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Abstract

This paper characterizes the stochastic deterioration resulting from taking a zero-mean financial

risk in the presence of correlated non-financial background risk. We show in particular that it has

an equivalent stochastic order as well as a necessary and sufficient “integral condition” that implies

and is implied by a particular sense in which the stochastic deterioration can be decomposed into a

“correlation increase” and a “marginal risk increase”. We further characterize a measure of aversion

to the stochastic deterioration. These characterizations provide for a more general framework for

formulating concepts of increases in risk and correlation and for better understanding risk manage-

ment decisions governed by individuals’ attitudes to them.
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1 Introduction

Economic decision making under uncertainty often takes place in settings where choices about endoge-

nous risks must be made while simultaneously facing one or more exogenous background risks that

are not under the control of the decision maker and can potentially be correlated with the endogenous

risks. While considerable effort has been devoted to characterizing in the Expected Utility (EU) frame-

work the conditions on the utility function under which changes in independent financial background

risk have a definitive effect on risk aversion, 1 McFadden (1974) argued that individuals tend not to

view endogenous risk and background risk as independent or uncorrelated and it has been shown (by,

among others, Doherty and Schlesinger (1983) and Tsetlin and Winkler (2005)) that if the endogenous

risk is correlated with the uninsurable background risk, well-known results on optimal risk management

decisions assuming uncorrelated background risk can be overturned.

The background risk in the presence of which economic decisions are made can moreover be non-

financial as well as financial, one’s health status being an obvious and often-cited example. 2 The

formal analytical framework for decisions in the presence of such background risk is the more general

setting of multivariate distributions that encompasses those for multiplicative as well as additive financial

background risks 3 as special cases. Epstein and Tanny (1980) show that extending analysis analogous

to that of Rothschild and Stiglitz (1970) to a setting of bivariate distributions yields a particular sense

in which a bivariate distribution exhibiting greater correlation than another and a utility function with

a negative cross derivative is necessary and sufficient for aversion to such an increase in correlation.

More recently, Muller and Scarsini (2012) show that a discrete multi-variate distribution is preferred to

another by all expected utility maximizers whose utility functions have non-positive second and cross

derivatives if and only if the former can be obtained from the latter by a finite sequence of “simple

inframodular transfers”. 4 Notwithstanding these and other important contributions on multivariate

stochastic dominance 5 as well as the existing results explicitly addressing financial risk taking in the

presence of non-financial background risk, 6 little is known about the characteristics of the overall

1Pratt and Zeckhauser (1987), Kimball (1993), Gollier and Pratt (1996), Eeckhoudt, Gollier, and Schlesinger
(1996) are prominent examples.

2Other examples of pertinent non-financial risks include uncertain weather conditions, risk of non-property crime,
and political risks such as uncertain election outcomes and public policy changes.

3See Tsetlin and Winkler (2005) for an exposition on the relevance of multiplicative background risks.
4A formal definition of this can be found in Section 2.
5Among them are Levy and Paroush (1974), Russell and Seo (1978), Atkinson and Bourguignon (1982) and Gravel

and Moyes (2012).
6Pratt (1988) considers an individual’s attitude toward a financial risk in the presence of a non-financial background

risk and obtains a preservation result of decreasing risk aversion when the two risks are independent. Finkelshtain,
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risk change induced by taking a financial risk in the presence of potentially correlated non-financial

background risks. As a result, a decision maker’s attitudes towards such risk changes that determine her

optimal economic decisions are not well-understood, still less the behavioral implications of the strength

of such attitudes.

This paper defines and characterizes bivariate stochastic deteriorations, termed “correlation-increasing

marginal risk increase” (CIMRI) and “correlation-decreasing marginal risk increase” (CDMRI). In the

case of random vectors with finite support, a bivariate distribution is a CIMRI (CDMRI) of another if

and only if the former can be obtained from the latter by a finite sequence of simple CIMRIs (CDMRIs),

each of which can itself be decomposed into an “elementary correlation-increasing (-decreasing) trans-

formation” as defined by Epstein and Tanny (1980) and a simple mean-preserving spread as defined by

Rothschild and Stiglitz (1970). We show that a CIMRI (CDMRI) is what results from taking a zero-mean

financial risk in the presence of a non-financial background risk that is correlated with the financial risk

in the fairly weak sense of positive (negative) expectation dependence, as defined by Wright (1987), and

is the stochastic deterioration disliked by all EU maximizers who are both correlation-averse (-loving)

as defined by Epstein and Tanny (1980) and marginal risk averse, i.e., with a utility function concave

in wealth. Furthermore, the stochastic deteriorations CIMRI and CDMRI each have a necessary and

sufficient “integral condition” that is shown to imply and be implied by a particular sense in which a

CIMRI (CDMRI) can be decomposed into a correlation increase (decrease) and a marginal risk increase.

Together with a comprehensive characterization of attitudes towards financial risk-taking in the pres-

ence of a correlated non-financial background risk that we also offer, these results in turn provides an

intuitive explanation for, as well as a significant generalization of, existing results on optimal choice of

endogenous risk in the presence of financial and non-financial background risks. We further characterize

a measure of aversion to CIMRI (CDMRI) and the concept of decreasing aversion to CIMRI (CDMRI)

and demonstrate their behavioral implications in the contexts of risk management decisions. In short,

the definition and characterization of CIMRI and CDMRI provide for a more general framework for

formulating concepts of increases in risk and correlation and for better understanding risk management

decisions governed by individuals’ attitudes to them.

Kella, and Scarsini (1999) show that the bivariate utility function being concave in wealth and exhibiting “correlation-
aversion” (as defined by Epstein and Tanny (1980)) is necessary and sufficient for aversion to a zero-mean financial
risk in the presence of a positively correlated non-financial risk. In the setting of portfolio choice with one riskless
and one risky assets and a non-financial background risk, Li (2011) shows that, assuming the two assets have equal
expected returns, an individual with a bivariate utility function concave in wealth and exhibiting correlation-aversion
will invest in the risky asset if and only if the background risk and the risky asset return are negatively correlated in
the sense of expectation dependence as defined by Wright (1987).
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The rest of the paper is organized as follows. Section 2 defines and characterizes the notions

of CIMRI and CDMRI. Section 3 characterizes attitudes towards financial risk-taking in the presence

of a correlated non-financial background risk and their implications for optimal decisions. Section 4

characterizes a measure of aversion to CIMRI (CDMRI) and the concept of decreasing aversion to

CIMRI (CDMRI). Section 5 concludes.

2 Increases in Marginal Risk and Correlation

2.1 Dependent Random Variables

Let (S,S, P ) be a probability space where S is the set of states of nature, S is a σ-algebra of events,

and P is a probability measure on (S,S). Random variables, denoted by x̃, ỹ, etc., are functions from

S to an interval [−a, a] ⊂ R. Unless indicated otherwise, the cumulative distribution function of the

random vector (x̃, ỹ) shall be denoted by Fx̃, ỹ. The most basic notion of dependence or correlation

between two random variables x̃ and ỹ is that based on the covariance cov(x̃, ỹ). x̃ and ỹ are said to be

positively correlated (negatively correlated, uncorrelated) if cov(x̃, ỹ) > ( <, = ) 0. Wright (1987) puts

forward the notion of negative expectation dependence: x̃ is negative expectation dependent on ỹ if

E[x̃|ỹ ≤ y] ≥ E[x̃] for all y. That is, given the truncation ỹ ≤ y, the expectation of x̃ is revised upward.

For a sharper delineation of the results in what follows, negative (positive) expectation dependence

shall denote the strict version of the concept as defined by Wright (1987) while the weak version of

the concept will be referred to as “non-positive” (“non-negative”) expectation dependence and x̃ is

defined to be “zero expectation dependent” on ỹ if x̃ is both non-positive and non-negative expectation

dependent on ỹ.

Definition 1

(i) x̃ is positive (negative) expectation dependent on ỹ if E[x̃|ỹ ≤ y] ≤ ( ≥ ) E[x̃] for all y and the

inequality is strict for y ∈ Zy ⊂ [−a, a] where P [ỹ−1(Zy)] > 0.

(ii) x̃ is non-negative (non-positive) expectation dependent on ỹ if E[x̃|ỹ ≤ y] ≤ ( ≥ ) E[x̃] for all y.

(iii) x̃ is zero expectation dependent on ỹ if E[x̃|ỹ = y] = E[x̃] for all y.

The basic definition of expectation dependence and a key characterization of it that follows clearly

indicate that it implies but is not implied by two random variables being correlated. 7

7Expectation dependence is however the weakest among existing stronger notions of dependence. See Wright
(1987) for an exposition of these alternative notions of dependence.
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Lemma 1 (Wright (1987)) x̃ is positive (negative, zero) expectation dependent on ỹ if and only if

cov[x̃, ψ(ỹ)] > ( <,= ) 0 for all increasing function ψ for which the covariance exists.

To consider situations involving more than two random variables, we introduce the straightforward

extension of Wright’s concept that follows.

Definition 2

(i) Conditional on w̃, x̃ is positive (negative) expectation dependent on ỹ if E[x̃|ỹ ≤ y, w̃ = w] ≤

( ≥ ) E[x̃|w̃ = w] for all y and w and there exists Zw ⊂ [−a, a] such that P [w̃−1(Zw)] > 0 and,

for w ∈ Zw, the inequality is strict for y ∈ Zy(w) ⊂ [−a, a] where P [ỹ−1(Zy(w))] > 0.

(ii) Conditional on w̃, x̃ is non-negative (non-positive) expectation dependent on ỹ if E[x̃|ỹ ≤ y, w̃ =

w] ≤ ( ≥ ) E[x̃|w̃ = w] for all y and w.

(iii) Conditional on w̃, x̃ is zero expectation dependent on ỹ if E[x̃|ỹ = y, w̃ = w] = E[x̃|w̃ = w] for

all y and w.

2.2 Correlation-Increasing (-decreasing) Marginal Risk Increase

Consider the concepts of a simple Correlation-Increasing Marginal Risk Increase and a simple Correlation-

decreasing Marginal Risk Increase defined in a way analogous to how Rothschild and Stiglitz (1970)

define a mean-preserving spread (MPS) and how Epstein and Tanny (1980) define an “elementary

Correlation-Increasing Transformation”, which we will refer to as a “simple Correlation Increase” for

brevity.

Definition 3 Let F (x, y) and G(x, y) be the distribution functions of discrete random vectors (x̃, ỹ)

and (x̃′, ỹ′) respectively, and f(x, y) and g(x, y) their corresponding probability mass functions.

