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Robust a posteriori error estimation for mixed finite element
approximation of linear poroelasticity
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This work is dedicated to the memory of John W. Barrett, who introduced the concept of inf–sup
stability to the corresponding author in the bar at the MAFELAP conference in 1981.

We analyze a posteriori error estimators for locking-free mixed finite element approximation of Biot’s
consolidation model. Three estimators are described. The simplest of these is a conventional residual-
based estimator. We establish bounds relating the estimated and true errors and show that these are
independent of the physical parameters. The other two estimators require the solution of local problems.
These local problem estimators are also shown to be reliable, efficient and robust. Numerical results are
presented that validate the theoretical estimates and illustrate the effectiveness of the estimators in guiding
adaptive solution algorithms. The IFISS and T-IFISS software packages used for the computational
experiments are available online.

Keywords: Biot’s consolidation model, mixed approximation, locking-free, a posteriori analysis, error
estimation, adaptivity.

1. Introduction

Mathematical models of fluid flow and deformation in porous media have wide-ranging applications in
science and engineering. The focus here is on Biot’s consolidation model. This is the starting point for
modelling human organs in computational medicine and for modelling the mechanics of permeable rock
in geophysics. Finite element methods for Biot’s consolidation model have been widely studied over the
last four decades. We refer to Reed (1984); Vermeer & Verruijt (1981); Zienkiewicz & Shiomi (1984)
for the various primal methods, Murad & Loula (1992, 1994); Murad et al. (1996) for mixed methods,
Korsawe & Starke (2005) for Galerkin least squares methods, Chen et al. (2013) for discontinuous
Galerkin methods and Phillips & Wheeler (2007a,b, 2008); Yi (2013) for combination methods. The
key requirement for any numerical approximation strategy is to ensure inf–sup stability, so that spurious
pressure modes associated with volumetric locking are avoided.

The general locking-free formulation of Biot’s consolidation model analysed in Oyarzúa & Ruiz-
Baier (2016) is the starting point for our study. Following their approach, inf–sup stability is assured
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by including an additional scalar unknown into the classical Biot model (the so-called total pressure),
representing the volumetric part of the total stress. A slightly simplified version is the following three-
field model: for a given body force fff and a volumetric source (or sink) g, we seek the displacement
of the elastic medium uuu, the pore pressure of the fluid pF and the total pressure pT = −λ∇ · uuu+α pF
satisfying

−∇ ·σ = fff in Ω , (1.1a)

−∇ ·uuu− 1
λ
(pT −α pF) = 0 in Ω , (1.1b)

1
λ
(α pT −2α

2 pF)+∇ · (κ∇pF) = g in Ω , (1.1c)

σnnn = 000 on Γp, (1.1d)
pF = h on Γp, (1.1e)

uuu = ggg on Γuuu, (1.1f)
(κ∇pF) ·nnn = 0 on Γuuu. (1.1g)

We will assume that the region of interest Ω , is a bounded Lipschitz polygon in R2 (polyhedral in R3)
with a boundary Γ = ∂Ω = Γ̄uuu ∪ Γ̄p and Γuuu ∩Γp = /0. In this formulation, (1.1a) represents the force
equilibrium (conservation of momentum), (1.1b) represents the pressure balance and (1.1c) represents
conservation of mass. As usual, σσσ = 2µεεε(uuu)− pT I, (where I is the 2× 2 matrix) represents the stress
tensor and εεε(uuu) = (∇uuu+(∇uuu)>)/2 is the strain tensor. We also note that the system (1.1) represents
a static problem associated with a single step of an implicit time integrator applied to the underlying
evolution equations.

The model (1.1) is a simplified version of the standard Biot model in that the constrained specific
storage coefficient (denoted by c0 in Oyarzúa & Ruiz-Baier (2016)) has been replaced by the ratio
α2/λ . This replacement is justified by Lee et al. (2017) by consideration of practical situations where
the compressibility of the fluid is close to zero and where µ . λ . In this simplified model, κ = ktκ1 is
a scaled hydraulic conductivity, where kt > 0 is the time step; 0 < α 6 1 is a parameter representing
a scaled Biot–Willis constant and λ , µ represent scaled Lamé parameters with µ ∼ 1 and 16 λ < ∞.
Volumetric locking is associated with practical situations where λ � 1. The stability of the formulation
(1.1) is discussed at length in Lee et al. (2017) along with robust preconditioning strategies for solving
the associated spatially-discretised matrix systems.

