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Abstract9

Allocation and management of agricultural land is of emergent concern due to land scarcity, diminishing10

supply of energy and water, and the increasing demand of food globally. To achieve social, economic11

and environmental goals in a specific agricultural land area, people and society must make decisions12

subject to the demand and supply of food, energy and water (FEW). Interdependence among these13

three elements, the Food-Energy-Water Nexus (FEW-N), requires that they be addressed concertedly.14

Despite global efforts on data, models and techniques, studies navigating the multi-faceted FEW-N15

space, identifying opportunities for synergistic benefits, and exploring interactions and trade-offs in16

agricultural land use system are still limited. Taking an experimental station in China as a model17

system, we present the foundations of a systematic engineering framework and quantitative decision-18

making tools for the trade-off analysis and optimization of stressed interconnected FEW-N networks.19

The framework combines data analytics and mixed-integer nonlinear modeling and optimization meth-20

ods establishing the interdependencies and potentially competing interests among the FEW elements21

in the system, along with policy, sustainability, and feedback from various stakeholders. A multi-22

objective optimization strategy is followed for the trade-off analysis empowered by the introduction23

of composite FEW-N metrics as means to facilitate decision-making and compare alternative process24

and technological options. We found the framework works effectively to balance multiple objectives25

and benchmark the competitions for systematic decisions. The optimal solutions tend to promote the26

food production with reduced consumption of water and energy, and have a robust performance with27

alternative pathways under different climate scenarios.28

Keywords: land use, Food-Energy-Water Nexus, data-driven modeling, multi-objective optimization,29

integrated assessment30
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1. Introduction31

Agricultural land is the largest ecosystem to provide food for human (Ellis & Ramankutty, 2008).32

Agricultural production accounts for ∼30% of the global energy consumption, ∼92% of the human33

water footprint, and over 20% of global greenhouse gas emissions (Alexandratos et al., 2012; Sims,34

2011). The Food and Agricultural Organization (FAO) estimates a ∼60% increase of food demand35

(compared with that of 2005/2007) for feeding 9.7 billion people by 2050, but the contribution of36

cropland expansion to the increase is expected to reduce from 14% to 10% due to environmental reasons37

at that time (Alexandratos et al., 2012; Ramankutty et al., 2018). Several countries, particularly in38

the Near East/North Africa and South Asia, have already reached or are close to the limits of land39

resource (FAO, 2009). Thus, there is an increasing pressure to meet the food demand of current and40

future human populations with limited land expansion while minimizing the consumption of energy41

and water and conserving the environment.42

Typically, agricultural food production is a water and energy intensive process, for instance, water43

is used for irrigation, energy is used as power or fertiliser source during production, and there are44

also land competitions among food crop and energy crop. Therefore, for specific land use system, the45

decisions to meet both human needs and nature conservation goals are subject to the demand and46

supply of food, energy and water (FEW), and can be dealt with optimization techniques (Bergstrom47

et al., 2013; Rathmann et al., 2010; Beinat & Nijkamp, 1998). Due to the interdependence among48

FEW, which is commonly referred to as the Food-Energy-Water Nexus (FEW-N) (Keairns et al., 2016;49

Scanlon et al., 2017), unbiased decisions require that they should be addressed concertedly. That50

is, for the land use optimization problem, solutions considering Nexus scope rather than individual51

FEW elements would provide more sustainable decisions due to the very nature of FEW nexus in52

land use systems. In addition, the land-specific optimal decisions will provide optimal FEW Nexus53

for individual production sectors in the system, which will improve productivity and develop more54

efficient resource management. Accordingly, the FEW Nexus for the land use optimization problem55

offers a promising conceptual method to identify trade-offs and integration effort of FEW elements in56

the system (D’Odorico et al., 2018).57

To identify unbiased decisions and interactions of FEW elements in the systems, methodologies58

of current nexus studies mainly include data-intensive modeling for geographical land area, life cycle59

analysis for specific technologies or products, and systematic analysis based on descriptive methods60

(Keairns et al., 2016; Albrecht et al., 2018). These nexus methods provide essential knowledge and61

useful approaches for expanding our understanding of FEW interactions and addressing social and62
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economic concerns of FEW related systems.63

Yet to achieve a quantitative understanding of the FEW-N interrelationships and make optimal64

holistic decisions, it is required to solve challenges including predictive modeling approaches, effective65

integration of data and models, optimization methods for exploring and evaluating trade-offs, and66

generic metrics for assessing FEW interlinkages in the systems (Mohtar & Daher, 2018; Sayer et al.,67

2013; D’Odorico et al., 2018; Ramankutty et al., 2018).68

A fundamental challenge for optimal decision-making is the predictive modeling approaches (McCarl69

et al., 2017b,a; Holzworth et al., 2015; van Ittersum et al., 2013). To represent components in a land use70

system, many studies have focused on the modeling aspect of crop and livestock production systems,71

models including DSSAT (Jones et al., 2003), APSIM (Keating et al., 2003), and AquaCrop (Steduto72

et al., 2009) have improved our ability to predict the productivity gains of crop or livestock in scientific73

understanding and data availability. In general, these kinds of models are often described as large74

sets of sub-models or equations, and take into consideration many factors, such as climate change and75

biological properties for different objectives (Nelson et al., 2014). However, increasing considerations76

may also result to more data input, more parameters, and therefore more complicated models. Such77

consideration may increase the need for more available data and region-specific and/or crop-specific78

parameters (Paul et al., 2017), which may not be really available to most developing countries. All of79

these underlying uncertainties will cause changes in land use systems, which must be merged to the80

learning process for better decision-making (Vermeulen et al., 2013). Hence, it is important to consider81

data limitations and adaptive strategies for modeling productivity in the land use systems.82