(i) G(x, y) differs from F (x, y) by a simple Correlation-Increasing Marginal Risk Increase (CIMRI) if

F (x, y) and G(x, y) assign identical probabilities except to the points (x0, y1), (x1, y1), (x2, y2),

(x3, y2) where y1 ≤ y2, x0 < x1 < x2 < x3 and the differences in their probabilities ψ, ξ ∈ (0, 1)

satisfy:

g(x0, y1)− f(x0, y1) = ψ, g(x1, y1)− f(x1, y1) = −ψ, g(x2, y2)− f(x2, y2) = −ξ,

g(x3, y2)− f(x3, y2) = ξ, and ψ(x1 − x0) = ξ(x3 − x2).
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(ii) G(x, y) differs from F (x, y) by a simple Correlation-Decreasing Marginal Risk Increase (CDMRI)

if F (x, y) and G(x, y) assign identical probabilities except to the points (x0, y2), (x1, y2), (x2, y1),

(x3, y1) where y1 ≤ y2, x0 < x1 < x2 < x3 and the differences in their probabilities ψ, ξ ∈ (0, 1)

satisfy:

g(x0, y2)− f(x0, y2) = ψ, g(x1, y2)− f(x1, y2) = −ψ, g(x2, y1)− f(x2, y1) = −ξ,

g(x3, y1)− f(x3, y1) = ξ, and ψ(x1 − x0) = ξ(x3 − x2). 8

(iii) G(x, y) differs from F (x, y) by a simple Marginal Risk Increase (MRI) if F (x, y) and G(x, y) assign

identical probabilities except to the points (x0, ȳ), (x1, ȳ), (x2, ȳ), (x3, ȳ) where x0 < x1 < x2 < x3

and the differences in their probabilities ψ, ξ ∈ (0, 1) satisfy:

g(x0, ȳ)− f(x0, ȳ) = −ψ, g(x2, ȳ)− f(x2, ȳ) = ψ, g(x1, ȳ)− f(x1, ȳ) = −ξ,

g(x3, ȳ)− f(x3, ȳ) = ξ, and ψ(x1 − x0) = ξ(x3 − x2).

(iv) G(x, y) differs from F (x, y) by a simple Correlation-Decrease (CD) or equivalently F (x, y) differs

from G(x, y) by a simple Correlation-Increase (CI) if F (x, y) and G(x, y) assign identical proba-

bilities except to the points (x1, y1), (x2, y1), (x1, y2), (x2, y2) where y1 < y2, x1 < x2 and the

differences in their probabilities satisfy:

g(x1, y1)− f(x1, y1) = −ξ, g(x2, y1)− f(x2, y1) = ξ, g(x2, y2)− f(x2, y2) = −ξ,

g(x1, y2)− f(x1, y2) = ξ.

The definition is illustrated in the diagram that follows. A simple CIMRI (CDMRI) combines a shift of

probability mass from a high (low) to a higher (lower) values of x when the value of y is high with one

from a low (high) to a lower (higher) values of x when the value of y is low so as to preserve the mean

of x.

8Muller and Scarsini’s (2012) notions of ultramodular and inframodular transfers can be defined in our setting
of bivariate distributions as follows. G(x, y) differs from F (x, y) by a simple ultramodular transfer or equivalently
F (x, y) differs from G(x, y) by a simple inframodular transfer if F (x, y) and G(x, y) assign identical probabilities
except to the points (x0, y1), (x1, y1), (x2, y2), (x3, y2) where y0 ≤ y1 ≤ y2 ≤ y3, x0 ≤ x1 ≤ x2 ≤ x3 and the
differences in their probabilities ψ, ξ ∈ (0, 1) satisfy:
g(x0, y0)− f(x0, y0) = ψ, g(x1, y1)− f(x1, y1) = −ψ, g(x2, y2)− f(x2, y2) = −ξ,
g(x3, y3)− f(x3, y3) = ξ, ψ(x1 − x0) = ξ(x3 − x2) and ψ(y1 − y0) = ξ(y3 − y2).

Our simple CIMRI is clearly the special case of a simple ultramodular transfer where y0 = y1 and y2 = y3. Our
simple CDMRI on the other hand is neither a simple ultramodular transfer nor a simple inframodular transfer.

It is also clear that G(x, y) differing from F (x, y) by a CIMRI (with x1 − x0 = x3 − x2) is equivalent to F (x, y)
differing from G(x, y) by a “between-type progressive income transfer” as Gravel and Moyes (2012) define in the
context of inequality measurement.
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It is clear that a simple MRI is simply an MPS in x in the context of bivariate distributions and

it is the special case of a simple CIMRI or CDMRI where y1 = y2. It is also straightforward to show

that a simple CIMRI (CDMRI) can be decomposed into a simple CI (CD) and a simple MRI as follows.

Let F (x, y) and G(x, y) assign identical probabilities except to the points (x0, y2), (x1, y2), (x2, y1),

(x3, y1) where y1 ≤ y2, x0 < x1 < x2 < x3 and the differences in their probabilities ψ, ξ ∈ (0, 1) satisfy:

g(x0, y2)− f(x0, y2) = ψ, g(x1, y2)− f(x1, y2) = −ψ, g(x2, y1)− f(x2, y1) = −ξ,

g(x3, y1)− f(x3, y1) = ξ, and ψ(x1 − x0) = ξ(x3 − x2);

and F (x, y) and H(x, y) assign identical probabilities except to the points (x0, y2), (x1, y2), (x2, y2),

(x3, y2) where the differences in their probabilities ψ, η ∈ (0, 1) satisfy:

h(x0, y2)− f(x0, y2) = ψ, h(x1, y2)− f(x1, y2) = −ψ, h(x2, y2)− f(x2, y2) = −ξ,

h(x3, y2)− f(x3, y2) = ξ, and ψ(x1 − x0) = ξ(x3 − x2).

That is, G(x, y) differs from F (x, y) by a simple CDMRI, and H(x, y) from F (x, y) by a MRI. Then

clearly H(x, y) and G(x, y) assign identical probabilities except to the points (x2, y1), (x3, y1), (x2, y2),

(x3, y2) where the differences in their probabilities satisfy:

g(x2, y1)− h(x2, y1) = −ξ, g(x3, y1)− h(x3, y1) = ξ, g(x2, y2)− h(x2, y2) = ξ,

g(x3, y2)− h(x3, y2) = −ξ.

That is, G(x, y) differs from H(x, y) by a simple CD. We can thus write

G(x, y)− F (x, y) = [G(x, y)−H(x, y)] + [H(x, y)− F (x, y)]

where [G(x, y)−H(x, y)] is a simple CD and [H(x, y)− F (x, y)] is an MRI.

We define an EU maximizer to be CIMRI (CDMRI) averse if she dislikes a simple CIMRI (CDMRI).

Definition 4

7



(i) u(x, y) is CIMRI averse if
∫ a
−a u(x, y)d[G(x, y)−F (x, y)] ≤ 0 where G(x, y) differs from F (x, y) by

a simple CIMRI or equivalently ψu(x0, y1) + ξu(x3, y2) ≤ ψu(x1, y1) + ξu(x2, y2) where y1 ≤ y2,

x0 ≤ x1 ≤ x2 ≤ x3, and ψ(x1 − x0) = ξ(x3 − x2).

(ii) u(x, y) is CDMRI averse if
∫ a
−a u(x, y)d[G(x, y)−F (x, y)] ≤ 0 where G(x, y) differs from F (x, y)

by a simple CDMRI or equivalently ψu(x0, y2) + ξu(x3, y1) ≤ ψu(x1, y2) + ξu(x2, y1) where

y1 ≤ y2, x0 ≤ x0 ≤ x2 ≤ x3, and ψ(x1 − x0) = ξ(x3 − x2).

(iii) u(x, y) is marginal risk averse if
∫ a
−a u(x, y)d[G(x, y) − F (x, y)] ≤ 0 where G(x, y) differs from

F (x, y) by a simple MRI or equivalently ψu(x0, ȳ) + ξu(x3, ȳ) ≤ ψu(x1, ȳ) + ξu(x2, ȳ) where

x0 ≤ x0 ≤ x2 ≤ x3, and ψ(x1 − x0) = ξ(x3 − x2).

(iv) u(x, y) is correlation averse (loving) if
∫ a
−a u(x, y)d[G(x, y) − F (x, y)] ≤ ( ≥ ) 0 where G(x, y)

differs from F (x, y) by a simple CI or equivalently u(x1, y1) + u(x2, y2) ≤ ( ≥ ) u(x1, y2) +

u(x2, y1) where y1 < y2 and x1 < x2.

Finkelshtain et. al. (1999) show that u(x, y) is submodular and concave in x if and only if ψu(x0, y1)+

ξu(x3, y2) ≤ ψu(x1, y1) + ξu(x2, y2) where y1 ≤ y2, x0 < x1 < x2 < x3, and ψ(x1−x0) = ξ(x3−x2),

which implies the following.

Lemma 2 In the case where u is differentiable,

(i) u is CIMRI (CDMRI) averse if and only if u11 ≤ 0 and u12 ≤ ( ≥ ) 0.

(ii) u is correlation averse if and only if u12 ≤ 0.

(iii) u is marginal risk averse if and only if u11 ≤ 0.

By transitivity, a CIMRI (CDMRI) averse individual will clearly prefer F (x, y) to G(x, y) if G(x, y) can

be obtained from F (x, y) by a finite sequence of simple CIMRIs (CDMRIs), and, given that a simple

CIMRI (CDMRI) can be decomposed into a simple CI (CD) and a simple MRI, an individual is CIMRI

(CDMRI) averse if and only if she is both correlation averse (loving) and marginal risk averse.

As a simple MRI is simply an MPS in one of the variables in the context of bivariate distributions,

the following characterization of the stochastic deterioration disliked by all marginal risk averse EU

maximizers follows immediately from Rothschild and Stiglitz (1970) and Machina and Pratt (1997).

Lemma 3 Let F (x, y) and G(x, y) be the distribution functions of random vectors (x̃, ỹ) and (x̃′, ỹ)

respectively. The following are equivalent.

8



(i) Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u such that u11 ≤ 0.

(ii)
∫ x
−a[G(t|ỹ = y)− F (t|ỹ = y)]dt ≥ 0 for all x and y and

∫ a
−a[G(t|ỹ = y)− F (t|ỹ = y)]dt = 0 for

all y.

(iii) There exists ε̃ such that E[ε̃|ỹ = y, x̃ = x] = E[ε̃|x̃ = x] = 0 for all x and y and Fx̃+ε̃, ỹ = Fx̃′, ỹ.

If (x̃, ỹ) and (x̃′, ỹ) have finite support, these conditions are also equivalent to

(iv) G(x, y) can be obtained from F (x, y) by a finite sequence of simple MRIs.

Epstein and Tanny (1980), on the other hand, characterize the stochastic deterioration disliked by all

correlation-averse EU maximizers as follows.

Lemma 4 Let F (x, y) and G(x, y) be the distribution functions of random vectors (x̃, ỹ) and (x̃′, ỹ)

respectively. The following are equivalent.

(i) Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u such that u12 ≤ 0.

(ii) G(x, y) ≥ F (x, y) for all x and y and G(x, a) = F (x, a) for all x.

If (x̃, ỹ) and (x̃′, ỹ) have finite support, these conditions are also equivalent to

(iii) G(x, y) can be obtained from F (x, y) by a finite sequence of simple CIs.

As they are conditions that hold for all random variables whether they have finite support, we use

the “integral conditions” to define the notions of a Correlation Increase (Decrease) and a Marginal Risk

Increase.

Definition 5 Let F (x, y) and G(x, y) be the distribution functions of random vectors (x̃, ỹ) and (x̃′, ỹ).

(i) G(x, y) is a Correlation Increase (CI) of F (x, y) and F (x, y) is a Correlation Decrease (CD) of

G(x, y) if G(x, y) ≥ F (x, y) for all x and y and G(x, a) = F (x, a) for all x.

(ii) G(x, y) is a Marginal Risk Increase (MRI) of F (x, y) if
∫ x
−a[G(t|ỹ = y)− F (t|ỹ = y)]dt ≥ 0

for all x and y and
∫ a
−a[G(t|ỹ = y)− F (t|ỹ = y)]dt = 0 for all y.

Our first main result characterizes the stochastic deterioration disliked by all CIMRI (CDMRI) averse

EU maximizers.

Theorem 1 Let F (x, y) and G(x, y) be the distribution functions of random vectors (x̃, ỹ) and (x̃′, ỹ)

respectively. The following are equivalent.