The focus in this work is on local (a posteriori) error estimation and adaptive solution algorithms.
Our contribution extends the pioneering work of Ern & Meunier (2009). It also complements the recent
studies of Ahmed et al. (2019, 2020), Li & Zikatanov (2019) and Oyarzúa et al. (2019). Three different
types of error estimation strategies are considered herein. The first is the classical residual-based a
posteriori error estimator and the other two are based on solving local problems. Upper and lower
bounds are established ensuring the robustness and efficiency of the three estimation strategies. The key
point is that the constants in these bounds are independent of the local mesh parameters (hE and hK),
the Lamé parameters (µ and λ ), the Biot–Willis parameter (α) and the scaled hydraulic conductivity
parameter (κ).

The paper is organised as follows: Section 2 reviews the well posedness of the weak formulation cor-
responding to (1.1) and discusses viable approximation spaces for the component fields. The theoretical
basis for the local error estimation strategies is reviewed in Section 3. The most important contribu-
tion is a rigorous verification that the approximation error can be reliably and efficiently estimated by
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solving three uncoupled scalar elliptic (local) problems. Computational results presented in Section 4
validate the theoretical estimates and illustrate the effectiveness of the estimation strategies in guiding
an efficient adaptive refinement algorithm. In the sequel we use the symbols . and & to denote bounds
which are valid up to positive constants that are independent of the parameters hE , hK , µ ,λ , α and κ .

2. Mixed approximation

Let Hs(ω) denote the usual Sobolev spaces with the associated norm ‖ · ‖s,ω for s > 0. In the case
ω = Ω , we use Hs instead of Hs(Ω) and ‖ ·‖s instead of ‖ ·‖s,Ω . We will denote vector-valued Sobolev
spaces by boldface letters HHHs(ω) = HHHs(ω;R2). We let (·, ·) denote the standard L2-inner product, and
we define solution spaces

HHH1
Γuuu :=

{
vvv ∈ HHH1(Ω)

∣∣ vvv|Γuuu = ggg
}
, HHH

1
2 (Γuuu) :=

{
vvv |vvv = uuu|Γuuu ,uuu ∈ HHH1(Ω)

}
,

H1
Γp :=

{
q ∈ H1(Ω)

∣∣ q|Γp = h
}
, H

1
2 (Γp) :=

{
q |q = p|Γp , p ∈ H1(Ω)

}
,

and associated test spaces

HHH1
Γuuu,0

(Ω) :=
{

vvv ∈ HHH1(Ω)
∣∣ vvv|Γuuu = 000

}
, M := L2(Ω),

H1
Γp,0

(Ω) :=
{

q ∈ H1(Ω)
∣∣ q|Γp = 0

}
.

The standard weak formulation of (1.1) is given by: find (uuu, pT , pF) ∈ HHH1
Γuuu
×M×H1

Γp
such that

a(uuu,vvv)+b1(vvv, pT ) = f (vvv) ∀vvv ∈ HHH1
Γuuu,0

, (2.1a)

b1(uuu,qT )− c(pT ,qT )+b2(pF ,qT ) = 0 ∀qT ∈M, (2.1b)

b2(qF , pT )−d(pF ,qF) = g(qF) ∀qF ∈ H1
Γp,0

, (2.1c)

with forms defined so that

a(uuu,vvv) = 2µ

∫
Ω

εεε(uuu) : εεε(vvv), b1(vvv, pT ) =−
∫

Ω

pT ∇ · vvv, f (vvv) =
∫

Ω

fff vvv,

c(pT ,qT ) =
1
λ

∫
Ω

pT qT , b2(pF ,qT ) =
α

λ

∫
Ω

pF qT ,

d(pF ,qF) =
2α

λ

∫
Ω

pF qF +
∫

Ω

κ∇pF ·∇qF , g(qF) =
∫

Ω

gqF .

We will assume that the load function fff ∈ (L2(Ω))2. For convenience, the boundary data ggg ∈ HHH
1
2 (Γuuu)

and h∈H
1
2 (Γp) will be assumed to be a polynomial of sufficiently high degree in each component—this

will ensure that no error is incurred in approximating the essential boundary condition on Γuuu and Γp. We
also assume that κ > 0 is a given, scalar, piecewise constant function on Ω . Specifically, κ is equal to
the constant κK on each K ∈ Th, where {Th} denotes a family of shape regular rectangular/triangular
meshes of Ω into rectangles/triangles K of diameter hK . Moreover, following convention, we define the
bilinear form

B(uuu, pT , pF ;vvv,qT ,qF) = a(uuu,vvv)+b1(vvv, pT )+b1(uuu,qT )− c(pT ,qT )

+b2(pF ,qT )+b2(pT ,qF)−d(pF ,qF), (2.2)
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so as to express the formulation (2.1) in a compact form: find (uuu, pT , pF) ∈ HHH1
Γuuu
×M×H1