In addition, from a process systems engineering perspective, systematic decisions require efficient83

and quantitative integration methods for data and models (Bertran et al., 2017; Jones et al., 2017b). In84

agricultural systems with multiple production units involving large amounts of FEW data and potential85

pathways, a family of available models are needed to represent these complex relations in the production86

processes. Comparisons of ultimate results also require model integration from each process. All of87

these integrations will lead to low computational efficiency in a complex land use system (Jones et al.,88

2017a). Therefore, effective integration methods for data management, alternatives generation, and89

flexible modeling in land use systems are urgently needed.90

Another major challenge in agricultural land use arises from the presence of multiple stakeholders91

and their differing, and often conflicting, objectives such as profit, food demand, environmental goals,92

and efficient use of resources (e.g., water and energy) (Stewart et al., 2004; Garcia & You, 2016).93

Thus, the problem of land use optimization is often studied as a multi-objective optimization problem94
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(Seppelt, 2016). Despite multi-objective optimization techniques, such as the ε-constraint method,95

can effectively reach the best compromise when the bounds of objective functions are known, and has96

been used in FEW related systems (Uen et al., 2018; Dhaubanjar et al., 2017; Zhang et al., 2018),97

it is critically difficult to get trade-offs while facing large amounts of uncertainties and complicated98

interactions in land use systems (Chiandussi et al., 2012).99

When considering FEW Nexus wide decision-making approaches, more challenges emerge including100

the identification of interactions among the FEW elements (Flammini et al., 2017; Mohtar et al., 2019;101

El-Gafy, 2017; Dargin et al., 2018), the resilience decision-making for climate change (Van Tra et al.,102

2018), and the conflicts between stakeholders’ interests and environmental impacts (Song et al., 2018).103

These challenges can limit progress towards improved FEW resources management, trade-off decisions,104

and sustainable outcomes across different production sectors. Although the importance of addressing105

systematic uncertainties is well acknowledged, few studies have generic and quantitative metrics for106

decision-making in land use systems (Albrecht et al., 2018; Daher et al., 2018).107

All the above challenges raise a need for the development of robust and systematic methods to108

derive trade-offs for land use decision-making. In this study, we propose a three-step framework,109

especially targets at the development of novel workflows and data flows for generic land distribution110

in the context of effective integration of FEW-N related data, models and optimization methods. As111

a result, the framework can output a flexible superstructure for designing the land use system with112

effective integration of data and models, a family of adaptable models for representing the production113

processes with limited data and adaptation strategies, and a mixed integer nonlinear programming114

(MINLP) model along with adjustable FEW-based metrics for solving the multi-objective decision-115

making problem and assessing different solutions. Operational decisions from the framework include116

the production and use of food, energy and water in the production process for each production unit117

that can trade-off conflicted objectives. Our framework can assist policy-makers by supplying them118

with quantitative assessment of solutions for different objectives, as well as provide actionable pathways119

to meet economic goals with reduced environmental concerns.120

2. Case study area121

As a case study of our approach, we select Yucheng Station (36.96oN, 116.63oE), an experimental122

station belonging to Chinese Academy of Sciences, as the land use system. Yucheng Station is lo-123

cated in Yucheng County, Shandong Province of China, which is a typical agricultural county in the124

North China Plain (NCP). In this region, grain and cotton are the main crops, while agriculture is125
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experiencing an adjustment from single cropping to crop-livestock mixed farming system (Chen et al.,126

2012). Considering the local common choice, specific crops (wheat, corn and cotton) and livestock127

(cattle, hens and pig) are selected as the typical production units to construct the system. This land128

use system can be a typical example for the land use decision-making in NCP, as it has great support129

on local data and policies, and it also includes several similar characteristics, such as large demand of130

food, water scarcity, overuse of fertiliser, and serious water and soil pollution problems (Fang et al.,131

2006). We believe this framework will have the potential to become a widely used tool to optimize and132

benchmark agricultural land use systems.133

3. Material and methods134

Our framework requires three steps. 1) Superstructure design of land use allocation with depen-135

dencies on FEW. This step is used to identify the main features of the land use system, thus providing136

a base holistic design. 2) Unit modeling of production units, which provides generic simulations of137

the production processes and quantifies the FEW relations for basic production units in the system.138

3) Multi-objective MINLP optimization. This last step translates the decision-making problem into a139

multi-objective MINLP problem by integrating the FEW data and unit models based on the proposed140

superstructure, and the problem can be efficiently solved with the help of a flexible and adjustable141

FEW metric. The structure summary is shown in Table 1, and the modeling framework is summa-142

rized in Fig. 1. Each step is discussed below, the data sources in the consideration area are shown in143

Supplementary Section 1.144

3.1. Step1: Superstructure design145

The goal of land allocation is to optimize the basic structure for a given area by considering146

land competitions among different production units. A generic land allocation structure is shown in147

Fig. 2, and it is constructed with a set of grids with two land types: cropland and livestock land.148

