
The University of Manchester Research

Fast Predictive Handshaking in Synchronous FPGAs for
Fully Asynchronous Multi-Symbol Chip Links. Application
to SpiNNaker 2-of-7 Links
DOI:
10.1109/TCSII.2016.2531092

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Yousefzadeh, A., Plana, L. A., Temple, S., Serrano-Gotarredona, T., Furber, S., & Linares-Barranco, B. (2016).
Fast Predictive Handshaking in Synchronous FPGAs for Fully Asynchronous Multi-Symbol Chip Links. Application
to SpiNNaker 2-of-7 Links. IEEE Transactions on Circuits and Systems. Part 2: Express Briefs, 63(8), 763-767.
https://doi.org/10.1109/TCSII.2016.2531092
Published in:
IEEE Transactions on Circuits and Systems. Part 2: Express Briefs

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:10. Dec. 2024

https://doi.org/10.1109/TCSII.2016.2531092
https://research.manchester.ac.uk/en/publications/878ef4a0-5b36-48bb-aad6-9fd81d53265c
https://doi.org/10.1109/TCSII.2016.2531092

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 8, AUGUST 2016 763

Fast Predictive Handshaking in Synchronous FPGAs
for Fully Asynchronous Multisymbol Chip Links:

Application to SpiNNaker 2-of-7 Links
Amirreza Yousefzadeh, Luis A. Plana, Steve Temple, Teresa Serrano-Gotarredona, Member, IEEE,

Steve B. Furber, Fellow, IEEE, and Bernabé Linares-Barranco, Fellow, IEEE

Abstract—Asynchronous handshaken interchip links are very
popular among neuromorphic full-custom chips due to their delay-
insensitive and high-speed properties. Of special interest are those
links that minimize bit-line transitions for power saving, such
as the two-phase handshaken non-return-to-zero (NRZ) 2-of-7
protocol used in the SpiNNaker chips. Interfacing such custom
chip links to field-programmable gate arrays (FPGAs) is always
of great interest, so that additional functionalities can be ex-
perimented and exploited for producing more versatile systems.
Present-day commercial FPGAs operate typically in synchronous
mode, thus making it necessary to incorporate synchronizers when
interfacing with asynchronous chips. This introduces extra laten-
cies and precludes pipelining, deteriorating transmission speed,
particularly when sending multisymbols per unit communication
packet. In this brief, we present a technique that learns to estimate
the delay of a symbol transaction, thus allowing a fast pipelin-
ing from symbol to symbol. The technique has been tested on
links between FPGAs and SpiNNaker chips, achieving the same
throughput as fully asynchronous synchronizerless links between
SpiNNaker chips. The links have been tested for periods of over
one week without any transaction failure. Verilog codes of FPGA
circuits are available as additional material for download.

Index Terms—Address event representation (AER), asynchro-
nous links, event-driven links, field-programmable gate arrays
(FPGAs), neuromorphic chips, synchronization.

Manuscript received November 16, 2015; accepted February 8, 2016. Date
of publication February 18, 2016; date of current version July 28, 2016. This
work was supported by the European Research Council under the European
Union’s (EU) Seventh Framework Programme (FP/2007-2013) ERC Grant
Agreement 320689, by the U.K. Engineering and Physical Sciences Research
Council under Grant EP/G015740/1, by the EU “The Human Brain Project”
under Grant FP7-604102, by the EU Event-Driven Compressive Vision for
Multimodal Interaction Modal Devices (ECOMODE) Project under Grant
H2020-644096, and by the Spanish Ministry of Economy and Competitivity
through the European Regional Development Fund under Grant TEC2012-
37868-C04-01 (BIOSENSE). The work of A. R. Yousefzadeh was supported by
a Formación de Personal Investigador Scholarship from the Spanish Ministry of
Economy and Competitivity. This brief was recommended by Associate Editor
X. Liu.

A. Yousefzadeh, T. Serrano-Gotarredona, and B. Linares-Barranco are with
the Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de
Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla,
Spain (e-mail: bernabe@imse-cnm.csic.es).