Γp
such that

B(uuu, pT , pF ;vvv,qT ,qF) = f (vvv)+g(qF), ∀(vvv,qT ,qF) ∈ HHH1
Γuuu,0
×M×H1

Γp,0
. (2.3)

The error analysis will be developed in the parameter-dependent (energy) norm

|||(uuu, pT , pF)|||2 = 2µ ‖∇uuu‖2
0 +
( 1

2µ
+

1
λ

)
‖pT‖2

0 +
α2

λ
‖pF‖2

0 +‖κ1/2
∇pF‖2

0. (2.4)

We will use the following estimates (Ainsworth & Oden, 2000; Boffi et al., 2013):

a(vvv,vvv)>CK2µ ‖∇vvv‖2
0 ∀vvv ∈ HHH1

Γuuu,0
, (2.5)

inf
06=q∈M

sup
06=vvv∈HHH1

Γuuu,0

|b1(vvv,q)|
‖∇vvv‖0‖q‖0

>CΩ , (2.6)

a(uuu,vvv)6 2µ ‖∇uuu‖0 ‖∇vvv‖0 ∀uuu,vvv ∈ HHH1
Γuuu,0

. (2.7)

The following theorem establishes the stability of the three-field formulation (2.1).

THEOREM 2.1 For any (uuu, pT , pF) ∈ HHH1
Γ uuu,0×M×H1

Γp,0
, there exists a triplet of functions (vvv,qT ,qF) ∈

HHH1
Γuuu,0
×M×H1

Γp,0
, with |||(vvv,qT ,qF)|||. |||(uuu, pT , pF)|||, satisfying

B(uuu, pT , pF ;vvv,qT ,qF)& |||(uuu, pT , pF)|||2.

Proof. The structure of the proof is standard. We include it for completeness and also to keep track of
the constants. First, since pT ∈M = L2(Ω), a consequence of the condition (2.6) is that there exists a
function vvv ∈ HHH1

Γuuu,0
satisfying

(pT ,∇ · vvv)>CΩ (2µ)−1‖pT‖2
0, (2µ)1/2‖∇vvv‖0 6 (2µ)−1/2‖pT‖0,

where CΩ > 0 is the inf–sup constant. Thus, given that uuu ∈ HHH1
Γuuu,0

the bound (2.7) ensures that

B(uuu, pT , pF ;−vvv,0,0)>CΩ (2µ)−1‖pT‖2
0− (2µ)1/2‖∇uuu‖0 (2µ)1/2‖∇vvv‖0,

>CΩ (2µ)−1‖pT‖2
0− (2µ)1/2‖∇uuu‖0 (2µ)−1/2‖pT‖0,

>

(
CΩ −

1
ε

)
(2µ)−1‖pT‖2

0− ε(2µ)‖∇uuu‖2
0, (2.8)

for all ε > 0. The coercivity bound (2.5) then leads to the following estimate

B(uuu, pT , pF ;uuu,−pT ,−pF)>CK2µ ‖∇uuu‖2
0 +

1
λ
‖pT‖2

0 +
2α2

λ
‖pF‖2

0 +‖κ∇pF‖2
0−2

α

λ
(pT , pF),

(2.9)

where CK is the Korn constant.
Next, looking at the problematic product term, the Cauchy–Schwarz inequality and the arithmetic–

geometric mean inequality imply that

2
α

λ
(pT , pF)6

1
ε1λ
‖pT‖2

0 + ε1
α2

λ
‖pF‖2

0, (2.10)
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for some ε1 > 0. Introducing a parameter δ and combining (2.8), (2.9) and (2.10) then gives

B(uuu, pT , pF ;uuu−δvvv,−pT ,−pF) = B(uuu, pT , pF ;uuu,−pT ,−pF)+δB(uuu, pT , pF ;−vvv,0,0)

>CK2µ ‖∇uuu‖2
0 +

1− ε1

λ
‖pT‖2

0 +
(

2− 1
ε1

)
α2

λ
‖pF‖2

0

+‖κ
1
2 ∇pF‖2

0 +δ

(
CΩ−

1
ε

)
1

2µ
‖pT‖2

0−δε (2µ)‖∇uuu‖2
0,

> (CK−δε)2µ ‖∇uuu‖2
0 +
(

2− 1
ε1

)
α2

λ
‖pF‖2

0

+‖κ
1
2 ∇pF‖2

0 +

(
1− ε1

λ
+δ

(
CΩ −

1
ε

)
(2µ)−1

)
‖pT‖2

0.