(i) Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u such that u11 ≤ 0 and u12 ≤ ( ≥ ) 0.

9



(ii)
∫ a
−a

∫ z(y)
−a [G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) ≥ 0 for all z(y) that is non-increasing in y

(
∫ a
−a

∫ a
z(y)[G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) ≤ 0 for all z(y) that is non-decreasing in y)

and
∫ a
−a[G(t, a)− F (t, a)]dt = 0.

(iii) There exist γ ∈ (0, 1] and distribution functions F̂ (x, y), Ĝ(x, y), and Ĥ(x, y) such that Ĝ(x, y)−

F̂ (x, y) = γ[G(x, y)−F (x, y)], Ĝ(x, y) is a CI (CD) of Ĥ(x, y) and Ĥ(x, y) is an MRI of F̂ (x, y).

If (x̃, ỹ) and (x̃′, ỹ) have finite support, these conditions are also equivalent to

(iv) G(x, y) can be obtained from F (x, y) by a finite sequence of simple CIMRIs (CDMRIs).

The result shows that the stochastic deterioration from F (x, y) to G(x, y) is disliked by all CIMRI

(CDMRI) averse EU maximizers if and only if it can be decomposed into a CI (CD) and an MRI in the

sense that there exist distributions F̂ (x, y) Ĝ(x, y) Ĥ(x, y) such that the shift from F̂ (x, y) to Ĝ(x, y)

is “EU-equivalent” to that from F (x, y) to G(x, y), i.e., γ ∈ (0, 1] such that Ĝ(x, y) − F̂ (x, y) =

γ[G(x, y) − F (x, y)], 9 and Ĝ(x, y) is a CI of Ĥ(x, y) and Ĥ(x, y) is an MRI of F̂ (x, y). That is, we

can write

Ĝ(x, y)− F (x, y) = [Ĝ(x, y)− Ĥ(x, y)] + [Ĥ(x, y)− F̂ (x, y)]

where [Ĝ(x, y) − Ĥ(x, y)] is a CD and [Ĥ(x, y) − F̂ (x, y)] is an MRI. Furthermore, the stochastic

deterioration has a necessary and sufficient “integral condition” that can be seen as a generalization of

that for a “mean-preserving increase in risk” obtained in Rothschild and Stiglitz (1970) and is equivalent

to what Gravel and Moyes (2012) obtain in the setting of inequality measurement where random variables

have finite support. In the case of random vectors with finite support, the stochastic deterioration is

also equivalent to a finite sequence of simple CIMRIs (CDMRIs).

It is worth noting that, unlike the special case u(x, y) = u(x + y) where u11 ≤ 0 implies u12 ≤ 0,

a general bivariate VNM utility function u(x, y) permits u11 ≤ 0 and u12 ≥ 0 as well as u11 ≤ 0

and u12 ≤ 0, i.e., the disentanglement of the attitudes towards marginal risk and correlation. In many

applications, including the examples where y represents an individual’s health status or weather condition,

it is in fact arguable that u11 ≤ 0 and u12 ≥ 0 is the more plausible assumption as individuals who are

averse to financial risk (i.e., u11 ≤ 0) may regard wealth and health (or pleasant weather conditions)

as complements (i.e., u12 ≥ 0). 10 CDMRI as the stochastic order defined by the preferences of EU

9Under this condition, F̂ (x, y) is preferred to Ĝ(x, y) by an EU maximizer if and only if F (x, y) is preferred to
G(x, y).

10Furthermore, Quah (2007, Proposition 1) implies that in the standard two-good consumer problem, the condition
u12 ≥ 0, together with u11 ≤ 0 and u22 ≤ 0, on the bivariate utility function u(x, y) is sufficient for demand to be
normal.
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maximizers with u11 ≤ 0 and u12 ≥ 0, which is neither an inframodular transfer nor an ultramodular

transfer as defined by Muller and Scarsini (2012), is thus no less relevant than CIMRI.

As they are conditions that hold for all random variables whether they have finite support, we use

the “integral conditions” to define the notions of a Correlation-Increasing Marginal Risk Increase and a

Correlation-Decreasing Marginal Risk Increase.

Definition 6 Let F (x, y) and G(x, y) be the distribution functions of random vectors (x̃, ỹ) and (x̃′, ỹ).

(i) G(x, y) is a Correlation-Increasing Marginal Risk Increase (CIMRI) of F (x, y) if∫ a
−a

∫ z(y)
−a [G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) ≥ 0 for all z(y) that is non-increasing in y

and
∫ a
−a[G(t, a)− F (t, a)]dt = 0.

(ii) G(x, y) is a Correlation-Decreasing Marginal Risk Increase (CDMRI) of F (x, y) if∫ a
−a

∫ a
z(y)[G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) ≤ 0 for all z(y) that is non-decreasing in y

and
∫ a
−a[G(t, a)− F (t, a)]dt = 0.

3 Aversion to a Financial Risk in the Presence of a Non-financial

Background Risk

Having characterized in the previous section the stochastic orders of CIMRI and CDMRI, we show in this

section that a CIMRI (CDMRI) is what results from taking a zero-mean financial risk in the presence of a

non-financial background risk that is correlated with the financial risk in the sense of positive (negative)

expectation dependence and a comprehensive characterization of attitudes towards such risk taking as

well as their implications for optimal decisions can be derived from the behavior of the function φ(α)

defined by

φ(α) ≡ Eu(w̃ + αε̃, ỹ)

where E[ε̃|w̃] = 0. The following result describes the behavior of φ(α) in its relation to how the risks

ε̃, ỹ, and w̃ are correlated.

Theorem 2 Suppose E[ε̃|w̃] = 0.

(i) Assume u11 < 0 and u12 < ( > ) 0. φ′(α) < 0 for α ≥ 0 if and only if, conditional on w̃, ε̃ is

positive (negative) expectation dependent on ỹ.

(ii) Assume u11 < 0 and u12 < ( > ) 0. φ′(α) > 0 for α ≤ 0 if and only if, conditional on w̃, ε̃ is

negative (positive) expectation dependent on ỹ.
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(iii) Assume u11 < 0 and u12 < 0 or u12 > 0. φ′(α) < 0 for α > 0, φ′(α) > 0 for α < 0 and φ′′(α) > 0

if and only if E[ε̃|ỹ = y, w̃ = w] = E[ε̃|w̃ = w] for all w and y.

(iv) For any w̃, ε̃ and ỹ such that, conditional on w̃, ε̃ is non-negative (non-positive) expectation

dependent on ỹ, and any α ≥ 0, φ′(α) ≤ 0 if and only if u11 ≤ 0 and u12 ≤ ( ≥ ) 0.

(v) For any w̃, ε̃ and ỹ such that, conditional on w̃, ε̃ is non-positive (non-negative) expectation

dependent on ỹ, and any α ≤ 0, φ′(α) ≥ 0 if and only if u11 ≤ 0 and u12 ≤ ( ≥ ) 0.

That is, u11 ≤ 0 and u12 ≤ ( ≥ ) 0 are necessary and sufficient for an EU maximizer to be averse to more

of a financial risk ε̃ that, conditional on the financial background risk w̃, has a zero mean and is non-

negative (non-positive) expectation dependent on the non-financial background risk ỹ. Furthermore, an

EU maximizer who is both strictly marginal risk averse and strictly correlation averse (loving) dislikes

more of a financial risk ε̃ in the presence of a financial background risk w̃ and a non-financial background

risk ỹ if and only if, conditional on w̃, ε̃ has a zero mean and is positive (negative) expectation dependent

on ỹ. In view of Theorem 1, this implies the following.

Corollary 1 For α ≥ 0, an increase in α induces a CIMRI (CDMRI, MRI) in Fw̃+αε̃, ỹ if E[ε̃|ỹ ≤ y, w̃ =

w] ≤ ( ≥, = ) E[ε̃|w̃ = w] = 0 for all w and y.

The result identifies, independently of the EU framework, the overall risk change resulting from taking

more of a financial risk ε̃ that, conditional on the financial background risk w̃, has a zero mean and is

non-negative (non-positive, zero) expectation dependent on the non-financial background risk ỹ. This

provides for establishing the “order” of aversion to CIMRI, CDMRI, and MRI in what follows.

Letting % denote a utility-representable preference relation on the set of random variables 11 and

π(α) denote the risk premium defined by

w − π(α) ∼ w + αε̃,

where E[ε̃] = 0. Segal and Spivak (1990) define that a decision-maker’s risk attitude is first-order if

π′(0) 6= 0 for all ε̃ being non-degenerate and is second-order if π′(0) = 0 and π′′(0) 6= 0 for all ε̃ being

non-degenerate and show that, given E[x̃] > 0, a decision-maker exhibiting first-order risk aversion (i.e.,

negative first-order risk attitude) will prefer the sum w with certainty to (w+αx̃) for a sufficiently small

11That is, % is complete, transitive, and continuous with respect to the topology of weak convergence.
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α if E[x̃] is small enough while one exhibiting second-order risk aversion will prefer (w+αx̃) to w with

certainty for a sufficiently small α.

Define πc(α) by

Eu(w̃ − πc(α), ỹ) = Eu(w̃ + αε̃, ỹ)

where E[ε̃|w̃] = 0. In the special case where w̃ is degenerate, πc(α) is what Dionne and Li (2014) define

to be “conditional dependent risk premium”. Theorem 2 also implies the following.

Corollary 2

(i) Assume u11 < 0 and u12 < ( > ) 0. π′c(0) > 0 if E[ε̃|w̃] = 0 and, conditional on w̃, ε̃ is positive

(negative) expectation dependent on ỹ.

(ii) Assume u11 < 0. π′c(0) = 0 and π′′c (0) > 0 if E[ε̃|ỹ = y, w̃ = w] = E[ε̃|w̃ = w] = 0 for all w and

y.

(iii) Let E[x̃|w̃] = E[x̃] > 0. If π′c(0) > 0 for all ε̃ such that E[ε̃|w̃] = 0, then for a sufficiently small

α, Eu(w̃, ỹ) > Eu(w̃ + αx̃, ỹ) if E[x̃] is small enough.

(iv) Let E[x̃|w̃] = E[x̃] > 0. If π′c(0) = 0 and π′′c (0) > 0 for all ε̃ such that E[ε̃|w̃] = 0, then for a

sufficiently small α, Eu(w̃, ỹ) < Eu(w̃ + αx̃, ỹ).

In view of Segal and Spivak (1990), since for α ≥ 0, an increase in α induces a CIMRI (CDMRI, MRI)

in Fw̃+αε̃, ỹ if, conditional on w̃, ε̃ is positive (negative, zero) expectation dependent on ỹ (Corollary

1), Corollary 2 has the interpretation that while aversion to MRI is second-order, aversion to CIMRI

(CDMRI) and hence aversion to CI (CD) are first-order, with a CIMRI (CDMRI) being a combination

of a CI (CD) and an MRI.