Land competitions not only exist between different land types, but also can appear among different149

production units within the same land types. The workflow for step 1 follows two sub-step: (1.1) Land150

use and FEW-Nexus definition, and (1.2) superstructure generation.151

3.1.1. Step 1.1: Problem definition based on FEW-Nexus152

This work is to provide a generic decision-making framework to maximize the trade-off benefits153

of the crop and livestock production in the land use system. In order to model the system, the154
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Table 1: Structure summary for each step of the framework

Step 1 Step 2 Step 3

Problem features Design Modeling Optimization

Input FEW-land supply/demand Condition data set Conditional unit models

climate conditions FEW data flow FEW-land constraints

process parameters basic production units optimization objectives

interest of stakeholders superstructure connections

policy and law a FEW-based metric

Output Condition data set Conditional unit models Optimal system designs

FEW data flow optimal FEW-land use

basic production units assessment of solutions

FEW-land constraints

optimization objectives

superstructure connections

following information should be specified: the objectives, the available FEW and land data sets, the155

production units set, the products set, the processing procedures, and the set of available technologies156

and operations.157

In this study, according to the feedback of stakeholders and policy-makers, the optimization objec-158

tives includes total profit (TP ), total food production (TF ), total energy use (TE), total water use159

(TW ), and total environmental penalty (TEn) over a course of production years.160

As shown in Fig. 2, the cultivation area includes two land types: cropland and livestock land,161

which are allocated to crop production units (wheat, corn, and cotton) and livestock production units162

(cattle, hens, and pig), respectively. Specifically, the production of wheat and corn can construct a163

rotation system in the consideration area since they can grow in the same area in sequenced seasons,164

that is, there is no land competition in the rotation system in one production year. The land area we165

study is divided into grids with different scales according to realistic production situations (Table S1 in166

Supplementary Section 1), then the FEW constraints for different production units are defined based167

on each grid.168

All of the input-output data in the land use system include input FEW resources and output169

products and byproducts data from production units, economic data from social surveys, and other170
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Figure 1: Framework for crop-livestock land use problem

data for dynamic conditions, such as climate data. These data are collected from various sources,171

for instance, the open literatures and databases, local experiments recordings and experts’ experience172

(Supplementary Section 1). Some data, such as the original input-output FEW data for crop modeling,173

are not readily available, but can be generated by using the simulator APSIM (Keating et al., 2003).174

Then all these data are grouped based on the input-output FEW use and production by different175

production units, and the nexus is defined by quantifying the FEW flow sheet through them.176

Alternative pathways that use different technologies are identified based on local availability. Specif-177

ically, considering crop production units, the main food output is crop products while straw is the main178

byproduct. The crop food produced by the wheat-corn rotation subsystem can be sold to market or179

sent to livestock land for feeding. The crop straw can have three routes: sell to market, return to180

cropland as an alternation of chemical fertiliser, or used as feed for cattle. Saline (low quality) and181

drinkable water (high quality) are set as the two choices for irrigation. To improve the efficiency of182

organic fertiliser, the biological technology such as fermentation can be an optional choice for manure183

return. Only drinkable water can be selected for livestock feeding.184

Based on all the above known parameters and information, the framework need to make decisions185

including:186

• production units selection for different land grids based on different climate conditions;187
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Figure 2: Problem definition of land allocation. In the consideration area, the typical growing season for wheat is from

early October to the middle of the following June, and summer maize is planted at the end of winter wheat season

and harvested in late September, therefore, the wheat and corn can be set as a rotation system, which don’t have land

competitions in one year.

• input-output FEW demand/supply for production units;188

• sustainable pathways selection in the superstructure network;189

• final product production and pathways for specific objectives and final trade-offs, given the bound-190

aries of FEW, price, cost and specifications of the crop-livestock system;191

• quantitative assessment for objective-related solutions.192

3.1.2. Step 1.2: Superstructure generation193

From the collected data and alternatives involved in the decision-making land use system, a su-194

perstructure is generated. Fig. 3 presents an example of a land use system network considering three195

different food crops and three livestock crops through a superstructure consisting of FEW resources,196

production units, land grids, products and byproducts, known technologies, and FEW-related opera-197

tions that connect them. The superstructure also includes several alternative pathways for resource198

recycling in the system, such as supply resources of feed food, treatment of livestock waste, and routes199

for crop straw use. The size of the decision-making problem depends on the numbers of these elements200

in the superstructure, which can be flexible based on the scales of resources, units, land, and alternative201

technologies and operations. In this study, fertiliser and power use are taken as energy use, there is no202

energy production as we focus on agricultural land use optimization for food production.203
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Energy 1
(Fertiliser)

Energy 2
(Power)
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(Feed)

Water 1
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Water 2
(Low Quality)

Hen
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Hen
(Type 2)

Cattle

Pig

Corn

Wheat

Cotton

Rotation
Crop Land
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Crop Land

Livestock
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Food
(Crop)

Food
(Milk/Meat/Egg)

Byproducts
(Straw)

Products
(Economic)

Emission

Byproducts
(Waste)
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(Normal)

Treatment 2
(Biotech)

Local Environment

Market

FEW Production Units Land Types Products

Organic Fertiliser
Straw Return
Feed Food
Land Conversion
Products Conversion

rotation system

Figure 3: Initial superstructure representation for the crop-livestock land use system. For the difference of two treatment

techniques, this study considers the additional cost of the biotechnology treatment (Table S5 and Supplementary Section

1).