Finally, the specific choice of parameters ε = 2/CΩ , δ =CΩCK/4, ε1 = 3/4 together with vvv := uuu−δvvv,
qT :=−pT and qF =−pF , leads to the desired lower bound

B(uuu, pT , pF ;uuu−δvvv,−pT ,−pF)>min

{
1
4
,
CK

2
,
CKC2

Ω

8

}
|||(uuu, pT , pF)|||2. (2.11)

To establish the upper bound we note that

2µ ‖∇uuu−δ∇vvv‖2
0 6 2 ·2µ ‖∇uuu‖2

0 +2δ
2 ·2µ ‖∇vvv‖2

0

6 2(2µ)‖∇uuu‖2
0 +2δ

2 · (2µ)−1 ‖pT‖2
0,

which gives the estimate

|||(uuu−δvvv,−pT ,−pF)|||2 = 2µ ‖∇uuu−δ∇vvv‖2
0 +(2µ)−1‖pT‖2

0 +λ
−1‖pT‖2

0

+
α2

λ
‖pF‖2

0 +‖κ1/2
∇pF‖2

0,

6

(
2+

C2
KC2

Ω

8

)
|||(uuu, pT , pF)|||2. (2.12)

Note that the constants in (2.11) and (2.12) are independent of the Lamé coefficients, the modified
hydraulic conductivity and the Biot–Willis parameter. �

To construct a finite element approximation of (2.1), we recall that {Th} denotes a family of shape
regular rectangular/triangular meshes of Ω into rectangles/triangles K of diameter hK . We let Eh be the
the set of all edges of Th, hE be the length of the edge E ∈ Eh and we define finite-dimensional subsets
XXXh

uuu ⊂ HHH1
Γuuu

, XXXh
uuu,0 ⊂ HHH1

Γuuu,,,000
, Mh ⊂M, Xh

p ⊂ H1
Γp

and Xh
p,0 ⊂ H1

Γp,0
. The discrete weak formulation is then

given by: find (uuuh, pT,h, pF,h) ∈ XXXh
uuu×Mh×Xh

p such that

a(uuuh,vvv)+b1(vvv, pT,h) = f (vvv) ∀vvv ∈ XXXh
uuu,0, (2.13a)

b1(uuuh,qT )− c(pT,h,qT )+b2(pF,h,qT ) = 0 ∀qT ∈Mh, (2.13b)

b2(qF , pT,h)−d(pF,h,qF) = g(qF) ∀qF ∈ Xh
p,0. (2.13c)
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Analogously to (2.3), the discrete formulation can also be written as: find (uuuh, pT,h, pF,h)∈XXXh
uuu×Mh×Xh

p
such that

B(uuuh, pT,h, pF,h;vvv,qT ,qF) = f (vvv)+g(pF) ∀(vvv,qT ,qF) ∈ XXXh
uuu,0×Mh×Xh

p,0. (2.14)

The solution spaces XXXh
uuu and Xh

p are defined as follows:

XXXh
uuu =

{
uuu
∣∣∣uuu =

nu

∑
j=1

a jφφφ j +

nu+n∂u

∑
j=nu+1

a jφφφ j

}
, Xh

p =

{
p
∣∣∣p =

np

∑
j=1

b jφ j +

np+n∂p

∑
j=np+1

b jφ j

}

where a j,b j ∈R, {φφφ j}
nu
j=1 are vector valued basis functions that span XXXh

uuu,0 and {φ j}
np
j=1 are scalar valued

basis functions that span Xh
p,0. The additional coefficients {a j}

nu+n∂u
j=nu+1 and {b j}

np+n∂p
j=np+1 are associated

with Lagrange interpolation of the boundary data ggg on Γuuu and the boundary data h on Γp, respectively.
The finite-dimensional spaces XXXh

uuu,0, Mh and Xh
p,0 are related to {Th}.

The stability of the discrete weak formulation (2.14) follows directly from Theorem 2.1 if and only if
the inf–sup condition (2.6) holds uniformly for the spaces XXXh

uuu,0 and Mh: that is, for mixed approximation
methods that satisfy

inf
06=qh∈Mh

sup
06=vvvh∈XXXh

uuu,0

|b1(vvvh,qh)|
‖∇vvvh‖0‖qh‖0

> γ (2.15)

where γ is bounded away from zero independently of h.
While the analysis in the next section is applicable to any inf–sup stable approximation pair, the

final sections of the paper will focus on the lowest-order conforming Taylor–Hood methods1:

• QQQ2–Q1–Q2 (continuous biquadratic approximation of the two components of the displacement
together with a continuous bilinear approximation of the total pressure field and a continuous
biquadratic approximation of the fluid pressure) on a grid of rectangular elements.