The characterization of attitudes towards financial risk in the presence of a correlated non-financial

background risk established in Theorem 2 further implies regularities on optimal risk management de-

cisions in their relations to financial and non-financial background risks. Consider an EU maximizing

agent’s decision problem of the following form:

max
α

V (α) ≡ Eu(w̃ + αx̃, ỹ)

That is, in the presence of a non-financial background risk ỹ, the financial payoff of choosing of α is

given by w̃ + αx̃. Prominent examples of this class of decision problems include the following. First,
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if w̃0 denotes the random initial wealth and α the amount invested in a risky asset whose random

return rate is r̃ and there is a riskless asset whose return rate is r0, then the final wealth in this

portfolio-choice problem is ỹ = (1 + r0)(w̃0 − α) + α(1 + r̃) = (1 + r0)w̃0 + α(r̃ − r0) ≡ w̃ + αx̃,

where w̃ ≡ (1 + r0)w̃0 and x̃ ≡ r̃ − r0. A variant of the problem takes the following form: An

investor has to allocate his uncertain initial wealth w̃0 between two assets, which are identified with

their uncertain return rates r̃ and r̃0. Letting α be the amount invested in asset r̃, his final wealth is

then ỹ = (1 + r̃0)(w̃0 − α) + α(1 + r̃) = (1 + r̃0)w̃0 + α(r̃ − r̃0) ≡ w̃ + αx̃, where w̃ ≡ (1 + r̃0)w̃0

and x̃ ≡ r̃ − r̃0. Secondly, let l̃ be the random insurable loss, β the coinsurance rate, π = β(µl̃ + δ)

the insurance premium, and w̃0 still the random initial wealth. Then the final wealth in this insurance-

purchasing problem is ỹ = w̃0 − l̃ + βl̃ − β(µl̃ + δ) = [w̃0 − µl̃ − δ] + (1 − β)(µl̃ − l̃ + δ) ≡ w̃ + αx̃

where w̃ ≡ [w̃0 − µl̃ − δ], α ≡ (1− β), and x̃ ≡ (µl̃ − l̃ + δ).

Let α∗ maximizes Eu(w̃ + αx̃, ỹ). Since V ′′(α) < 0 given u11 < 0, α∗ > ( <, = ) 0 if and only if

V ′(0) > ( <, = ) 0. Letting ε̃ = x̃− E[x̃], we have

V ′(0) = E(E[x̃] + ε̃)u1(w̃, ỹ) = E[x̃]Eu1(w̃, ỹ) + φ′(0)

Theorem 2 thus implies the following.

Corollary 3 Let α∗ maximizes Eu(w̃ + αx̃, ỹ).

(i) Assuming u11 < 0 and u12 < 0 and E[x̃|w̃] = E[x̃] = 0, α∗ > ( < ,= ) 0 if and only if, conditional

on w̃, x̃ is negative (positive, zero) expectation dependent on ỹ.

(ii) Assuming u11 < 0 and u12 > 0 and E[x̃|w̃] = E[x̃] = 0, α∗ > ( < ,= ) 0 if and only if, conditional

on w̃, x̃ is positive (negative, zero) expectation dependent on ỹ.

(iii) α∗ > ( <, = ) 0 if u11 < 0 and u12 < 0 and E[x̃|w̃] = E[x̃] ≥ ( ≤, = ) 0 and, conditional on w̃,

x̃ is negative (positive, zero) expectation dependent on ỹ.

(iv) α∗ > ( <, = ) 0 if u11 < 0 and u12 > 0 and E[x̃|w̃] = E[x̃] ≥ ( ≤, = ) 0 and, conditional on w̃,

x̃ is positive (negative, zero) expectation dependent on ỹ.

The result, together with Theorem 1 and Corollaries 1 and 2, provides an intuitive explanation for, as well

as a generalization of, key results in Li (2011) where the special case of a degenerate w̃ is considered:

In the portfolio choice setting with one risky asset and one riskless asset, if, conditional on w̃, x̃ has a
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zero mean and is zero expectation dependent on ỹ, since investing in the risky asset induces only an

MRI, an individual who is strictly marginal risk averse (u11 < 0) naturally chooses not to invest in the

asset. If, on the other hand, conditional on w̃, x̃ is negative (positive) expectation dependent on ỹ, an

individual who is both strictly correlation-averse (loving) and strictly marginal risk averse will choose to

invest in the risky asset even if its conditional expected return is zero since investing the asset induces

a combination of a correlation decrease (increase) and a marginal risk increase with the effect of the

former, which is first-order, dominating that of the latter, which is second-order.

Note that, in the context of health insurance purchasing in the presence of uncertain health status as

the background risk, E[x̃|w̃] = E[x̃] = 0 corresponds to actuarially fair insurance and α∗ > ( <, = ) 0

to choosing partial (over, full) insurance coverage. Furthermore, an insurance policy with proportional

premium loadings is one whose premium (π) is linear in the coinsurance rate (β = (1 − α)). In this

setting, our result implies that if the insurance premium is actuarially fair and, conditional on his initial

wealth, an individual’s health care cost is negative expectation dependent on his health status, then a

CDMRI averse individual will purchase partial health insurance coverage while a CIMRI averse individual

will purchase more than full health insurance coverage. On the other hand, with proportional premium

loadings, if, conditional on their initial wealth, an individual’s health care cost is negative expectation

dependent on his health status, while a CIMRI averse individual will purchase partial health insurance

coverage, a CDMRI averse individual may still choose full health insurance coverage. These results

highlight the contrast between the insurance purchasing behavior of a CDMRI averter and that of a

CIMRI averter under the plausible assumption that an individual’s health care cost is negative expectation

dependent on his health status. Since the insurance purchasing behavior of a risk averter obtained by

Doherty and Schlesinger (1983) in a simple univariate setting with correlated financial background risk is

analogous to that of a CIMRI averter here and, as argued earlier, individuals who are averse to financial

risk (i.e., u11 < 0) may regard wealth and health as complements (i.e., u12 > 0) and hence are averse to

CDMRI, the result illustrates the importance of a more general bivariate-distribution framework where

attitudes toward financial risk and correlation can be disentangled.

Given that the general results in Theorem 2 clearly also apply to the special case where u(x, y) =

u(xy), it has implications for optimal risk management decisions in the presence of multiplicative back-

ground risk. In particular, the condition u12(x, y) < ( > ) 0 for all x, y becomes u′(xy) + xyu′′(xy) <

( > ) 0 for all x, y and is thus equivalent to the condition u′(x) + xu′′(x) < ( > ) 0 for all x, which

is a key condition in what is obtained in Tsetlin and Winkler (2005) and Li (2011) concerning optimal
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risk management decisions in the presence of multiplicative background risk where the special case of

w̃ being degenerate is considered. That is, Theorem 2 offers an intuitive explanation for, as well as a

generalization of their results.

Applying the general results in Theorem 2 to the special case where u(x, y) = u(x + y) on the

other hand yields a generalization of the results obtained by Doherty and Schlesinger (1983), Tsetlin

and Winkler (2005), and Wright (1987) on insurance purchasing and portfolio choice in the presence of

an additive financial background risk. 12

4 Strength of Aversion to Marginal Risk and Correlation

The characterization of an individual’s attitude toward taking a financial risk in the presence of a

correlated non-financial background risk in the previous section leads naturally to the question of how

one characterizes the strength of such attitudes and its behavioral implications. We first introduce the

following definition.

Definition 7 v is more averse to CIMRI (CDMRI) than u if Eu(x̃′, ỹ) ≤ Eu(x̃−π, ỹ) implies Ev(x̃′, ỹ) ≤

Ev(x̃− π, ỹ) where Fx̃′, ỹ is a CIMRI (CDMRI) of Fx̃, ỹ.

Being more averse to CIMRI (CDMRI) thus means being willing to pay more to avoid a CIMRI (CDMRI).

The result that follows characterizes the concept in terms of the underlying EU preferences as well as

its behavioral implications.

Theorem 3 Assume u11 ≤ 0 and u12 ≤ ( ≥ ) 0. The following are equivalent

(i) v is more averse to CIMRI (CDMRI) than u.

(ii) There exists λ > 0 such that for all x and y,

λu1(x, y) ≥ v1(x, y), λu11(x, y) ≥ v11(x, y) and λu12(x, y) ≥ ( ≤ ) v12(x, y)

12The result on optimal insurance purchasing implied by Theorem 2 essentially shows that the regularities obtained
in a simple example assuming EU maximization by Doherty and Schlesinger (1983) can be extended to our much
more general setting. In the portfolio choice setting with one risky asset and one riskless asset, Tsetlin and Winkler
(2005) show that if the return of the risky asset has a zero mean but is “negatively related” to the background risk,
it is optimal to invest a positive amount in the asset, where a random variable x̃ is defined to be negatively related to
another ỹ if E[x̃|ỹ = y] is decreasing in y. In the setting with non-random initial wealth and two risky assets whose
return rates are r̃ and r̃0 respectively, Wright (1987) shows that if E[r̃] ≥ E[r̃0], (r̃ − r̃0) being negative expectation
dependent on r̃0 implies that all risk averse EU maximizers invest a positve amount in the asset with return rate r̃
and if E[r̃] = E[r̃0], then all risk averse EU maximizers invest a positve amount in both assets if and only if (r̃ − r̃0)
is negative expectation dependent on r̃0 and (r̃0 − r̃) is negative expectation dependent on r̃.
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(iii) There exist Γ(x, y) and λ > 0 such that Γ1(x, y) ≤ 0, Γ11(x, y) ≤ 0, Γ12(x, y) ≤ ( ≥ ) 0, and

v(x, y) = λu(x, y) + Γ(x, y).

(iv) For all w̃, ε̃, and ỹ such that E[ε̃|ỹ ≤ y, w̃ = x] ≤ ( ≥ ) E[ε̃|w̃ = w] = 0 for all w and y,

α2 > α1 ≥ 0, Eu(w̃+α2ε̃+πu, ỹ) = Eu(w̃+α1ε̃, ỹ) and Ev(w̃+α2ε̃+πv, ỹ) = Ev(w̃+α1ε̃, ỹ)

imply that πv ≥ πu.

(v) If α∗u(w̃, x̃, ỹ) and α∗v(w̃, x̃, ỹ) respectively maximize Eu(w̃ + αx̃, ỹ) and Ev(w̃ + αx̃, ỹ), then

α∗u(w̃, x̃, ỹ) ≥ α∗v(w̃, x̃, ỹ) for all w̃, x̃, and ỹ such that E[x̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[x̃|w̃ = w] =

E[x̃] > 0 for all w and y.

The result can be seen to be an extension of Machina and Nielson’s (1987) 4-way characterization of

Ross’s (1981) strong measure of risk aversion to the more general setting of bivariate distributions where

attitudes toward marginal risk and correlation can be disentangled. In the context of health insurance

purchasing in the presence of uncertain health status (as the non-financial background risk), the result

says that if, conditional on his initial wealth, an individual’s health care cost is non-positive expectation

dependent on his health status, then with proportional premium loadings, an individual will purchase

more health insurance coverage if and only if he is more averse to CIMRI.

To study the implications of aversion to CIMRI (CDMRI) for individual behavior, we will adopt the

following definitions.

Definition 8

(i) u exhibits decreasing aversion to CIMRI (CDMRI) if Eu(x̃′, ỹ) ≤ Eu(x̃ − π, ỹ) implies Eu(x̃′ −

∆x, ỹ) ≤ Eu(x̃−∆x− π, ỹ) where ∆x > 0 and Fx̃′, ỹ is a CIMRI (CDMRI) of Fx̃, ỹ.

(ii) u exhibits cross decreasing aversion to CIMRI (CDMRI) if Eu(x̃′, ỹ) ≤ Eu(x̃ − π, ỹ) implies

Eu(x̃′, ỹ −∆y) ≤ Eu(x̃− π, ỹ −∆y) where ∆y > 0 and Fx̃′, ỹ is a CIMRI (CDMRI) of Fx̃, ỹ.