L. A. Plana, S. Temple, and S. B. Furber are with the Advanced Proces-
sor Technologies Group, School of Computer Science, The University of
Manchester, Manchester M13 9PL, U.K.

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2016.2531092

Fig. 1. Encoding of 2-of-7 NRZ protocol transitions to 4-bit symbol values.

I. INTRODUCTION

N EUROMORPHIC chips and systems use typically the
asynchronous four-phase handshaken address event rep-

resentation (AER) scheme to interchange information in an
event-driven manner [1], [2] for vision systems [3], [4] and ro-
botics [5]. The recently available multi-ARM-core SpiNNaker
chips [6] (intended for simulating large-scale neuromorphic
systems) use a special multisymbol very low-power two-phase-
handshaking non-return-to-zero (NRZ) protocol [7], which is
called 2-of-7 [8]. Each link is unidirectional and uses eight
lines (seven for data and one for Ack, i.e., Acknowledge). A
symbol is transmitted by changing the state of two data lines
only, which signals a Request for the handshaking. Although
there are 21 possible transitions in two lines out of seven lines,
only 17 are used by SpiNNaker (16 data symbols and one “End-
of-Packet” symbol). This way, data symbols can be represented
by 4-bit nibbles, as illustrated in Fig. 1. SpiNNaker chips can
communicate a packet (also called “event”) of either short
format (44-bits) with 11 4-bit symbols or long format (76-bits)
with 19 4-bit symbols.

The structure of a packet/event is 8-bit header, 32-bit data,
32-bit optional payload (extra data for the long format), and
“End-of-Packet” symbol. Fig. 2 shows a commercial SpiNN5
board hosting 48 SpiNNaker chips. Each chip connects to
six neighbor chips (north, south, east, west, northeast, and
southwest), emulating a hexagonal grid [6]. Each chip-to-chip
connection contains a pair of 8-bit 2-of-7 lines, one for each
direction. Interchip links (which need minimum PCB trace
length) can exchange short-format events at a rate of about
6 Meps (mega events per second), which accounts to about
15 ns per symbol transaction. On the top of the board, one can
see three Spartan6 field-programmable gate arrays (FPGAs).

1549-7747 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: bernabe@imse-cnm.csic.es

764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 8, AUGUST 2016

Fig. 2. SpiNN5 board with 48 SpiNNaker chips. Lines in red illustrate inter-
chip 2-of-7 links. Lines in yellow show one bidirectional 2-of-7 communication
link between a Spartan6 FPGA and one of the SpiNNaker chips.

They connect to some of the SpiNNaker chips through a bidi-
rectional pair of 8-bit 2-of-7 NRZ asynchronous links. On the
top in Fig. 2, we highlight two of such links: link A between
the central FPGA F 2 and the SpiNNaker chip U19 on the top
row, and link B between the same FPGA and the chip U58 far
away and close to the bottom right edge. The circuitry inside
the FPGA is clocked and requires the use of synchronizers to
interface properly with external asynchronous links [9], [10]. In
the next section, we briefly describe how such a standard link
would operate, achieving a maximum average throughput of
3.51 Meps from the FPGA to the SpiNNaker chip. Afterward,
in Section III, we present the new proposed approach, which
can reach up to 6.89 Meps from the FPGA to the SpiNNaker
chip. Our proposed approach could not be used to improve the
speed of the reverse direction (from SpiNNaker chip to FPGA)
because it would require modifying the SpiNNaker chip itself.
Nonetheless, the proposed scheme can be included in future
versions of the SpiNNaker chip.

II. CONVENTIONAL SYNCHRONIZATION APPROACH

Figs. 3 and 4 show the diagram and the timing between an
FPGA transmitter (TX) link side and a SpiNNaker chip receiver
(RX) link side,1 using a conventional two-D-flip-flop synchro-
nization, respectively. Short 32-bit (or long 64-bit) events are
provided to a finite-state machine (FSM), which will convert
them to the 11 (or 19) 4-bit symbol sequence, loading each into
the 4-bit register in Fig. 3. After this, an “Encoder” activates the
2-of-7 bits that need to change, according to Fig. 1, which, after
being “XOR-ed” with the previous output, provides the new

1The complementary link from SpiNNaker TX to FPGA RX is not shown to
save space.