• PPP2–P1–P2 (continuous quadratic approximation of the two components of the displacement to-
gether with a continuous linear approximation of the total pressure field and a continuous quadratic
approximation of the fluid pressure) on a mesh of triangular elements.

REMARK 2.1 Stabilized lowest-order finite element approximation for a conventional three-field poroe-
lasticity model involving displacement, fluid flux and fluid pressure has been studied by Berger et al.
(2015) and in recent work by Frigo et al. (2020). In our formulation, in place of QQQ2–Q1–Q2/ PPP2–P1–P2,
we could use the lowest-order finite element QQQ1–Q0–Q1/PPP1–P0–P1 approximation triplet. Then to sta-
bilize the finite element approximations of the displacement and total pressure, we simply need to add
−(2µ)−1(JpT,hK,JqT K) in (2.13b) within macroelements (see Khan et al. (2018); Kechkar & Silvester
(1992) for details).

1These strategies are also inf–sup stable in a three-dimensional setting.
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3. A posteriori error estimation

3.1 The residual error estimator

We start by defining some important parameters for the analysis

ρ1,K = hK(2µ)−
1
2 /2, ρ1,E = hE(2µ)−1/2, ρd = min{1/(λ−1 +(2µ)−1),α−2

λ},

ρ2,K = min{hKκ
−1/2/2,λ 1/2

α
−1}, ρ2,E = hEκ

−1
E /2, (3.1)

with κE = max{κK ,κK′}, where E is an interior edge that is shared by two elements K and K′, and
κE = κK , if E ∈ ∂K ∩ ∂Ω . Next, we define a local error indicator ηK for each element K ∈ Th. The
square of this local error indicator is the sum of terms, η2

K = η2
RK

+η2
EK

+η2
JK

, with

η
2
RK

= ρ
2
1,K‖RRRK‖2

0,K +ρ
2
2,K‖RK‖2

0,K , η
2
JK

= ρd‖RK‖2
0,K , (3.2)

η
2
EK

= ∑
E∈∂K

ρ1,E‖RRRE‖2
0,E + ∑

E∈∂K
ρ2,E‖RE‖2

0,E , (3.3)

where the three element residuals are given by

RRRK =
{

fff h +∇ · (2µεεε(uuuh))−∇pT,h
}∣∣

K , (3.4)

RK =

{
∇ ·uuuh +

1
λ

pT,h−
α

λ
pF,h

}∣∣∣
K
, (3.5)

RK =
{

gh−
α

λ
(pT,h−2α pF,h)−∇ · (κ∇pF,h)

}∣∣∣
K

(3.6)

and the edge residual is associated with the normal stress jump, so that

RRRE =


1
2J(pT,hIII−2µεεε(uuuh))nnnKE E ∈ Eh \Γ ,
((pT,hIII−2µεεε(uuuh))nnn)E E ∈ Eh∩Γp,
0 E ∈ Eh∩Γuuu.

(3.7)

RE =


1
2J(κ∇pF,h) ·nnnKE E ∈ Eh \Γ ,
((κ∇pF,h) ·nnn)E E ∈ Eh∩Γuuu,
0 E ∈ Eh∩Γp.

(3.8)

Let fff h and gh denote piecewise polynomial approximations of fff and g, respectively, that are possibly
discontinuous across element edges. We associate these functions with the data oscillation term

Θ
2
K = ρ

2
1,K‖ fff − fff h‖2

0,K +ρ
2
2,K‖g−gh‖2

0,K . (3.9)

The residual error estimator and data oscillation error are then defined as follows:

η =

(
∑

K∈Th

η
2
K

)1/2

and Θ =

(
∑

K∈Th

Θ
2
K

)1/2

. (3.10)

REMARK 3.1 Looking at the definition (3.1), and recalling that the conductivity κ has been scaled by
the time step kt , we see that there are two terms ρ2,K and ρ2,E that potentially blow up in the limit kt→ 0.
The residual estimator is robust in the small time step limit nevertheless: first, limkt→0 ρ2,K = λ 1/2α−1

so the first contribution does not blow up. Second, while ρ2,E can blow up, the term ρ2,E‖RE‖2
0,E =Ckt

so the edge estimator ηEK remains bounded when kt → 0.
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The reliability and efficiency of the residual estimator may be readily established using standard
arguments involving quasi-interpolation estimates (Clément, 1975). A formal statement is given in the
next two theorems. We note that these estimates hold for any conforming mixed approximation: the
inf–sup stability bound (2.15) is not used in the proofs.2