The next two results, which can be obtained as corollaries of Theorem 3, characterize these notions in

terms of the underlying EU preferences and their behavioral implications.

Corollary 4 Assume u11 ≤ 0 and u12 ≤ ( ≥ ) 0. The following are equivalent

(i) u exhibits decreasing aversion to CIMRI (CDMRI).

(ii) There exists λ such that for all x and y,
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u11(x, y) ≥ λu1(x, y), u111(x, y) ≥ λu11(x, y) and u112(x, y) ≥ ( ≤ ) λu12(x, y)

(iii) There exists Γ(x, y; δ) and λ̄(δ) > 0 such that, for δ > 0, Γ1(x, y; δ) ≥ 0, Γ11(x, y; δ) ≥ 0,

Γ12(x, y; δ) ≥ ( ≤ ) 0, and u(x+ δ, y) = λ̄(δ)u(x, y) + Γ(x, y; δ)

(iv) For all w̃, ε̃, and ỹ such that E[ε̃|ỹ ≤ y, w̃ = x] ≤ ( ≥ ) E[ε̃|w̃ = w] = 0 for all w and y, α1 < α2,

∆w > 0, Eu(w̃+α2ε̃+π, ỹ) = Eu(w̃+α1ε̃, ỹ) and Eu(w̃+∆w+α2ε̃+π̂, ỹ) = Eu(w̃+∆w+α1ε̃, ỹ)

imply that π ≥ π̂.

(v) If α∗(w̃, x̃, ỹ) maximizes Eu(w̃+αx̃, ỹ), then α∗(w̃+ ∆w, x̃, ỹ) ≥ α∗(w̃, x̃, ỹ) for all ∆w > 0 and

w̃, x̃, and ỹ such that E[x̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[x̃|w̃ = w] = E[x̃] > 0 for all w and y.

Corollary 5 Assume u11 ≤ 0 and u12 ≤ ( ≥ ) 0. The following are equivalent

(i) u exhibits cross decreasing aversion to CIMRI (CDMRI).

(ii) There exists λ such that for all x and y,

u12(x, y) ≥ λu1(x, y), u112(x, y) ≥ λu11(x, y) and u122(x, y) ≥ ( ≤ ) λu12(x, y)

(iii) There exists Γ(x, y; δ) and λ(δ) > 0 such that Γ1(x, y; δ) ≥ 0, Γ11(x, y; δ) ≥ 0, Γ12(x, y; δ) ≥

( ≤ ) 0, and u(x, y + δ) = λ(δ)u(x, y) + Γ(x, y; δ).

(iv) For all w̃, ε̃, and ỹ such that E[ε̃|ỹ ≤ y, w̃ = x] ≤ ( ≥ ) E[ε̃|w̃ = w] = 0 for all w and y, α1 < α2,

∆y > 0, Eu(w̃+α2ε̃+π, ỹ) = Eu(w̃+α1ε̃, ỹ) and Eu(w̃+α2ε̃+π̂, ỹ+∆y) = Eu(w̃+α1ε̃, ỹ+∆y)

imply that π ≥ π̂.

(v) If α∗(w̃, x̃, ỹ) maximizes Eu(w̃ + αx̃, ỹ), then α∗(w̃, x̃, ỹ + ∆y) ≥ α∗(w̃, x̃, ỹ) for all ∆y > 0 and

w̃, x̃, and ỹ such that E[x̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[x̃|w̃ = w] = E[x̃] > 0 for all w and y.

In the context of health insurance purchasing in the presence of uncertain health status (as the non-

financial background risk), Corollaries 4 and 5 respectively establish the necessary and sufficient condi-

tions for a deterministic improvement in wealth and in health to imply weaker aversion to CIMRI and

reduced health insurance coverage if there are proportional premium loadings and, conditional on his

initial wealth, an individual’s health care cost is non-positive expectation dependent on his health status.
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5 Conclusion

This paper defines and characterizes bivariate stochastic deteriorations “correlation-increasing marginal

risk increase” (CIMRI) and “correlation-decreasing marginal risk increase” (CDMRI). We show that

a CIMRI (CDMRI) is what results from taking a zero-mean financial risk in the presence of a non-

financial risk that is correlated with the financial risk in the sense of positive (negative) expectation

dependence and is the stochastic deterioration disliked by all EU maximizers who are both correlation-

averse (-loving) and marginal risk averse. Moreover, a CIMRI (CDMRI) has a necessary and sufficient

“integral condition” that is a generalization of that for a “mean-preserving increase in risk” obtained in

Rothschild and Stiglitz (1970) and implies and is implied by a sense in which a CIMRI (CDMRI) can

be decomposed into a correlation increase (decrease) and a marginal risk increase. Together with a

comprehensive characterization of attitudes towards financial risk-taking in the presence of a correlated

non-financial background risk that we also offer, these results in turn provides an intuitive explanation

for, as well as a significant generalization of, existing results on optimal choice of endogenous risk in the

presence of financial and non-financial background risks. We further characterize a measure of aversion

to CIMRI (CDMRI) and demonstrate their behavioral implications in the contexts of risk management

decisions.

Appendix

Proof of Theorem 1.

[(i) ⇒ (ii)]

Since letting u+(x, y) = x and u−(x, y) = −x, we have u+
11 ≤ 0, u+

12 ≤ 0, u−11 ≤ 0 and u−12 ≤ 0,

Eu+(x̃′, ỹ)− Eu+(x̃, ỹ) =
∫ a
−a td[G(t, a)− F (t, a)] = −

∫ a
−a[G(t, a)− F (t, a)]dt ≤ 0

and

Eu−(x̃′, ỹ)− Eu−(x̃, ỹ) = −
∫ a
−a td[G(t, a)− F (t, a)] =

∫ a
−a[G(t, a)− F (t, a)]dt ≤ 0

imply
∫ a
−a[G(t, a)− F (t, a)]dt = 0.

To show [
∫ a
−a

∫ z(y)
−a [G(x|ỹ = y) − F (x|ỹ = y)]dxdF (a, y) ≥ 0 for all z(y) that is non-increasing

in y] is necessary for [Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u11 ≤ 0 and u12 ≤ 0], suppose there exists ẑ(y)

non-increasing in y such that
∫ a
−a

∫ ẑ(y)
−a [G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) < 0. Letting

û(x, y) = −max{ẑ(y)− x, 0},
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Eû(x̃′, ỹ)− Eû(x̃, ỹ) =
∫ b
−a

∫ b
−a û(x, y)d[G(x, y)− F (x, y)]

=
∫ a
−a

∫ a
−a û(x, y)d[G(x|ỹ = y)− F (x|ỹ = y)]dF (a, y)

= −
∫ a
−a

∫ ẑ(y)
−a [G(x|ỹ = y)− F (x|ỹ = y)]dxdF (a, y) > 0.

By an argument in Fishburn and Vickson (1978, p.76), it is possible to approximate û(x, y) by a twice-

differentiable function u(x, y) such that u11 ≤ 0 and u12 ≤ 0 but Eu(x̃′, ỹ)− Eu(x̃, ỹ) > 0.

Given what is shown above, the necessity of [
∫ a
−a

∫ a
z(y)[G(x|ỹ = y) − F (x|ỹ = y)]dxdF (a, y) ≤ 0

for all z(y) that is non-decreasing in y] for [Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u11 ≤ 0 and u12 ≥ 0] follows

from the following observations. First, Eu(x̃, ỹ) ≥ Eu(x̃′, ỹ) for all u11 ≤ 0 and u12 ≥ 0 if and only if

Eu(−x̃, ỹ) ≥ Eu(−x̃′, ỹ) for all u11 ≤ 0 and u12 ≤ 0. Second, F (x, y) and G(x, y) are the distribution

functions of (x̃, ỹ) and (x̃′, ỹ) and
∫ a
−a

∫ z(y)
−a [G(x|ỹ = y)−F (x|ỹ = y)]dxdF (a, y) ≥ 0 for all z(y) that

is non-increasing in y if and only if F̂ (x, y) and Ĝ(x, y) are the distribution functions of (−x̃, ỹ) and

(−x̃′, ỹ) and
∫ a
−a

∫ a
z(y)[Ĝ(x|ỹ = y) − F̂ (x|ỹ = y)]dxdF̂ (a, y) ≤ 0 for all z(y) that is non-decreasing in

y.

[(ii)⇒ (iii)] In proving this result, we adopt the following notation: Given a function H(x) : [−a, a]→ R,

H(x−) ≡ lim
δ↑0

H(x+ δ) and H(x+) ≡ lim
δ↓0

H(x+ δ).

Furthermore, if H(x, y) : [−a, a]2 → R is not continuous in y, denoting by DH ≡ {ŷ1, ŷ2, . . .} the set

of its discontinuity points and I+ the set of non-negative integers and setting ŷ0 = −a, we define

∫ y

−a
[H(x, s)−H(x, s−)]

≡
∫ y

−a
Hy(x, s)ds+

max{i∈I+:ŷi≤y}∑
i=1

[H(x, ŷi)−H(x, ŷ−i )] +

max{i∈I+:ŷi<y}∑
i=1

[H(x, ŷ+
i )−H(x, ŷi)]

13 where

Hy(x, y) ≡


H(x,y)−H(x,y−)

y−y− for y ∈ [−a, a] \DH ;

0 for y ∈ DH

0∑
i=1

[H(x, ŷi)−H(x, ŷ−i )] =
0∑
i=1

[H(x, ŷ+
i )−H(x, ŷi)] ≡ 0.

(Thus in the case where H(x, y) is continuous in y, i.e., DH is empty,
∫ y
−a[H(x, s) − H(x, s−)] =

13Note that the last term vanishes if H(x, y) is right-continuous in y.
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∫ y
−aHy(x, s)ds.) Then we clearly always have H(x, y) =

∫ y
−a[H(x, s)−H(x, s−)] +H(x,−a).

Now consider the function Φ(x, y) : [−a, a]2 → R2:

Φ(x,−a) ≡ G(x,−a)− F (x,−a)

and, for y > −a,

Φ(x, y) ≡ G(x, y)−G(x, y−)− [F (x, y)− F (x, y−)] + Ψ(x, y−).

where the function Ψ(x, y) : [−a, a]2 → R2 is defined as follows. Let

ZΦ ≡ {y ∈ [−a, a] : Φ(x, y) = 0 for all x}.

Ψ(x, y) = Φ(x, y) for y ∈ ZΦ. For each y ∈ [−a, a]\ZΦ, let m(y) ∈ {0, 1, 2, . . .} be the number of times

Φ(x, y) crosses the x-axis and xy1, x
y
2, . . . the “crossings”: xy0 ≡ −a, xym(y)+1 ≡ a, for m(y) ∈ {1, 2, . . .},

and k = 0, 1, . . . , [m(y) − 1], Φ(xym(y)−k, y) = 0,
∫ xy

m(y)−k+1

xy
m(y)−k

Φ(x, y)dx 6= 0, and if Φ(x, y) ≥ ( ≤ ) 0

for x ∈ [xym(y)−k, x
y
m(y)−k+1], then Φ(x, y) ≤ ( ≥ ) 0 for x ∈ [xym(y)−k−1, x

y
m(y)−k]. For each y ∈

[−a, a] \ ZΦ, m(y) ∈ {0, 1, 2, . . .} and k = 0, 1, . . . ,m(y), define

Aym(y)−k ≡
∫ xy

m(y)−k+1

xy
m(y)−k

Φ(x, y)dx,

αym(y)−k = max{0,
Aym(y)−k +

∑k
j=1(1− αym(y)−k+j)A

y
m(y)−k+j

|Aym(y)−k|
}

(where for expositional ease we define
∑0

j=1(1− αym(y)+j)A
y
m(y)+j ≡ 0) and

Ψ(x, y) ≡



αym(y)Φ(x, y) for x ∈ [xym(y), a];

· · · · · ·

αym(y)−kΦ(x, y) for x ∈ [xym(y)−k, x
y
m(y)−k+1];

· · · · · ·

αi0Φ(x, y) for x ∈ [−a, xy1].