3.2. Step 2: Data-driven modeling204

In the modeling step (Step 2), input-output FEW relations are established for all the production205

units in the system based on surrogate models. For production units with high uncertainties, a data-206

driven modeling method is applied to surrogate the models. For other production units, a set of207

simple piecewise functions are used to approximate the production actions. The data-driven modeling208

method includes three sub-step: (2.1) input-output data set construction for different conditions, (2.2)209

parameter estimation for surrogate models based on conditional input-output data set, and (2.3) model210

improvement by using adaptation strategies. Here, the workflow of the data-driven modeling method211

are highlighted in Fig. S1.212

3.2.1. Step 2.1: Input-output data set construction for different conditions213

Climate change can significantly affect agricultural production (Asseng et al., 2013). Especially,214

taking the crop production as an example, different climate conditions will alter the potential crop215

yield with the same irrigation and fertilization schedules. In addition, the schedule of irrigation and216
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fertilization during productions can also affect the potential yield even with the same water and fertiliser217

input at the same climate conditions. Thus, different climate condition data and schedule data can have218

many combinations, making it extremely difficult for us to obtain data for all the combinations from real219

production processes. To address the data limitation for modeling crop production units, a frequency220

analyse-based method is used to achieve the near-optimal schedules and construct the input-output221

data for modeling under different climate conditions. For each climate condition, a candidate schedule222

set can be constructed based on randomly selected operation times for irrigation and fertilization.223

Simulated experiments of a group of input data points (irrigation and fertiliser, X) are carried out224

through the simulator based on the schedule set. The near-optimal schedules (S) for input water and225

fertiliser can be simply chosen through statistic analysis, that is, counting the frequency of schedules226

with maximum response food yield y for each input data point, the schedules with maximum frequency227

are set as the good choices for crop production in the specific conditions (Details in Supplementary228

Section 2.1).229

3.2.2. Step 2.2: Parameter estimation for surrogate models based on conditional input-output data set230

Note the fact that no single type of surrogate model outperforms all other types for dissimilar231

processes, and choosing the best type of surrogates for each process is a challenging task (Linker &232

Sylaios, 2016). In general, the surrogate model may have better performance by choosing a combination233

of different types of surrogate models rather than using just a single type of surrogate models (Bhosekar234

& Ierapetritou, 2017).235

In this step, a mix-weighted surrogate model is used to estimate the unit production model M .236

The types (k ∈ K) of surrogate functions f
(k)
θ can be linear, quadratic and reference types, etc. (Frank237

et al., 1990; Wang & Baerenklau, 2014). Thus, in this step the optimization problem of parameter238

estimation for weights ωk and θ(k) of surrogate model F̂θ is solved. By using the conditional input-239

output data set {X, y|S}, the proposed method can solve the surrogate modeling problem based on240

the OLS (Ordinary Least Square) approach (Montgomery et al., 2012), cross validation technique and241

a mix-weight method (Goel et al., 2007). Eq. 1 shows the general type of the surrogate models, and242

the detailed methods are in Supplementary Section 2.2.243

F̂θ(X) =
3∑

k=1

ωkf
(k)
θ (X) (1)
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3.2.3. Step 2.3: Model improvement by using adaptation strategies244

Though accurate surrogate models M can be achieved by the above mentioned data-driven mod-245

eling methods based on accurate input-output data, available data for modeling are quite limited in246

reality (Humblot et al., 2017). To address this challenge, as the optimal surrogate model MK based247

on simulating experiments data is generated, an adaptation strategy based on new available data is248

designed to decrease the error ratios of surrogate models (see details in Supplementary Section 2.3 and249

Fig. S3) .250

3.3. Step 3: Multi-objective optimization and assessment251

Since the production units in the system can be described by the proposed modeling methods in252

step 2, a family of unit models are developed to predict their yields. Based on the collected FEW253

data, we can define the land use problem as a multi-objective MINLP problem, and solve it with two254

sub-step: (3.1) Mathematical Formulations for the Multi-Objective Problem, (3.2) MINLP Problem255

Solving and Assessing Based on the FEW Metric.256

3.3.1. Step 3.1: Mathematical Formulations for the Multi-Objective Problem257

The five different objectives for the system are given in Eq. 2: maximal profit (TP ), maximal food258

yield (TF ), minimal energy use (TE), minimal water use (TW ) and minimal environmental penalty259

(TEn). Each individual objective can be solved directly to optimality using the global MINLP solver260

ANTIGONE in GAMS (Misener & Floudas, 2014) (see details in Supplementary Section 3).261
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maxTP =
∑
c∈C

∑
a∈A

(pcFca − TCca) +
∑
l∈L

∑
b∈B

(plFlb − TClb)

maxTF =
∑
c∈C

∑
a∈A

Fca +
∑
l∈L

∑
b∈B

Flb −
∑
b∈B

F ′1b

minTE =
∑
c∈C

∑
a∈A

(Eca − E′ca) +
∑
l∈L

∑
b∈B

(Elb − E′lb)

minTW =
∑
c∈C

∑
a∈A

Wca +
∑
l∈L

∑
b∈B

Wlb

minTEn =
∑
c∈C

∑
a∈A

Enca +
∑
l∈L

∑
b∈B

Enlb

s.t.