THEOREM 3.1 (Reliability estimate) Suppose that (uuu, pT , pF) is the weak solution satisfying (2.1) and
that (uuuh, pT,h, pF,h) ∈ XXXh

uuu×Mh×Xh
p is a conforming mixed approximation. Defining η and Θ to be the

error estimator and the data oscillation term in (3.10), we have an upper bound on the approximation
error,

|||(uuu−uuuh, pT − pT,h, pF − pF,h)|||. η +Θ . (3.11)

Proof. See Appendix A. �

THEOREM 3.2 (Efficiency estimate) Suppose that (uuu, pT , pF) is the weak solution satisfying (2.1) and
that (uuuh, pT,h, pF,h) ∈ XXXh

uuu×Mh×Xh
p is a conforming mixed approximation. Defining η and Θ to be

the error estimator and the data oscillation term in (3.10), we have a lower bound on the approximation
error,

η . |||(uuu−uuuh, pT − pT,h, pF − pF,h)|||+Θ . (3.12)

Proof. See Appendix A. �

The reliability and efficiency of the simple residual error estimator η provides the motivation for
the introduction of equivalent local problem estimators that give a more accurate measurement of the
actual error. The actual improvement in accuracy is quantified in the numerical results presented later.
Two alternative local problem estimators will be considered here. Working in the framework established
by Verfürth (2013), these local estimators can be shown to be robust and efficient with respect to the
underlying problem parameters.

3.2 Energy-based local error estimator

The Biot problem error estimator

ηB =
√

∑
K∈Th

η2
B,K

is assembled from estimates of element contributions to the energy error, given by

η
2
B,K = |||(eeeB,K ,ε

T
B,K ,ε

F
B,K)|||2K , (3.13)

where

|||(eeeB,K ,ε
T
B,K ,ε

F
B,K)|||2K = 2µ‖εεε(eeeB,K)‖2

0,K +(2µ)−1‖εT
B,K‖2

0,K +λ
−1‖εT

B,K‖2
0,K

+α
2(λ )−1‖εF

B,K‖2
0,K +‖κ1/2

∇ε
F
B,K‖2

0,K . (3.14)

To compute the local contributions, we solve the Biot’s consolidation model problem on each element

2While the error estimation is precise in the case of an unstable mixed approximation, if the inf–sup constant in (2.15) is mesh
dependent then the quality of the approximation is likely to be compromised when one is close to the incompressible limit.
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FIG. 1. QQQ3(K) interpolation nodes for an interior element (left), edge element (middle) and a corner element (right).

• •

• • • •

• • • •

• •

• • • •

• • • •

• •

• • •

• • •

• •

with selectively reduced correction spaces, see Liao & Silvester (2012), QK = QQQ3(K)×Q2(K)×Q3(K)
for QQQ2–Q1–Q2 mixed approximation (or QK = PPP3(K)×P2(K)×P3(K) for PPP2–P1–P2 mixed approxi-
mation): find (eeeB,K ,ε

T
B,K ,ε

F
B,K) ∈QK , such that

2µ(εεε(eeeB,K),εεε(vvv))K− (εB,K ,∇ · vvv)K = III((((v)), ∀vvv ∈ QQQ3(K) (3.15a)

−(∇ · eeeB,K ,qT )K−
1
λ
(εT

B,K ,qT )K +
α

λ
(εF

B,K ,qT )K =−(RK ,qT )K , ∀qT ∈ Q2(K). (3.15b)

α

λ
(εT

B,K ,qF)K−
2α2

λ
(εF

B,K ,qF)K− (κ∇ε
F
B,K ,∇qF) = I(qF), ∀qF ∈ Q3(K), (3.15c)

where
III(vvv) = (RRRK ,vvv)K− ∑

E∈∂K
〈RRRE ,vvv〉E , and I(qF) = (RK ,qF)K− ∑

E∈∂K
〈RE ,qF〉E .

The following inf–sup estimate ensures local stability.

LEMMA 3.1 (local inf–sup stability) Suppose that the space QQQ3(K) is defined with the degrees of free-
dom shown in Figure 1 then there exists a positive constant γL, satisfying

min
06=qh∈QQQ2(K)

max
06=vvvh∈QQQ3(K)

|(qh,∇ · vvvh)|
|vvvh|1‖qh‖0

> γL (3.16)

for all K ∈Th.

Proof. Adapting the strategy introduced in Verfürth (1989, Lemma 4.1), the result can be established
by a simple eigenvalue computation on the reference element, see Liao & Silvester (2012). �

The condition (3.16) is a sufficient condition for the following local stability estimate.