We immediately have
∑k

j=0(1−αym(y)−k+j)A
y
m(y)−k+j ≤ 0 form(y) ∈ {0, 1, 2, . . .} and k = 0, 1, . . . ,m(y),
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14 which in turn implies that αym(y)−k > 0 if and only if Aym(y)−k+
∑k

j=1(1−αym(y)−k+j)A
y
m(y)−k+j > 0

and Aym(y)−k > 0 (or equivalently Φ(x, y) ≥ 0 for x ∈ [xym(y)−k, x
y
m(y)−k+1]). We are to further show

the following.

(a)
∫ x
−a Φ(t, y)dt ≥ 0 for all x and y;

(b)
∫ a
−a Φ(t, a)dt = 0;

(c) Ψ(x, y) ≥ 0 for all x and y;

(d) Ψ(a, y) = 0 for all y;

(e) Ψ(x, a) = 0 for all x;

(f)
∫ a
−a[Φ(t, y)−Ψ(t, y)]dt = 0 for all y;

(g)
∫ x
−a[Φ(t, y)−Ψ(t, y)]dt ≥ 0 for all x and y.

(a)

Let τ(x, y) be such that, for y ∈ ZΦ, τ(x, y) ≡ a and, for y ∈ [−a, a] \ ZΦ, m(y) ∈ {0, 1, 2, . . .}

and k = 0, 1, . . . ,m(y), letting x̌ym(y)−k ∈ [xym(y)−k, x
y
m(y)−k+1] be such that

∫ x̌y
m(y)−k

xy
m(y)−k

Φ(x, y)dx =∫ xy
m(y)−k+1

xy
m(y)−k

αm(y)−kΦ(x, y)dx,

τ(x, y) ≡



x for x ∈ [−a, x̌y0);

xy1 for x ∈ [x̌y0, x
y
1);

· · · · · ·

x for x ∈ [xym(y)−k, x̌
i
m(y)−k);

xym(y)−k+1 for x ∈ [x̌ym(y)−k, x
y
m(y)−k+1);

· · · · · ·

x for x ∈ [xym(y), x̌
y
m(y));

xym(y)+1 for x ∈ [x̌ym(y), a].

Then clearly
∫ xy

m(y)−k+1

−a Ψ(t, y)dt =
∫ τ(xy

m(y)−k+1
,y)

−a Φ(t, y)dt. Furthermore τ(x, y) ≥ x for all x and y

and τ(a, y) = a for all y. Let Ψ∗(x, y) be such that, for all x and y,∫ x
−a Ψ∗(t, y)dt =

∫ τ(x,y)
−a Φ(t, y)dt

14If Ay
m(y)−k +

∑k
j=1(1−αy

m(y)−k+j)A
y
m(y)−k+j ≤ 0, clearly αy

m(y) = 0 and thus
∑k

j=0(1−αy
m(y)−k+j)A

y
m(y)−k+j =

Ay
m(y)−k +

∑k
j=1(1− αy

m(y)−k+j)A
y
m(y)−k+j ≤ 0. If Ay

m(y)−k +
∑k

j=1(1− αy
m(y)−k+j)A

y
m(y)−k+j > 0, it is easy to see

that in the case of k = 0, αy
m(y) = 1 and thus (1 − αy

m(y))A
y
m(y) = 0 and if

∑k
j=0(1 − αy

m(y)−k+j)A
y
m(y)−k+j ≤ 0,

then
∑k+1

j=0 (1 − αy
m(y)−k+j)A

y
m(y)−k+j ≤ 0 and thus by induction

∑k
j=0(1 − αy

m(y)−k+j)A
y
m(y)−k+j ≤ 0 for all k =

0, 1, . . . ,m(y).
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and define

Φ∗(x, y) ≡ G(x, y)−G(x, y−)− [F (x, y)− F (x, y−)] + Ψ∗(x, y−).

Then clearly
∫ xy

m(y)−k+1

−a Φ(t, y)dt =
∫ xy

m(y)−k+1

−a Φ∗(t, y)dt and, for any x and y,∫ x
−a Φ∗(t, y)dt

=
∫ x
−a[G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ x
−a Ψ∗(t, y−)dt

=
∫ x
−a[G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ τ(x,y−)
−a Φ∗(t, y−)dt.

For a (x∗, y∗) ∈ [−a, a]2, let z∗(y) be such that z∗(y) = −a for y > y∗, z∗(y∗) = x∗ and z∗(y−) =

τ(z∗(y), y−) for y ≤ y∗. Then given τ(x, y) ≥ x, z∗(y) is clearly non-increasing and, for y ≤ y∗,∫ z∗(y)
−a Φ∗(t, y)dt

=
∫ z∗(y)
−a [G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ τ(z∗(y),y−)
−a Φ∗(t, y−)dt,

=
∫ z∗(y)
−a [G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ z∗(y−)
−a Φ∗(t, y−)dt,

or equivalently,∫ z∗(y)
−a Φ∗(t, y)dt−

∫ z∗(y−)
−a Φ∗(t, y−)dt =

∫ z∗(y)
−a [G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt.

Thus, noting that

G(x|ỹ = y) =
G(x, y)−G(x, y−)

G(a, y)−G(a, y−)
and F (x|ỹ = y) =

F (x, y)− F (x, y−)

F (a, y)− F (a, y−)
,

∫ x∗
−a Φ∗(t, y∗)dt

=
∫ z∗(y∗)
−a Φ∗(t, y∗)dt

=
∫ y∗
−a[

∫ z∗(y)
−a Φ∗(t, y)dt−

∫ z∗(y−)
−a Φ∗(t, y−)dt]

=
∫ a
−a{

∫ z∗(y)
−a [G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt}

=
∫ a
−a

∫ z∗(y)
−a [G(t|ỹ = y)− F (t|ỹ = y)]dtdF (a, y) ≥ 0

where the inequality is implied by the hypothesis that
∫ a
−a

∫ z(y)
−a [G(x|ỹ = y)−F (x|ỹ = y)]dxdF (a, y) ≥

0 for all z(y) that is non-increasing in y. That is, we have
∫ x
−a Φ∗(t, y)dt ≥ 0 for all x and y. Then clearly∫ xy

m(y)−k+1

−a Φ(t, y)dt =
∫ xy

m(y)−k+1

−a Φ∗(t, y)dt ≥ 0 for m(y) ∈ {0, 1, 2, . . .} and k = 0, 1, . . . ,m(y), which

implies
∫ x
−a Φ(t, y)dt ≥ 0 for all x and y: If x ∈ [xym(y)−k, x

y
m(y)−k+1] such that Φ(x, y) ≤ 0 for all

x ∈ [xym(y)−k, x
y
m(y)−k+1], then∫ x

−a Φ(t, y)dt ≥
∫ x
−a Φ(t, y) +

∫ xy
m(y)−k+1

x Φ(t, y)dt =
∫ xy

m(y)−k+1

−a Φ(t, y)dt ≥ 0.

If x ∈ [xym(y)−k, x
y
m(y)−k+1] such that Φ(x, y) ≥ 0 for all x ∈ [xym(y)−k, x

y
m(y)−k+1], then∫ x

−a Φ(t, y)dt =
∫ xy

m(y)−k

−a Φ(t, y) +
∫ x
xy
m(y)−k

Φ(t, y)dt ≥
∫ xy

m(y)−k

−a Φ(t, y)dt ≥ 0.
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(b)

Since τ(a, y) = a for all y,∫ a
−a Φ(t, y)dt

=
∫ a
−a[G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ a
−a Ψ(t, y−)

=
∫ a
−a[G(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt+

∫ a
−a Φ(t, y−).

Thus∫ a
−a Φ(t, y∗)dt

=
∫ y∗
−a[

∫ a
−a Φ(t, y)dt−

∫ a
−a Φ(t, y−)]

=
∫ y∗
−a{

∫ a
−aG(t, y)−G(t, y−)− F (t, y) + F (t, y−)]dt}

=
∫ a
−a[G(t, y∗)− F (t, y∗)]dt.∫ a

−a[G(t, a)− F (t, a)]dt = 0 then implies
∫ a
−a Φ(t, a)dt = 0.

(c)

Ψ(x, y) ≥ 0 for all x and y since αym(y)−k ≥ 0 for all k = 0, 1, . . . ,m(y) and αym(y)−k > 0 only if

Φ(x, y) ≥ 0 for x ∈ [xym(y)−k, x
y
m(y)−k+1].

(d)

Given the definition of Ψ(x, y), Φ(a, y) = 0 for all y implies Ψ(a, y) = 0 for all y.

(e)

Ψ(x, a) = 0 for all x since
∫ x
−a Φ(t, a)dt ≥ 0 for all x and

∫ a
−a Φ(t, a)dt = 0 imply αam(a)−k = 0 for

k = 0, 1, . . . ,m(a): If the set {k ∈ {0, 1, . . . ,m(a)} : αam(a)−k > 0} is non-empty, letting k ≡ min{k :

αam(a)−k > 0}, Aam(a)−k +
∑k

j=1(1 − αam(a)−k+j)A
a
m(a)−k+j =

∫ a
xy
m(a)−k

Φ(x, a)dx > 0, which (given∫ a
−a Φ(t, a)dt = 0) implies

∫ xy
m(a)−k

−a Φ(x, a)dx < 0.

(f)

If αym(y)−k = 0 for k = 0, 1, . . . ,m(y), then
∫ a
−a[Φ(t, y) − Ψ(t, y)]dt =

∫ a
−a Φ(t, y)dt ≥ 0 (by

(a)). But we also know
∫ a
−a[Φ(t, y) − Ψ(t, y)]dt =

∑m(y)
j=0 (1 − αyj )A

y
j ≤ 0. Hence we must have∫ a

−a[Φ(t, y)−Ψ(t, y)]dt = 0.

If the set {k ∈ {0, 1, . . . ,m(a)} : αym(y)−k > 0} is non-empty, let k̄ ≡ max{k ∈ {0, 1, . . . ,m(a)} :

αym(y)−k > 0}. Then
∫ a
xy
m(y)−k̄

[Φ(t, y) − Ψ(t, y)]dt =
∑m(y)

j=m(y)−k̄(1 − α
y
j )A

y
j = 0. In the case of k̄ =

m(y), we immediately have
∫ a
−a[Φ(t, y)−Ψ(t, y)]dt = 0. If k̄ < m(y), αyj = 0 for j = 0, 1, . . . , [m(y)−k̄]

implies
∫ xm(y)−k̄

−a [Φ(t, y)−Ψ(t, y)]dt =
∫ xm(y)−k̄

−a Φ(t, y)dt ≥ 0 (by (a)). But given

Ay0 +
∑m(y)

j=1 (1− αyj )A
y
j
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≥
∫ a
−a[Φ(t, y)−Ψ(t, y)]dt

=
∫ xm(y)−k̄

−a [Φ(t, y)−Ψ(t, y)]dt+
∫ a
xy
m(y)−k̄

[Φ(t, y)−Ψ(t, y)]dt

=
∫ xm(y)−k̄

−a [Φ(t, y)−Ψ(t, y)]dt

(where the inequality holds because (a) implies Ay0 ≥ 0),
∫ xm(y)−k̄

−a [Φ(t, y) − Ψ(t, y)]dt > 0 implies

αy0 > 0, which is a contradiction. We thus have
∫ xm(y)−k̄

−a Φ(t, y)dt = 0 and∫ a
−a[Φ(t, y)−Ψ(t, y)]dt =

∫ xm(y)−k̄

−a Φ(t, y)dt+
∫ a
xy
m(y)−k̄

[Φ(t, y)−Ψ(t, y)]dt = 0.