Fig. 3. Simplified block diagram illustration of an FPGA-TX-to-SpiNNaker-
RX directional link.

Fig. 4. Timing waveforms illustrating NRZ handshaking and synchronization.

output storing it in an output 7-bit register. This register holds
the new 2-of-7 Data-and-Rqst DataINT. Once it is available,
it requires a delay due to output pad buffering I/O tPO to go
out of the FPGA as DataEXT, plus an interchip PCB trace
delay of tpcb to be visible at the SpiNNaker chip input. The
SpiNNaker chip RX port requires a delay, which is here called
tSP1, between detecting the 2-of-7 Data-and-Rqst until provid-
ing its acknowledge signal AckSP, which after tpcb will make
AckEXT visible at the FPGA external input. The FPGA input
pad introduces an additional delay tPI until the asynchronous
acknowledge signal AckINT is visible internally inside the
FPGA. After this, the synchronization circuit using a standard
two-D-flip-flop delay line, requires two additional clock edges
to make a synchronized version of the acknowledge signal sAck
available. At this point in time, a new DataINT value can be
made available for the next clock edge. From the Spartan6
FPGA manufacturer specifications, we know that tPI ≈ 1.2 ns
and that tPO may vary between 1.7 and 5.9 ns, depending on
output pad settings. For our settings, tPO ≈ 3.0 ns. In Fig. 4,
we can observe that, if Δt2 = tPO + tSP1 + 2tpcb + tPI is be-
tween two and three clock cycles (10–15 ns), then a full symbol
transaction can be done in five clock cycles (25 ns). If 10 ns <
Δt2 < 15 ns, then it implies that 5.8 ns < tSP1 + 2tpcb <
10.8 ns. Otherwise, if 10.8 ns < tSP1 + 2tpcb < 15.8 ns, then
a symbol transaction would require six clock cycles (30 ns).
Implementing the link in Fig. 4 on link A in Fig. 2 results
in five-cycle transactions, while on link B, this results in six

YOUSEFZADEH et al.: PREDICTIVE HANDSHAKING IN SYNCHRONOUS FPGAS FOR MULTISYMBOL CHIP LINKS 765

Fig. 5. Simplified flow diagram of new transmitter FSM. Blue (medium gray)
boxes correspond to failure-free packet transmission and pink (light gray) boxes
to failure handling and packet retransmission, and green (dark gray) boxes
indicate parameters.

cycles. In summary, for the 48-chip PCB in Fig. 2, a symbol
transaction varies between five and six clock cycles, depending
on the length of PCB traces. In the next section, we propose a
method to reduce this time down to two clock cycles for both
links. It requires changing the FSM in Fig. 3, i.e., the sender
of the link. Therefore, this means that we could only test it by
changing the FSM at the FPGA (the sender side). Consequently,
we present results only for the case of transmitting data from the
FPGA to the SpiNNaker chip.

Time tSP1 is typically quite stable for each SpiNNaker link,
except for the cases when the interchip circuitry is sending
back pressure (i.e., delaying Ack) because of internal traffic
saturation.

III. PROPOSED PREDICTIVE SYNCHRONIZATION SCHEME

The herein proposed new synchronization scheme is based
on the following observation in Fig. 4. The SpiNNaker RX side
of the link is, in principle, ready to receive a new 2-of-7 Data-
and-Rqst, as soon as it has provided acknowledge signal AckSP

at time tSPReady. However, due to the synchronization with two
D-flip-flops on the FPGA side, the FPGA cannot provide a new
DataINT until four clock edges later. Here, we propose a scheme
where the FPGA “learns” to forecast, reliably, the minimum
number of clock cycles required to send a new symbol (without
waiting to receive each symbol’s synchronized acknowledge
signal sACK). Nonetheless, during the multisymbol transmis-
sion of a packet, an independent process in parallel would count
the total number of actual acknowledge signals received during
the full packet to make sure that the full packet transaction was
completed successfully.