TF ≥ TF lo

TW lo ≤ TW ≤ TW up

TElo ≤ TE ≤ TEup

yr ∈ {0; 1}; r ∈ R

(2)

where c ∈ C and l ∈ L are production units of crop (C) and livestock (L), respectively. a ∈ A and262

b ∈ B represent cropland grids and livestock land grids. These objectives are calculated based on energy263

(Eca, Elb), water use (Wca,Wlb), economic cost (TCca, TClb), environmental penalty(Enca, Enlb), and264

yield output (Fca, Flb) from different land grids. The total cost for production units (TC) includes their265

related constant cost, energy cost, water cost and other cost (e.g. biotechnology, labor, etc.) (Table266

S5). The energy use for production (E) is the combination of fertiliser, pesticide, irrigation, diesel267

and feed. The water use (W ) mainly comes from irrigation and livestock feeding. The environmental268

penalty (En) in this study only considers the carbon emission and nitrogen leakage . As the framework269

supposes to provide solutions over production years, by choosing recycling pathways, the previous crop270

production in the system can supply part of the food consumed in the livestock production units (F ′1b),271

and the previous wastes (E′ca and E′lb) generated in the crop and livestock production can be converted272

to organic fertiliser used in the crop production, which are regarded as new sources for energy use (the273

fertiliser ratios of waste are shown in Table S3, and the corresponding energy intensities are shown274

in Table S4). Defining appropriate boundaries for any FEW Nexus related systems is a challenge, as275

the FEW Nexus is broad and complex in time and space aspect. Narrow boundaries for the system276

will miss some key impacts, while broad boundaries will increase the model complexity. In this case,277

we define the system boundaries by considering the production on the pieces of land rather than the278
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whole supply chains. The constraints include FEW constraints (TF, TE, TW ) with lower bounds (lo)279

and upper bounds (up), the binary variables yr with several choices of land allocation (yland), water280

quality (ysaltW ), byproducts reuse (yreturn) and biotechnology treatments (ybio) (Eq. S8 to S12) in the281

system.282

3.3.2. Step 3.2: MINLP Problem Solving and Assessing Based on the FEW Metric283

Each individual objective in Eq. 2 can be solved directly to optimality using global MINLP solvers284

through GAMS (Misener & Floudas, 2014). A set of indicators is defined as a FEW metric for them285

(Eq. 3), these indicators quantify each of the objectives (decision elements) from different stakeholders,286

which provide multiple criterions for decision-makers. The decision-makers decide the quantities that287

best describe each of the decision elements. Those indicators can heavily dependent on the choice of288

the system boundary.289

Psc =
TP − TPmin

TPmax − TPmin

Fsc =
TF − TFmin

TFmax − TFmin

Esc = 1− TE − TEmin
TEmax − TEmin

Wsc = 1− TW − TWmin

TWmax − TWmin

Ensc = 1− TEn− TEnmin
TEnmax − TEnmin

(3)

where Psc, Fsc, Esc, Wsc and Ensc are the indexes for five objective functions in Eq. 2, respectively290

and selected here as decision elements. Before calculating these indexes, true boundaries for them can291

be calculated by solving the corresponding individual objective optimization problem. For instance,292

for the index Psc, the maximal and minimal objective determined values of TP need to be calculated293

by using the same constraints (Supplementary Section 3). Then the index Psc can be scaled into the294

range of 0 to 1 by using the maximum and minimum value of TP .295

To achieve trade-offs among multiple objectives and make quantitative assessments for solutions,296

two bilinear average metrics, “FEWS1” and “FEWS2” metric, are formulated in Eq. 4 and Eq.5.297

FEWS1 =
1

2
(FscEsc + EscWsc +WscFsc) sin 120o (4)

FEWS2 =
1

2
(PscFsc + FscEsc + EscWsc +WscEnsc + EnscPsc) sin 72o (5)

13



The metric FEWS1 integrates all the three main indexes of the FEW nexus by using them to298

construct a triangular spider map, presented in Fig. 4a. Therefore, the objective function of the299

optimization problem can be simply converted to the maximization of the graph area combined by the300

three indexes, and the solution can be easily visualized on the spider plot. To create a metric that301

integrates additional decision elements such as profit and environmental cost the FEWS2 metric was302

formulated in Eq. 5 and the spider plot resulting from this index is presented in Fig. 4b. Similarly, the303

multi-objective optimization problem can be converted to the maximum problem of the pentagonal area304

in the spider map. Preliminary results from previous work have verified the effectiveness (Avraamidou305

et al., 2018a,b; Nie et al., 2018; Mroue et al., 2019).306
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72 °

Figure 4: Representation of the composite metric. A: FEWS1; B: FEWS2

4. Results307

We construct a crop-livestock land use system by selecting three crops and three livestock through-308

out three land types among 16-year climate conditions at Yucheng Station (Fig. S2, Table S1). The309

proposed framework solves the land use problem through three sequential steps including design, mod-310

eling, and optimization based on FEW-Nexus in the system, which is a decomposed strategy for solving311

the overall decision-making problem (see Section 3).312

We represent the initial configuration of the crop-livestock land use system with a superstructure313

network in step 1 of the framework (Fig. 3). Fig. 5 shows two optimal superstructures of the system314

based on our trade-off solutions, which are generated by respectively taking the two FEW metrics315

FEWS1 and FEWS2) as integrated objectives to solve the multi-objective optimization problem. The316

optimal superstructures show the general decisions of production units, land allocation, technology317

options, and FEW pathways in the system.318

In step 2, the production units of crop and livestock in the system are modeled. The proposed adap-319

tive data-driven modeling methods (Section 3.2) is used to construct crop yield predictive models based320
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Figure 5: Optimal superstructure for the crop-livestock land use system based on trade-offs. The blue components are the

active units. (A) Optimal superstructure based on the trade-off from metric FEWS1 based optimization. (B) Optimal

superstructure based on the trade-off from metric FEWS2 based optimization.