(g) ∫ a
xy
m(y)−k

[Φ(t, y)−Ψ(t, y)]dt =
∑k

j=0(1− αym(y)−k+j)A
i
m(y)−k+j ≤ 0 for k = 0, 1, . . . ,m(y) implies∫ a

x [Φ(t, y)−Ψ(t, y)]dt ≤ 0 for all x ∈ [−a, a]: If x ∈ [xym(y)−k, x
y
m(y)−k+1] such that Φ(x, y)−Ψ(x, y) ≤

0 for all x ∈ [xym(y)−k, x
y
m(y)−k+1], then∫ a

x [Φ(t, y)−Ψ(t, y)]dt

=
∫ xy

m(y)−k+1
x [Φ(t, y)−Ψ(t, y)]dt+

∫ a
xy
m(y)−k+1

[Φ(t, y)−Ψ(t, y)]dt ≤
∫ a
xy
m(y)−k+1

[Φ(t, y)−Ψ(t, y)]dt ≤ 0.

If x ∈ [xym(y)−k, x
y
m(y)−k+1] such that Φ(x, y)−Ψ(x, y) ≥ 0 for all x ∈ [xym(y)−k, x

y
m(y)−k+1], then∫ a

x [Φ(t, y)−Ψ(t, y)]dt

≤
∫ x
xy
m(y)−k

[Φ(t, y)−Ψ(t, y)]dt+
∫ a
x [Φ(t, y)−Ψ(t, y)]dt ≤

∫ a
xy
m(y)−k

[Φ(t, y)−Ψ(t, y)]dt ≤ 0.

Given
∫ a
−a[Φ(t, y)−Ψ(t, y)]dt = 0, we thus have

∫ x
−a[Φ(t, y)−Ψ(t, y)]dt ≥ 0.

Now define

H(x, y) = F (x, y) + Ψ(x, y) and H(x|ỹ = y) ≡ H(x, y)−H(x, y−)

H(a, y)−H(a, y−)
.

We clearly have H(x, y) ≥ F (x, y), H(x, a) = F (x, a), H(a, y) = F (a, y). And since

G(x, y)−G(x, y−)− [H(x, y)−H(x, y−)]

= F (x, y)− F (x, y−) + Φ(x, y)−Ψ(x, y−)− [F (x, y) + Ψ(x, y)− F (x, y−)−Ψ(x, y−)]

= Φ(x, y)−Ψ(x, y)

and (given H(a, y) = F (a, y) = G(a, y) for all y)

G(x|ỹ = y)−H(x|ỹ = y) =
G(x, y)−G(x, y−)− [H(x, y)−H(x, y−)]

G(a, y)−G(a, y−)
,

we have
∫ x
−a[G(t|ỹ = y)−H(t|ỹ = y)]dt ≥ 0 and

∫ a
−a[G(t|ỹ = y)−H(t|ỹ = y)]dt = 0.

Note that H(x, y) may or may not be a distribution function as H(x|ỹ = y) may be decreasing.
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Define

∆(x|y) ≡


−H(x|ỹ = y) +H(x−|ỹ = y) if H(x|ỹ = y)−H(x−|ỹ = y) < 0

or h(x|y) < 0 where
∫ x
−a h(t|y)dt = H(x|ỹ = y);

0 otherwise

and

F̂ (x, y) ≡
F (x, y) +

∫ y
−a[

∫ x
−a ∆(t|s)]dH(a, s)

F (a, a) +
∫ a
−a[

∫ a
−a ∆(t|s)]dH(a, s)

, Ĝ(x, y) ≡
G(x, y) +

∫ y
−a[

∫ x
−a ∆(t|s)]dH(a, s)

G(a, a) +
∫ a
−a[

∫ a
−a ∆(t|s)]dH(a, s)

,

Ĥ(x, y) ≡
H(x, y) +

∫ y
−a[

∫ x
−a ∆(t|s)]dH(a, s)

H(a, a) +
∫ a
−a[

∫ a
−a ∆(t|s)]dH(a, s)

where F (a, a) = G(a, a) = H(a, a) = 1 (since H(x, a) = F (x, a) and H(a, y) = F (a, y)). F̂ (x, y),

Ĝ(x, y) and Ĥ(x, y) are thus all distribution functions. Letting

γ ≡ 1

1 +
∫ a
−a[

∫ a
−a ∆(t|s)]dH(a, s)

,

clearly Ĝ(x, y)−F̂ (x, y) = γ[G(x, y)−F (x, y)] for all x and y. Thus for all x and y, Ĥ(x, y)−F̂ (x, y) =

γ[H(x, y) − F (x, y)] ≥ 0 Ĥ(x, a) − F̂ (x, a) = γ[H(x, a) − F (x, a)] = 0,
∫ x
−a[Ĝ(t|ỹ = y) − Ĥ(t|ỹ =

y)]dt = γ
∫ x
−a[G(t|ỹ = y)−H(t|ỹ = y)]dt ≥ 0 and

∫ a
−a[Ĝ(t|ỹ = y)− Ĥ(t|ỹ = y)]dt = γ

∫ a
−a[G(t|ỹ =

y)−H(t|ỹ = y)]dt = 0.

[(iii) ⇒ (i)]

Eu(x̃′, ỹ)− Eu(x̃, ỹ) =
∫ b
−a

∫ b
−a u(x, y)d[G(x, y)− F (x, y)]

= 1
γ

∫ b
−a

∫ b
−a u(x, y)d[Ĝ(x, y)− F̂ (x, y)]

= 1
γ {

∫ b
−a

∫ b
−a u(x, y)d[Ĝ(x, y)− Ĥ(x, y)] +

∫ b
−a

∫ b
−a u(x, y)d[Ĥ(x, y)− F̂ (x, y)]}

which is non-positive since, given Ĝ(x, y) being a CI (CD) of Ĥ(x, y) and Ĥ(x, y) an MRI of F̂ (x, y),

by Lemmas 3 and 4, both terms are non-positive for all u such that u11 ≤ 0 and u12 ≤ ( ≥ ) 0.

[(i) ⇐⇒ (iv)]. The proof is completely analogous to Theorem 3.4 of Muller and Scarsini (2012) with

F being the class of CIMRI (CDMRI) averse u(x, y) and M being the set of stochastic deteriorations

that are equivalent to a finite sequence of simple CIMRIs (CDMRIs). �
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Proof of Theorem 2. Given E[ε̃|w̃] = 0,

φ′(α) = Eε̃u1(w̃ + αε̃, ỹ) = Ew̃E[ε̃u1(w̃ + αε̃, ỹ)|w̃] = Ew̃cov[ε̃, u1(w̃ + αε̃, ỹ)|w̃].

(i) Given that u12 < ( > ) 0 and E[ε̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[ε̃|w̃ = w] for all y and w and

there exists Zw ⊂ [−a, a] such that P [w̃−1(Zw)] > 0 and, for w ∈ Zw, the inequality is strict for

y ∈ Zy(w) ⊂ [−a, a] where P [ỹ−1(Zy(w))] > 0, Lemma 1 implies cov[ε̃, u1(w̃, ỹ)|w̃ = w] < 0 for all

w ∈ Zw and thus

φ′(0) = Ew̃E[ε̃u1(w̃, ỹ)|w̃] = Ew̃cov[ε̃, u1(w̃, ỹ)|w̃] < 0. (1)

Since u11 < 0 implies φ′′(α) = Eε̃2u11(w̃ + αε̃, ỹ) < 0, we then have φ′(α) < 0 for α ≥ 0.

Conversely, given φ′(0) = Ew̃cov[ε̃, u1(w̃, ỹ)|w̃], if E[x̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[x̃|w̃ = w] for all y

and w but there does not exist Zw ⊂ [−a, a] such that P [w̃−1(Zw)] > 0 and, for w ∈ Zw, the inequality

is strict for y ∈ Zy(w) ⊂ [−a, a] where P [ỹ−1(Zy(w))] > 0, then φ′(0) = 0. If for w̃ = w ∈ J ⊂ [−a, a],

ε̃ is not non-negative (non-positive) expectation dependent on ỹ, by Lemma 1, we can find u such that

u11 < 0 and u12 < ( > ) 0 and cov[ε̃, u1(w̃, ỹ)|w̃ = w] > 0 for w ∈ J but (u12( , ) is such that)

|cov[ε̃, u1(w̃, ỹ)|w̃ = w]| is arbitrarily close to 0 for w 6∈ J , which implies φ′(0) > 0 and thus we cannot

have φ′(α) < 0 for α ≥ 0.

(ii) Analogous to (i).

(iii) Given φ′(0) = Ew̃cov[ε̃, u1(w̃, ỹ)|w̃], the sufficiency of zero expectation dependence is obvious in

view of the proof of (i).

To prove the necessity, if for w̃ ∈ J , ε̃ is not zero expectation dependent on ỹ, by Lemma 1, we can

find u such that u11 < 0 and u12 < 0 and cov[ε̃, u1(w̃, ỹ)|w̃] > 0 (or < 0) for w̃ ∈ J but (u12( , ) is

such that) |cov[ε̃, u1(w̃, ỹ)|w̃]| is arbitrarily close to 0 for w 6∈ J , which implies φ′(0) 6= 0 and thus we

cannot have φ′(α) < 0 for α > 0 and φ′(α) > 0 for α < 0. (The case of u11 < 0 and u12 > 0 follows

analogously.)

(iv) The sufficiency of of u11 ≤ 0 and u12 ≤ ( ≥ ) 0 can be proved analogously to (i).

The necessity of u11 ≤ 0 and u12 ≤ ( ≥ ) 0 is implied by Theorem 2 in Finkelshtain et. al. (1999)

since φ′(α) ≤ 0 for α ≥ 0 and E[ε̃|ỹ ≤ y, w̃ = w] ≤ ( ≥ ) E[ε̃|w̃ = w] for all w and y implies that

Eu(w̄, ỹ) ≥ Eu(w̄+ ε̃, ỹ) for ε̃, w̃ and ỹ such that w̃ is degenerate and E[ε̃|ỹ = y] is non-decreasing in

y.
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(v) Analogous to (iv).

�

Proof of Theorem 3.

[(ii)⇐⇒(iii)]

Define Γ(x, y) ≡ v(x, y) − λu(x, y). Differentiating, we obtain Γ1(x, y) = v1(x, y) − λu1(x, y) ≤ 0,

Γ11(x, y) = v11(x, y)− λu11(x, y) ≤ 0, and Γ12(x, y) = v12(x, y)− λu12(x, y) ≤ ( ≥ ) 0.

Conversely, given v(x, y) = λu(x, y)+Γ(x, y)⇐⇒ Γ(x, y) = −λu(x, y)+v(x, y), Γ1 ≤ 0, Γ11 ≤ 0,

and Γ12 ≤ ( ≥ ) 0 clearly imply respectively λu1(x, y) ≥ v1(x, y), λu11(x, y) ≥ v11(x, y), and

λu12(x, y) ≥ ( ≤ ) v12(x, y).