The new proposed algorithm for the transmitter FSM in
Fig. 3 is shown in Fig. 5. This FSM will send out the 11 (or
19) event/packet symbols without waiting for individual Acks

from the receiver side. It will simply wait for a “Symbol Period”
time (i.e., number of clock cycles) before sending the next
symbol. A parallel process (not shown in the figure) will be
counting the number of Ack signals received and generating an
internal “Packet Ack” signal once all of them are received. The
operation of the FSM in Fig. 5 is as follows. The first state S0
waits for a new (32- or 64-bit) event/packet. After this, the cor-
responding sequence of symbols must be sent. For this, an extra
state S2 is included, which waits for a given number of clock
cycles (“Symbol Period”) before sending the next symbol.
After sending all header and data symbols, the “End-of-Packet”
(EOP) symbol is also sent. After this, the FSM enters state S3,
where it waits for the internal “Packet Ack” signal. This signal
is triggered only if the receiver has acknowledged all symbols
sent. Once “Packet Ack” is received, an optional “Inter-Packet
Gap” (IPG) wait time can be included to allow the receiver
some extra time for event/packet processing. In case not all
symbol Acks have been received within a given “Time-out”
period, state S3 will branch out through its “Packet NOT sent”
output, indicating there has been a failure in the event/packet
transmission. In this case, it will try to resend the event/packet.
For this, it will first send an EOP symbol to the receiver and
wait for the corresponding Ack, through state S4. If this Ack is
not received, then it will wait for some time to let the receiver
recover and, after this, retry the transmission of an EOP symbol.
This situation may occur in case the SpiNNaker internal event
handling circuitry is sending back pressure (because of event
traffic saturation), or there is a transient fault/disconnection in
the transmission line.

At startup, there is a “learning process” in which the FSM
adjusts its parameter “Symbol Period.” Initially, this period is
set to “1” (one clock cycle), and it will be increased progres-
sively until reaching a stable communication. For each “Symbol
Period” value, two weights are defined. The first weight is the
rate of failure, and the second is the rate of success. Every time
state S3 leaves through its “Yes” output, the success weight
is increased. If state S3 leaves through its “NO” output, the
failure counter is increased. During learning, the “Time-out”
parameter values are reduced to speed up learning. The rate of
convergence of this startup learning process is relatively fast,
although it also depends on weight granularity and initial state.
In our case, we used 8-bit weights, and both of them (success
and failure) were initially set to “0.” Convergence time was on
the order of 500 μs. After this, no more failures were detected,
even when running the links for over one week. If there are
transient faults during the startup learning process, it will
converge to very conservative Ack/Rqst intervals. Therefore,
during startup, the system and all physical connections should
be in optimum conditions.

So far, we have discussed the situation of sending events from
the FPGA (as TX) to the SpiNNaker chip (as RX). In this case,
it is the TX who learns to forecast the intersymbol delay, and
also who detects whenever an event/packet has not been sent. In
order to implement this forecasting/acceleration capability for
the reverse direction without changing the SpiNNaker chip, we
would need to change the RX side in the FPGA. For this, the
receiver in the FPGA would need to send out Acks before ob-
taining the synchronized versions of the 2-of-7 Data-and-Rqst

766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 8, AUGUST 2016

Fig. 6. ChipScope measurements for link A with FPGA pads set to SLOW and 6-mA power per pad. (a) Normal synchronization; short packet; 200-MHz
clock. (b) Fast scheme; short packet; 200-MHz clock. (c) Normal synchronization; long packet; 200-MHz clock. (d) Fast scheme; long packet; 200-MHz clock.
(e) Normal synchronization; short packet; 100-MHz clock. (f) Fast scheme; short packet; 100-MHz clock. Note that, in (b), ACK_IN and ACK_IN_SYNC are not
exact replicas with two-clock-cycle delay. This is because ACK_IN was captured before the synchronizer and its edge must have been very close to that of the
ChipScope clock.

transitions. In case of failure, only the RX circuit in the FPGA
would be aware of it, and the TX in the SpiNNaker chip
would not be able to resend the event/packet. There are three
obvious approaches for solving this. First, add an extra 2-of-7
command to the table in Fig. 1, so that the FPGA can request
the retransmission of an event/packet. Second, implement this
new algorithm inside the SpiNNaker chip in its TX ports. Or
third, implement a slower upper layer in software to detect
event/packet loss and request a new retransmission. The first
two options require a redesign of the SpiNNaker chip, and we
leave this as suggestions for future versions. The third solution
is beyond the scope of this brief. In the next section, we provide
experimental results for the link direction from the FPGA (TX)
to the SpiNNaker chip (RX).