LEMMA 3.2 (local B stability) For all (www,s, t) ∈QK , we have that

max
(vvv,qT ,qF )∈QK

B(www,s, t;vvv,qT ,qF)

|||(vvv,qT ,qF)|||K
& |||(www,s, t)|||K . (3.17)

Upper and lower bounds of the local problem estimator ηB,K are identified in the next theorem.

THEOREM 3.3 In the case of QK mixed approximation of the Biot’s consolidation problem (2.1), the
local problem estimator ηB,K defined by (3.13)–(3.15) is equivalent to the local residual error estimator
ηK associated with (3.10), that is

ηB,K . ηK . ηB,K , ∀K ∈Th. (3.18)
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Proof. Using Lemma 3.2, we have

ηB,K = |||(eeeB,K ,ε
T
B,K ,ε

F
B,K)|||K

. max
(vvv,qT ,qF )∈QK

B((eeeB,K ,ε
T
B,K ,ε

F
B,K);(vvv,qT ,qF))

|||(vvv,qT ,qF)|||K
,

. max
(vvv,qT ,qF )∈QK

III(vvv)− (qT ,RK)+ I(qF)

|||(vvv,qT ,qF)|||K
.

Applying the Cauchy–Schwarz inequality and a trace theorem leads to

ηB,K = |||(eeeB,K ,ε
T
B,K ,ε

F
B,K)|||K . ηK .

We will establish the upper bound by modifying the bubble-function technique that is used to establish
the efficiency of the residual estimator in Appendix A. First we define www|K = ρ2

1,KRRRK χK . From (A.5)
and (3.15a) we conclude that

ρ
2
1,K‖RRRK‖2

0,K . (RRRK ,ρ
2
K χKRRRK)K

= (RRRK ,www)K = 2µ(εεε(eeeB,K),εεε(wwwK))K− (εB,K ,∇ ·wwwK)K . (3.19)

Using the Cauchy–Schwarz inequality in (3.19) gives

ρ
2
1,K‖RRRK‖2

0,K . (2µ‖εεε(eeeB,K)‖2
0,K +(2µ)−1‖εB,K‖2

0,K)
1/2(2µ)1/2|wwwK |1,K .

Also, using (A.5), we have

ρ
2
1,K‖RRRK‖2

0,K . (2µ‖εεε(eeeB,K)‖2
0,K +(2µ)−1|εB,K |20,K)1/2

ηRK ,

which gives

ρ
2
1,K‖RRRK‖2

0,K . (2µ‖εεε(eeeB,K)‖2
0,K +(2µ)−1|εB,K |20,K). (3.20)

Introducing w|K = ρ2
2,KRK χK and using (A.5) and (3.15c) then gives

ρ
2
2,K‖RK‖2

0,K . (RK ,ρ
2
2,K χKRK)K

= (RK ,w)K

=
α

λ
(εT

B,K ,w)K−
2α2

λ
(εF

B,K ,w)K− (κ∇ε
F
B,K ,∇w). (3.21)

Applying the Cauchy-Schwarz inequality in (3.21) and using (A.5) implies

ρ
2
2,K‖RK‖2

0,K . (λ−1‖εT
B,K‖2

0,K +α
2
λ
−1‖εF

B,K‖2
0,K +‖κ

1
2 ∇ε

F
B,K‖2

0,K). (3.22)

Next, we introduce

Λ = ρEJpT,hI−2µεεε(uuuh)KχE ,

where χE is an edge bubble function. Then, by (3.15a), it holds

ρ
2
1,E‖RRRE‖2

0,E . (JpT,hI−2µεεε(uuuh)K,Λ)E

=−2µ(εεε(eeeB,K),εεε(Λ))K +(εB,K ,∇ ·Λ)K +(RRRK ,Λ)K . (3.23)
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Applying the Cauchy–Schwarz inequality in (3.23) and using (A.10) and (3.20) implies

ρ
2
1,E‖RRRE‖2

0,E . (2µ‖εεε(eeeB,K)‖2
0,K +(2µ)−1‖εB,K‖2

0,K)
1/2(ρ2

1,E‖RRRE‖2
0,E)

1/2,

which gives the bound

ρ
2
1,E‖RRRE‖2

0,E . (2µ‖εεε(eeeB,K)‖2
0,K +(2µ)−1‖εB,K‖2

0,K). (3.24)

Next, we introduce

Λ̃ = ρ2,EJ(κ∇pF,h) ·nnnKχE ,

where χE is an edge bubble function. Then, by (3.15a), it holds, in particular,

ρ
2
2,E‖RE‖2

0,E . (Jκ∇pF,h) ·nnnK,Λ̃)E

=−α

λ
(εT

B,K ,Λ̃)K +
2α2

λ
(εF

B,K ,Λ̃)K +(κ∇ε
F
B,K ,∇Λ̃)+(RK ,Λ̃)K . (3.25)

