and the statement’s NE is established. 

Next consider the statement: there is no NE with 𝜋1 >
1

4
 or with 𝜋2 > 0. Suppose (ℎ1, 𝑠1, 𝑠2) 

is a NE where 𝜋1 >
1

4
. It must be that 𝐷2 > 0 since otherwise 𝐷2 = 0,𝐷1 = max{1 −

𝑠1, 0} , 𝜋1 = 𝑠1𝐷1 ⇒ 𝑠1 =
1

2
, 𝜋1 =

1

4
. But 𝜋1 = 𝑠1𝐷1 + ℎ1𝐷2, raising ℎ1would increase 𝜋1, and 

(ℎ1, 𝑠1, 𝑠2) cannot be a NE with 𝜋1 >
1

4
. Suppose (ℎ1, 𝑠1, 𝑠2) is a NE where 𝜋2 > 0. Again it 

must be that 𝐷2 > 0 and again a contradiction follows, establishing this second statement, 

which proves Lemma 2 for the game {(ℎ1, 𝑠1, 𝑠2)}  
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Consider the game {(ℎ1, 𝑠2), 𝑠1} where (ℎ1, 𝑠2) are chosen simultaneously at stage I, 𝑠1 at 

stage II, and the statement: there is a SPE with profits 𝜋1 =
1

4
, 𝜋2 = 0. To prove this note 

that; 

(ℎ1 ≥ 1, 𝑠2 ≥ 1) chosen at stage I ⇒ (as above) 𝐷2 = 0 and 𝑠1 =
1

2
 is the stage II SPE 

continuation with 𝜋1 =
1

4
, 𝜋2 = 0. 

(ℎ1 < 1, 𝑠2 ≥ 1) chosen at stage I ⇒ (again) 𝐷2 = 0 and 𝑠1 =
1

2
 is the stage II SPE 

continuation with 𝜋1 =
1

4
; there is no benefit to firm 1 from deviating at stage I from ℎ1 ≥ 1 

to ℎ1 < 1. 

(ℎ1 ≥ 1, 𝑠2 < 1) chosen at stage I ⇒ 𝑠2 − ℎ1 < 0 and 𝜋2 ≤ 0 no matter what the stage II 

SPE continuation is; there is no benefit to firm 2 from deviating at stage I from 𝑠2 ≥ 1 to 

𝑠2 < 1, establishing the statement’s SPE claim. 

Next consider the statement: there is no SPE with 𝜋1 >
1

4
 or with 𝜋2 > 0. Suppose (ℎ1, 𝑠1, 𝑠2) 

are SPE prices where 𝜋1 >
1

4
. If 𝐷2 = 0, 𝜋1 = 𝑠1max{1 − 𝑠1, 0} ≤

1

4
; so 𝐷2 > 0. Suppose 

(ℎ1 ≥ 0, 𝑠2 ≥ 0) have been chosen at stage I leading to some SPE continuation �̂�1 and some 

𝜋1 = �̂�1𝐷1(�̂�1, 𝑠2) + ℎ1𝐷2(�̂�1, 𝑠2). Suppose firm 1 deviated at stage I to a higher ℎ1. If the 

SPE continuation stayed the same (�̂�1) 𝜋1would increase. But the actual continuation chosen 

by firm 1 at stage II after the stage I deviation must be at least as profitable for firm 1. Thus 

the supposed SPE prices are contradicted, and there is no SPE with 𝜋1 >
1

4
. Suppose finally 

that (ℎ1, 𝑠1, 𝑠2) are SPE prices where 𝜋2 > 0. It must be again that 𝐷2 > 0 and the previous 

contradiction repeats. This completes the proof of Lemma 2 for the game {(ℎ1, 𝑠2), 𝑠1}. 

 

  

 

 