IV. EXPERIMENTAL RESULTS

Exhaustive tests have been performed on the 48-chip SpiN-
Naker PCB shown in Fig. 2, to test the performance of
packet/event communication from an FPGA to a SpiNNaker
chip. The results shown here focus on two of such links:
“Link-A” between FPGA “F2” and SpiNNaker chip “U19,”
which is one of the shortest links on the PCB, and “Link-B”

between the same FPGA and chip “U58,” which is one of the
longest links. Experimental characterizations were performed
by generating sequences of numbers with a counter on one
end and checking the sequence on the other end. Failure-free
transmissions were obtained after a few hundred microseconds
of training, which would stay failure free for long periods (we
tested for over one week). Experimental measurements were
done through the use of Xilinx’s built-in logic analyzer module
“ChipScope.” This tool allows monitoring FPGA internal sig-
nals with reference to its internal clock. For our experiments,
we have set this internal clock to either 200 MHz (5-ns period)
or 100 MHz (10-ns period). Fig. 6 shows ChipScope screen
captures for different measurements. For each measurement,
we show the same four signals: signal ACK_IN, which corre-
sponds to AckINT in Fig. 4; ACK_IN_SYNC, which is sAck
in Fig. 4; DATA_OUT_HEX, which is DataINT in Fig. 4;
and SYMBOL_NUM (not shown in Fig. 4), which counts the
symbol number within the packet/event. On the top of each
subfigure, the ticks indicate clock cycle number.

Fig. 6(a) illustrates the case of using the conventional syn-
chronization approach on link A for a short package with a
200 MHz clock. As can be seen, to transmit all 11 symbols,
57 clock cycles are needed, which corresponds to 3.51 Meps

YOUSEFZADEH et al.: PREDICTIVE HANDSHAKING IN SYNCHRONOUS FPGAS FOR MULTISYMBOL CHIP LINKS 767

Fig. 7. Measured parameters are “Pck Rt” packet rate (in mega events per second), “Nc Pck” number of clock cycles per packet, and “Nc Sym” number of
clock cycles per symbol. Vertical columns show measurements for links A and B, for short packets (11 symbols) and long packets (19 symbols), at 200-MHz
and 100-MHz FPGA clock frequencies, for “Normal” (conventional) synchronization scheme and for “Fast” predictive handshaking scheme. Horizontal rows are
repeated for three different FPGA output pad bias settings (“current” and “slew-rate”): “fast” is 12 mA per pad with nominal 1.71-ns delay, “slow” is 6 mA per
pad (recommended) with nominal 3.00-ns delay, and “quiet” is 2 mA per pad with 5.47-ns delay.

(mega events per second). Transmission of one symbol re-
quires five clock cycles. Fig. 6(b) shows the same case, but
when implementing the predictive handshaking approach. As
can be seen, one 11-symbol packet needs now only 29 clock
cycles, which corresponds to 6.89 Meps. Each symbol can be
reliably transmitted with only two clock cycles (see signals
DATA_OUT_HEX and SYMBOL_NUM), although now there
is an extra seven-cycle overhead after transmitting all symbols.
Interestingly, the parallel independent process in charge of
counting the transitions at ACK_IN normally needs two clock
cycles, although sometimes it needs one or three (see signals
ACK_IN and ACK_IN_SYNC). Fig. 6(c) and (d) illustrates
the same setup as Fig. 6(a) and (b) but for a long 19-symbol
packet. Similarly, Fig. 6(e) and (f) shows the same as Fig. 6(a)
and (b) but setting the clock to 100 MHz. This is to illus-
trate the situation for a slower FPGA. As can be seen, for
the conventional synchronization approach, four clock cycles
per symbol are required (instead of five) and 46 per packet
(instead of 57). This is because the fixed delay Δt2 in Fig. 4 is
framed into less clock cycles. However, for the same reason,
in the predictive handshaking approach, one symbol can be
transmitted now in just one clock cycle. On the other hand, the
overhead requires the same eight clock cycles; thus, the overall
delay for a short-packet transaction is 18 cycles, resulting in a
speed improvement factor of 2.55.