on the near-optimal schedules (Table S7) under different climate conditions (Fig. S2). Fig. 6 shows321
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the cotton predictive model under climate condition 1 as an illustration of good-of-fit performance.322

Fig. 6A shows that the adaptation strategies can efficiently reduce the error ratios when iteratively323

adding new reliable input-output data samples, where strategy 2 has more robust performance. Fig.324

6B shows the final fit performance of the predictive model after limited adaptation times, illustrating325

the mix-weighted predictive model and the models with single types are good enough to simulate pro-326

duction behaviors (error ratio < 2%). By using the adaptation strategies, we can keep on improving327

the fit performance with new data. Fig. S4A shows the relative robust contribution of different single328

model types to the final mix-weighted predictive model when the adaptation iterations increase (i.e.,329

the weights for different types of model vary over narrow ranges). In general, the predictive model of330

crop production units describe the relations between input energy (fertiliser) and water and output331

food yield (Fig. S4B). The optimal parameters, weights, and final error rates for the crop production332

mix-weighted predictive models in three climate conditions are reported by Table S8.333
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Figure 6: Good-of-fit performance of adaptive data-driven modeling (e.g. cotton predictive model under climate condition

1). (A) Error ratios of the predictive model based on two adaptation strategies. Strategy 1 (s1) adds new samples without

adjusting bad samples, strategy 2 (s2) adds new samples and removes an equal number of bad samples simultaneously.

(B) Comparisons of final error ratios of the predictive models. The predictive model is a mix-weighted model based on

integration of type1 (linear), type2 (exponential), and type3 (quadratic). The modeling and test error ratios are calculated

by using the cross-validation method.

The livestock production units are modeled with linear and piecewise functions (see Supplementary334

Section 4.1). All the functions show the relations between production time and food yield, as the use335

of input energy and water have been standardized by using known feed formulas (Table S3). Fig. S5336

takes milk production and pig growth as examples to report the fit performance. The results show that337

the fitted data can match the reference data very well (R2 > 0.99).338
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Interests of different stakeholders are converted into multiple objectives including total profit (TP ),339

total food production (TF ), total energy use (TE), total water use (TW ) and total environmental340

penalty (TEn). In step 3, two FEW metrics (FEWS1 and FEWS2) are designed as the integrated341

objectives of the above multiple objectives and are solved as mixed integer nonlinear programming342

problems (MINLP) efficiently (Section 3.3. Table 2 summarizes the annual trade-off solutions based343

on two FEW metrics and five individual objectives, which include optimal objective values, diverse344

decisions for land allocation, food output, energy and water use, and choices of resources and treatment345

techniques in the system. The optimal solutions allow options for material recycles in the system for346

different objectives.347

Table 2: Optimal solutions for multi-objective optimization (condition 1)

Max TP Max TF Max TE Max TW Max TEn Max FEWS1 Max FESS2

Cropland grid wheat-corn(2) wheat-corn(2) wheat-corn(1) wheat-corn(1) wheat-corn(1) wheat-corn(2) wheat-corn(2)

cotton(1) cotton(1) cotton(1)

Livestock land grid cattle(1) cattle(1) cattle(1) cattle(1) cattle(1) cattle(1) cattle(1)

pig(1) pig(3) pig(1) pig(1) pig(1) pig(1) pig(1)

Profit (Yuan) 1.54E+05 -3.06E+05 -1.26E+06 -1.26E+06 -1.26E+06 5.29E+04 1.01E+04

Food production (MJ) 3.55E+06 4.01E+06 7.15E+05 7.15E+05 7.15E+05 3.01E+06 8.37E+05

Energy use (MJ) 3.97E+06 6.42E+06 4.77E+05 4.77E+05 4.77E+05 1.30E+06 3.92E+05

Water use (t) 1.65E+04 2.69E+05 1.46E+03 40 40 1.53E+04 3.10E+03

Environment Penalty (Yuan) 6.80E+04 9.88E+4 1.40E+03 1.40E+03 1.40E+03 2.61E+04 6.70E+03

Irrigation water high quality high quality high quality - - high quality high quality

Crop byproduct use feed(100%) feed(99.4%) feed(5.6%) feed(5.6%) feed(5.6%) return(0.1%) return(3%)

sell(0.6%) sell(94.4%) sell(94.4%) sell(94.4%) feed(2.2%) feed(3%)

sell(97.7%) sell(94%)

Livestock byproduct use sell(100%) sell(97.2%) sell(100%) sell(100%) sell(100%) sell(62.4%) sell(100%)

return(2.8%) return(37.6%)

Bio-technology treatment no no no no no no no

Feedfood source market market cropland cropland cropland market market

Feedstraw source cropland cropland cropland cropland cropland cropland cropland

TP: total profit; TF: total food production; TE: total energy use; TW: total water use; TEn: total environmental penalty.