[(iii)⇒(i)]

Ev(x̃− π, ỹ)

= Eλu(x̃− π, ỹ) + EΓ(x̃− π, ỹ)

≥ Eλu(x̃− π, ỹ) + EΓ(x̃′ − π, ỹ)

≥ Eλu(x̃′, ỹ) + EΓ(x̃′, ỹ)

= Ev(x̃′, ỹ)

where the first inequality is due to the fact that Fx̃′−π, ỹ being a CIMRI (CDMRI) of Fx̃−π, ỹ, Γ11 ≤ 0

and Γ12 ≤ ( ≥ ) 0 imply EΓ(x̃′ − π, ỹ) ≤ EΓ(x̃− π, ỹ), and the second inequality is due to Γ1 ≤ 0.

[(i)⇒(iv)] Since, by Theorem 2, Fw̃+α2ε̃, ỹ is a CIMRI (CDMRI) of Fw̃+α1ε̃, ỹ if α2 > α1 ≥ 0 and w̃,

ε̃, and ỹ are such that E[ε̃|ỹ ≤ y, w̃ = x] ≤ ( ≥ ) E[ε̃|w̃ = w] = 0 for all w and y, (i) clearly implies

πv ≥ πu.

[(iv)⇒(iii)] Let w̃ = w1 with probability p, w̃ = w0 with probability 1−p, and (ε̃, ỹ) = (0, y0) if w̃ = w0

and (ε̃, ỹ) is a 50:50 chance of (−ε, y1) or (ε, y2) if w̃ = w1. πu and πv are given by

1

2
p[u(w1−ε, y1)+u(w1+ε, y2)]+(1−p)u(w0, y0) =

1

2
p[u(w1−πu, y1)+u(w1−πu, y2)]+(1−p)u(w0−πu, y0)

1

2
p[v(w1−ε, y1)+v(w1+ε, y2)]+(1−p)v(w0, y0) =

1

2
p[v(w1−πv, y1)+v(w1−πv, y2)]+(1−p)v(w0−πv, y0)
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Differentiation and simple algebraic manipulations yield

dπu

dε
|ε=0 = −

1
2p[−u1(w1, y1) + u1(w1, y2)]

1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)

dπv

dε
|ε=0 = −

1
2p[−v1(w1, y1) + v1(w1, y2)]

1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)

d2πu

dε2
|ε=0 = −

1
2p[u11(w1, y1) + u11(w1, y2)]

1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)

+
1
2p[−u1(w1, y1) + u1(w1, y2)]{1

2p[u11(w1, y1) + u11(w1, y2)] + (1− p)u11(w0, y0)}
[1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)]2

dπu

dε
|ε=0

d2πv

dε2
|ε=0 = −

1
2p[v11(w1, y1) + v11(w1, y2)]

1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)

+
1
2p[−v1(w1, y1) + v1(w1, y2)]{1

2p[v11(w1, y1) + v11(w1, y2)] + (1− p)v11(w0, y0)}
[1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)]2

dπv

dε
|ε=0

If y1 < ( > ) y2 and thus conditional on w̃, ε̃ is non-negative (non-positive) expectation dependent on

ỹ, πv ≥ πu for all ε > 0 implies that

1
2p[v1(w1, y1)− v1(w1, y2)]

1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)

≥
1
2p[u1(w1, y1)− u1(w1, y2)]

1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)

or equivalently

p[v1(w1, y1)u1(w1, y2)− v1(w1, y2)u1(w1, y1)]+

(1− p)[v1(w1, y1)− v1(w1, y2)]u1(w0, y0)− (1− p)[u1(w1, y1)− u1(w1, y2)]v1(w0, y0) ≥ 0

which, since p can be arbitrarily small, implies

v1(w1, y1)− v1(w1, y2)

v1(w0, y0)
≥ u1(w1, y1)− u1(w1, y2)

u1(w0, y0)

which, in turn, implies for all (w0, y0) and (w1, y1)

−v12(w1, y1)

v1(w0, y0)
≥ −u12(w1, y1)

u1(w0, y0)
(
v12(w1, y1)

v1(w0, y0)
≥ u12(w1, y1)

u1(w0, y0)
)

Thus, letting

λ ≡ sup{ v1(w, y)

u1(w, y)
: (w, y) ∈ [a, b]2},
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for all (w0, y0) and (w1, y1),

v12(w1, y1)

u12(w1, y1)
≥ λ ≥ v1(w0, y0)

u1(w0, y0)
.

Since

dπu

dε
|ε=0 → 0 and

dπv

dε
|ε=0 → 0 as y2 → y1,

πv ≥ πu for all ε > 0 also implies that for all w0, w1, y0, y1, p,

−
1
2p[v11(w1, y1) + v11(w1, y2)]

1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)

≥ −
1
2p[u11(w1, y1) + u11(w1, y2)]

1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)

or

v11(w1, y1) + v11(w1, y2)

u11(w1, y1) + u11(w1, y2)
≥

1
2p[v1(w1, y1) + v1(w1, y2)] + (1− p)v1(w0, y0)
1
2p[u1(w1, y1) + u1(w1, y2)] + (1− p)u1(w0, y0)

clearly for all (w0, y0) and (w1, y1)

v11(w1, y1)

u11(w1, y1)
≥ λ ≥ v1(w0, y0)

u1(w0, y0)

since if there exist (w′0, y
′
0) and (w′1, y

′
1) such that

v1(w′0, y
′
0)

u1(w′0, y
′
0)
>
v11(w′1, y

′
1)

u11(w′1, y
′
1)

then for p sufficiently small we have a contradiction.

[(iv)⇐⇒(v)]

Defining πu(δ, α, w̃, ε̃, ỹ) and πv(δ, α, w̃, ε̃, ỹ) respectively by the solutions for πu and πv to

Eu(w̃ + (α+ δ)ε̃+ πu, ỹ) = Eu(w̃ + αε̃, ỹ) and Ev(w̃ + (α+ δ)ε̃+ πv, ỹ) = Ev(w̃ + αε̃, ỹ),

we have

∂πu

∂δ
|δ=0 = −Eε̃u1(w̃ + αε̃, ỹ)

Eu1(w̃ + αε̃, ỹ)
and

∂πv

∂δ
|δ=0 = −Eε̃v1(w̃ + αε̃, ỹ)

Ev1(w̃ + αε̃, ỹ)
.

(iv) then implies and is implied by

−Eε̃u1(w̃ + αε̃, ỹ)

Eu1(w̃ + αε̃, ỹ)
≤ −Eε̃v1(w̃ + αε̃, ỹ)

Ev1(w̃ + αε̃, ỹ)

for all α, w̃, ε̃, and ỹ such that E[ε̃|ỹ ≤ y, w̃ = x] ≤ ( ≥ ) E[ε̃|w̃ = w] = 0 for all w and y.
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Since the first-order conditions for α∗u and α∗v are given by,

Ex̃u1(w̃ + α∗ux̃, ỹ) = E(E[x̃] + ε̃)u1(w̃ + α∗ux̃, ỹ) = 0

and

Ex̃v1(w̃ + α∗vx̃, ỹ) = E(E[x̃] + ε̃)v1(w̃ + α∗vx̃, ỹ) = 0

or equivalently

−Eε̃u1(w̃ + α∗ux̃, ỹ)

Eu1(w̃ + α∗ux̃, ỹ)
= E[x̃] = −Eε̃v1(w̃ + α∗vx̃, ỹ)

Ev1(w̃ + α∗vx̃, ỹ)
,

(iv) clearly implies that

−Eε̃v1(w̃ + α∗ux̃, ỹ)

Ev1(w̃ + α∗ux̃, ỹ)
≥ E[x̃].

v11 ≤ 0 then implies α∗v ≤ α∗u.

Conversely, if there exist α′, w̃′, ε̃′, and ỹ′ such that E[ε̃′|w̃′] = 0 and conditional on w̃′, ε̃′ is

non-negative (non-positive) expectation dependent on ỹ′ and

−Eε̃
′u1(w̃′ + α′ε̃′, ỹ′)

Eu1(w̃′ + α′ε̃′, ỹ′)
> −Eε̃

′v1(w̃′ + α′ε̃′, ỹ′)

Ev1(w̃′ + α′ε̃′, ỹ′)

letting

E[x̃′] ≡ −Eε̃
′u1(w̃′ + α′ε̃′, ỹ′)

Eu1(w̃′ + α′ε̃′, ỹ′)
, x̃′ ≡ E[x̃′] + ε̃′, w̃0 ≡ w̃′ − α′E[x̃′],

we have

E[x̃′] = −Eε̃
′u1(w̃0 + α′x̃′, ỹ′)

Eu1(w̃0 + α′x̃′, ỹ′)
= −Eε̃

′u1(w̃′ + α′ε̃′, ỹ′)

Eu1(w̃′ + α′ε̃′, ỹ′)

> −Eε̃
′v1(w̃′ + α′ε̃′, ỹ′)

Ev1(w̃′ + α′ε̃′, ỹ′)
= −Eε̃

′v1(w̃0 + α′x̃′, ỹ′)

Ev1(w̃0 + α′x̃′, ỹ′)
.

Given v11 ≤ 0, this implies α∗u(w̃0, x̃
′, ỹ′) = α′ < α∗v(w̃0, x̃

′, ỹ′). �

Proof of Corollary 4.

[(ii) ⇒ (iii)] From (ii) we have that

∂

∂x
lnu1(x, y) ≥ λ, ∂

∂x
ln(−u11(x, y)) ≤ λ, ∂

∂x
ln(−u12(x, y)) ≤ λ (

∂

∂x
ln(u12(x, y)) ≤ λ )
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which implies that for δ > 0

u1(x+ δ, y) ≥ eλδu1(x, y), u11(x+ δ, y) ≥ eλδu11(x, y), u12(x+ δ, y) ≥ ( ≤ ) eλδu12(x, y).

Letting λ̄(δ) ≡ eλδ and Γ(x, y; δ) ≡ u(x+ δ, y)− λ̄(δ)u(x, y) yields the desired result.

[(iii) ⇒ (ii)]

Γ(x, y; δ) = u(x + δ, y) − λ̄(δ)u(x, y), Γ1(x, y; δ) ≥ 0, Γ11(x, y; δ) ≥ 0, and Γ12(x, y; δ) ≥ ( ≤ ) 0

clearly imply

u1(x+ δ, y) ≥ λ̄(δ)u1(x, y), u11(x+ δ, y) ≥ λ̄(δ)u11(x, y), u12(x+ δ, y) ≥ ( ≤ ) λ̄(δ)δu12(x, y).

For δ being small therefore,

u1(x, y) + u11(x, y)δ ≥ [λ̄(0) + λ̄′(0)δ]u1(x, y)⇐⇒ u11(x, y) ≥ λ̄(0) + λ̄′(0)δ − 1

δ
u1(x, y)

u11(x, y) + u111(x, y)δ ≥ [λ̄(0) + λ̄′(0)δ]u11(x, y)⇐⇒ u111(x, y) ≥ λ̄(0) + λ̄′(0)δ − 1

δ
u11(x, y)

u12(x, y) + u112(x, y)δ ≥ ( ≤ )[λ̄(0) + λ̄′(0)δ]u12(x, y)

⇐⇒ u112(x, y) ≥ ( ≤ )
λ̄(0) + λ̄′(0)δ − 1

δ
u12(x, y)

which implies λ̄(0) = 1 and letting λ = λ̄′(0) yields the desired result. �
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