Fig. 7 shows the measured packet/event rate (Pck Rt) and the
number of clock cycles per symbol (Nc Sym) and per packet/
event (Nc Pck) for all experimental setups: for links A and B,
for 100-MHz and 200-MHz clock frequencies, for short and
long packets, and also for three different settings of the FPGA
output pads (setting SLOW with 6 mA per pad, which corre-
sponds to all cases shown in Fig. 6; setting FAST with 12 mA
per pad, and setting QUIET with 2 mA per pad). The packet
transaction speed improvement varies between a factor of about
2 (1.96 for link A, short packet, 200 MHz) up to a factor of
almost 3 (2.89 for link A, long packet, 100 MHz). The Verilog
codes used for these setups are provided as additional material
for download.

V. CONCLUSION

A scheme for accelerating asynchronous handshaken multi-
symbol packet transmissions between an asynchronous module
and a synchronous one has been proposed and successfully
tested on a 48-chip SpiNNaker board. The scheme exploits
the fact that, within the same packet, the transaction delay per
symbol remains stable and can be “learned” by the sending
circuit. Symbol Acks are counted by a separate process in
parallel to verify correct packet transmission. In case of failure,
the packet is resent. Exhaustive tests have been performed on
the 48-chip SpiNNaker board for different PCB trace lengths,
packet sizes, clock frequencies, and pad delays. Once trained,
the transmission stays stable and failure free. The proposed
scheme can help to improve the traffic bottleneck between
SpiNNaker and PCBs, as this bandwidth is limited by the
throughput between FGPA and SpiNNaker chips on board.

REFERENCES

[1] M. Sivilotti, “Wiring considerations in analog VLSI systems with applica-
tion to field-programmable networks,” Ph.D. dissertation, Comput. Neural
Syst., Caltech, Pasadena, CA, USA, 1991.

[2] F. Stefanini, E. Neftci, S. Sheik, and G. Indiveri, “PyNCS: A microkernel
for high-level definition and configuration of neuromorphic electronic
systems,” Frontiers Neuroinform., vol. 8, no. 73, pp. 1–14, Aug. 2014.

[3] X. Lagorce, S.-H. Ieng, X. Clady, M. Pfeiffer, and R. Benosman,
“Spatiotemporal features for asynchronous event-based data,” Front.
Neurosci., vol. 9, no. 46, Feb. 2015.

[4] G. Orchard et al., “HFirst: A temporal approach to object recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 10, pp. 2028–2040,
Oct. 2015.

[5] J. Conradt, F. Galluppi, and T. C. Stewart, “Trainable sensorimotor map-
ping in a neuromorphic robot,” Robot. Auton. Syst., vol. 71, pp. 60–68,
Sep. 2015.

[6] S. Furber et al., “Overview of the SpiNNaker system architecture,” IEEE
Trans. Comput., vol. 62, no. 12, pp. 2454–2467, Dec. 2013.

[7] I. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6,
pp. 720–738, Jun. 1989.

[8] L. Plana et al., “A GALS infrastructure for a massively parallel multipro-
cessor,” IEEE Des. Test Comput., vol. 24, no. 5, pp. 454–463, Sep. 2007.

[9] Z. Zhang, “Performance analysis of synchronization circuits,” Ph.D. dis-
sertation, School Comput. Sci., Univ. Manchester, Manchester,U.K., 2010.

[10] Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for cross-
ing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans.
Nucl. Sci., vol. 57, no. 6, pp. 3506–3514, Dec. 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