Fig. 7 compares the trade-off solutions with individual objective based solutions under climate348

condition 1. Barplots in Fig. 7A compare the relative optimal determined values including production349

cost, food yield, energy use, water use and environmental penalty based on different solutions. Specif-350

ically, the solutions based on minimizing energy use, water use and environmental penalty (TE, TW351

and TEn) have the lowest relative values compared with other objective-based solutions. The solutions352

based on maximizing total profit and food production (TF and TP ) achieve a high level of food output353

but also consume large amounts of resources and make enormous negative impacts on the environment.354
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As for the trade-off solutions by maximizing the FEW-metrics (FEWS1 and FEWS2), they can achieve355

more food yield (compare with the TE, TW and TEn based solutions) while using fewer resources356

(compare with the TF and TP based solutions). Looking into the compositions of all the considered357

factors, all the solutions suggest that crop productions rather than livestock productions make greater358

contributions to food output, water and energy use, and environmental impacts. Fig. 7B shows the359

solutions of land allocation for different objectives, which illustrate using less land and keeping diversity360

of land use are better strategies than using all the land to produce food. To compare and assess all361

the solutions comprehensively, Fig. 7C shows the results in the spider maps with five indexes, which362

quantitatively represent the five individual objectives respectively. The performance of FEW metric363

based solutions (FEWS1 and FEWS2) is shown in the first and second spider map, illustrating more364

balanced designs for decision making, since they consider several interests of stakeholders at the same365

time (Section 3.3).366

We also analyze the FEW Nexus in the system by taking optimal solutions under climate condition367

1. Fig. S6 and Fig. S7 show that the livestock productions will be stopped at a different time based on368

different objectives, and all the solutions select to allocate livestock land to cattle and pig production.369

Note that minimizing energy, water and environmental penalty will get the same stop times with the370

proposed tradeoff solutions from maximizing the graph area, which is indicated by FEWS1 and FEWS2371

(Fig. S7C). Fig. S8 and Fig. S9 describe the objective-related routes for three main materials in the372

system. The three materials are feed straw for feeding cattle, fertiliser for all the crop production,373

and feed food for feeding all the livestock. These different material supply routes indicate that not all374

the advanced technologies and resource reuse are always necessary for systematic decision-making. For375

instance, the biotechnology for treating livestock waste and organic fertiliser return are not selected376

for the tradeoff decisions (Fig. S8). Even for the solutions that choose organic fertiliser return as one377

kind of fertiliser for crop production, the chemical fertiliser still play the key role and cannot be totally378

replaced (Fig. S8A, Fig. S9B).379

In this study, the lowest food yield at normal climate condition (Condition 1, shown in Fig. S2) are380

used as the lower constraint of food demand in order to compare climate-related performance at the381

same basis. Fig. 8A present the comparisons of relative food yield, energy and water use, environmental382

penalty and production cost for the trade-off solutions at the three climate conditions. The results383

show that generally production at years in condition 1 may achieve more yield and consume fewer384

resources, and consistent decisions can be made for land allocation in different conditions (Fig. 8B).385

The solutions are also evaluated by the FEW metrics (Fig. 8C), which show that the trade-off solutions386
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Figure 7: Comparison and assessment of multiple solutions under climate condition 1. (A) Optimal solutions for multiple

objectives including FEW metrics (FEWS1 and FEWS2), and five individual objectives including total profit (TP), total

food production (TF), total energy use (TE), total water use (TW), and total environmental penalty (TEn). FEWS1

is an integrated index by combining the objectives of total food, energy and water; FEWS2 is an integrated index by

combining all the five individual objectives. The relative optimal determined value and compositions of production cost,

food yield, energy use, water use, and environmental penalty are compared for the seven objectives. (B) Optimal land

allocations for different objective based optimization. Specifically, the green color represent the land grids allocated to

wheat-corn rotation system, and there is no land competition for wheat and corn production. The white color means

the grids are unused. (C) Solution comparison for different objectives. The indexes for five objectives are represented as:

Profit - Psc, Food - Fsc, Energy - Esc, Water - Wsc, Environment - Ensc.
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perform robust across different conditions.387
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Figure 8: Comparison and assessment of trade-off solutions under different climate conditions. (A) Trade-off solutions are

achieved by respectively taking FEWS1 and FEWS2 as objectives under three climate conditions. FEWS1 is an integrated

index by combining the objectives of total food, energy and water; FEWS2 is an integrated index by combining all the

five single objectives. The relative optimal determined value and compositions of production cost, food yield, energy use,

water use, and environmental penalty are compared for the five objectives. (B) Optimal land allocations for FEW metric

based optimization under three climate conditions. Specifically, we use the green color of wheat to represent the land grids

allocated to wheat-corn rotation system. The white color means the grids are unused. For each climate condition, the

FEWS1 and FEWS2 based solutions have the same solutions for land allocation. (C) Comparison of trade-off solutions

under different climate conditions. The red color represent FEWS1 based solution, the blue color represent FEWS2

based solution. The indexes for five objectives are represented as: Profit - Psc, Food - Fsc, Energy - Esc, Water - Wsc,

Environment - Ensc.
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5. Discussion388

The case study illustrates that the proposed framework can achieve trade-off solutions to inform389

and assist decision-makers by following three steps: design, modeling, and optimization. Specifically,390

the land use system can be designed as a superstructure network by analyzing the FEW flow and391

nexus; multiple production components in the network can be simulated by using an adaptive data-392

driven modeling method for yield prediction under different climate conditions; and the final trade-off393

solutions for diverse stakeholders can be achieved based on the previous superstructure and models394

by using a FEW metric based optimization method. Our results show that the proposed framework395

provides an effective and consistent methodology for improving, selecting, and assessing systematic396

decisions for land use, which is an innovative try for constructing generic workflows for systematic land397

use considering quantitative FEW-Nexus, effective integration of data and models, and standardized398

metrics for solution selection and assessment.399

Superstructure optimization based approaches have been proven to be cost effective and energy400

efficient for industrial process synthesis and analysis (Yuan et al., 2013). However, its application for401

agricultural process integration is still in the infancy. Food-Energy-Water Nexus (FEW-N), as presented402

in this study, is what makes the superstructure design possible (Hang et al., 2016). From the systematic403

view of FEW-N, we simplify the complicated agricultural system based on input and output FEW flow404

and use the interdependence among diverse process units to combine them, which will generate all the405

possible pathways for the system. Based on the superstructure optimization formulation with desired406

objectives such as maximum food production or minimum water use, we can find optimal process407

topology network without any unnecessary connections and the operating parameters for each units in408

the system simultaneously.409

Recent developments in agricultural modeling and optimization have created increased capabil-410

ity for the management of land use via complicated modeling methods with more parameters (Goel411

et al., 2007). However, the responses of productivity vary widely across different model types and412

region/climate specific data, reflecting differences in the realistic gap between optimal potential yield413

and real yield. The results in the Modeling step of our framework show that the proposed models have414

the robust performance based on limited region and climate specific data compared to previous studies415

(Humblot et al., 2017). This is because the proposed modeling methods use a mix-weighted methods to416

balance the bias performance from different model types, and provides adaptation strategies to keep on417

improving the fit performance of region and climate specific models generated by limited data-driven418

modeling methods. The characters of the our modeling methods illustrate that we can control the neg-419
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ative impact on data limitations and simplify complicated scientific models for realistic use, which are420

especially important for developing countries who are lacking systematic agricultural databases with421

local details. The adaptation strategies also provide effective ways for improving predictive models and422

accumulating available data.423

Agricultural land is not only farming entity but also known as supplying various products and424

services to multiple stakeholders (Van Ittersum et al., 2008). Such land management is an evolving425

outcome of unremitting negotiation and frequent conflicting interests among the stakeholders. The426

means by which conflicts are settled will be subject to varying supply and demand of FEW, and will427

vary depending on regions and climate conditions (Daher et al., 2019). Thus, the compromise of differ-428

ent stakeholders, and the robust performance with uncertainties are crucially important due to their429

impacts on systematic decision-making for land use. By using the FEW metric based optimization430

method provided by the framework, trade-offs among diverse stakeholders can be achieved most effec-431

tively and consistently. In the optimization step, each of the stakeholder’s objective is formulated and432

normalized by taking their own maximum and minimum optimal values as boundaries. Therefore, all433

the objectives can be transformed into the same scale (e.g., from 0 to 1) by using their own boundaries,434

which provides a consistent basis for comparison and evaluation. All of these scaled objectives can435

be merged together by taking the FEW metric as the integrated objective, which can be visualized436

in spider graphs. We find that the FEW metric based solutions always show more balanced designs437

since it can effectively facilitate the simultaneous farming of diverse goals from stakeholders. Based438

on integrated use of previous FEW data, models, and alternative pathways in the superstructure, the439

assessment results show that the FEW metric based methods also have robust performance when con-440

sidering different climate scenarios, since the framework can adjust the operations in the system to441

keep consistent performance of the land use decisions.442

There is a need for developing methodologies for quantifying policy coherence through quantifying443

the impact of proposed policies across different sectors based on multiple scales, and identify the444

compatibility of current institutional setup and sectional interactions considering the nature of FEW445

resource systems and their interconnections (Daher et al., 2019). The proposed framework designs a446

series of FEW indexes for objectives from different stakeholders, and finally offers a generic metric for447

evaluating and comparing different solution strategies, which provides possibilities for policy-makers448

to adjust policies across different stakeholders, production sectors, and time periods.449
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6. Limitations and future work450

It is important to discuss some limitations of the developed framework and the potential implications451

of the modeling and optimization methods. First, we assume the schedules calculated base on frequency452

analysis as the “near-optimal” schedules for crop production units. Whilst this choice reduces the453

computational demands of the data-driven modeling, it may result to an underestimation of the real454

potential yield. Future modeling work should seek to model production under dynamic schedules and455

expect to solve the optimization problem of minimizing the gap between simulating yield and real456

potential yield based on optimal schedules.457

A further limitation of the framework is the distribution problem. Our current work focuses on458

the allocated amount of land and FEW resources for different production units with a given area.459

Furthermore, the spatial distribution of different production objects in the land graph has not yet been460

considered. In the future, this can be important for the optimization of supply chains in the land use461

system. We also expect to integrate methods, such as graph theory, to consider the spatial distribution462

of land, FEW, and facilities.463

7. Conclusion464

Meeting the demand for food, energy, and water on a diminishing supply of agricultural land in the465

world without negative environmental impact is a major scientific challenge facing humanity. Despite466

the increasing techniques, data and models, a unified framework to integrate them and make trade-offs467

is lacking. To this end, we propose a framework to facilitate decision-makings based on a Design-468

Modeling-Optimization procedure. Taking an experimental station in China as a model system, our469

framework quantifies the related Food-Energy-Water Nexus, explores trade-offs for diverse stakeholders,470

identifies sustainable pathways for meeting both nature conservation goals and human demand, and471

provides benchmarks for assessing strategies directing alternative pathways. Inspired by the multi-scale472

integration, our methodology should have general utility in complex agricultural systems.473
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