Applying the Cauchy-Schwarz inequality in (3.25) and using (A.10) and (3.20) implies

ρ
2
2,E‖RE‖2

0,E . (λ−1‖εT
B,K‖2

0,K +α
2
λ
−1‖εF

B,K‖2
0,K +‖κ

1
2 ∇ε

F
B,K‖2

0,K). (3.26)

Since RK = ∇ ·uuuh +
1
λ

pT,h− α

λ
pF,h ∈ Q2(K), then from (3.15b), it holds, in particular,

(∇ · eeeB,K ,RK)K +
1
λ
(εT

B,K ,RK)K−
α

λ
(εF

B,K ,RK)K = (RK ,RK)K ,

‖RK‖0,K . ‖∇ · eeeB,K +
1
λ

ε
T
B,K−

α

λ
ε

F
B,K‖0,K .

Finally, using the argument in Lemma A.4 gives

η
2
JK

= ρd‖RK‖2
0,K . ρd‖∇ · eeeB,K +

1
λ

ε
T
B,K−

α

λ
ε

F
B,K‖2

0,K

. ρd‖∇ · eeeB,K‖2
0,K +

ρd

λ 2 ‖ε
T
B,K‖2

0,K +
ρdα2

λ 2 ‖ε
F
B,K‖2

0,K

. 2µ‖ε(eeeB,K)‖2
0,K +

1
λ
‖εT

B,K‖2
0,K +

α2

λ
‖εF

B,K‖2
0,K . η

2
B,K . (3.27)

Combining (3.20), (3.22), (3.24), (3.26) and (3.27) gives the desired upper bound. �

REMARK 3.2 If we were to employ the stabilized QQQ1–Q0–Q1/PPP1–P0–P1 triplet instead of Taylor–Hood
approximation then suitable correction spaces would be given by Q=QQQ2(K)×Q1(K)×Q2(K)/PPP2(K)×
P1(K)×P2(K).

3.3 Poisson problem local error estimator

The final estimator that we consider simplifies the local problem in (3.15) in a clever way. It also
circumvents the issue of finding inf–sup stable correction spaces. Recalling the definition of ρd from
(3.1), the Poisson problem estimator

ηP =
√

∑
K∈Th

η2
P,K
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is assembled from local contributions given by

η
2
P,K = 2µ‖∇eeeP,K‖2

0,K +ρ
−1
d ‖ε

T
P,K‖2

0,K +α
2(λ )−1‖εF

P,K‖2
0,K +‖κ1/2

∇ε
F
P,K‖2

0,K , (3.28)

where (eeeP,K ,ε
T
P,K ,ε

F
P,K) ∈QK solve the following set of decoupled problems on each element:

2µ (∇eeeP,K ,∇vvv)K = III(vvv), ∀vvv ∈ QQQ3(K), (3.29a)

ρ
−1
d (εT

P,K ,qT )K = (RK ,qT )K , ∀q ∈ Q2(K), (3.29b)

−2α2

λ
(εF

P,K ,qF)K− (κ∇ε
F
P,K ,∇qF) = I(qF), ∀qF ∈ Q3(K). (3.29c)

In compact form, we can write

BP,K((eeeP,K ,ε
T
P,K ,ε

F
P,K);(vvv,qT ,qF)) = III(vvv)− (RK ,qT )K + I(qF),

where

BP,K((eeeP,K ,ε
T
P,K ,ε

F
P,K);(vvv,qT ,qF)) = 2µ (∇eeeP,K ,∇vvv)K−

1
ρd

(εT
P,K ,qT )K

− 2α2

λ
(εF

P,K ,qF)K− (κ∇ε
F
P,K ,∇qF),

and
III(vvv) = (RRRK ,vvv)K− ∑

E∈∂K
〈RRRE ,vvv〉E , and I(qF) = (RK ,qF)K− ∑

E∈∂K
〈RE ,qF〉E .

The uncoupled formulation (3.29) is attractive from a computational perspective. First, since εT
P,K ∈

Q2(K) it immediately holds that εT
P,K = ρdRK = ρd(∇ ·uuuh +λ−1 pT,h−αλ−1 pF,h) so (3.28) simplifies

to the following explicit calculation

η
2
P,K = 2µ ‖∇eeeP,K‖2

0,K +ρd‖∇ ·uuuh +λ
−1 pT,h−αλ

−1 pF,h‖2
0,K +α

2
λ
−1‖εF

P,K‖2
0,K +‖κ1/2

∇ε
F
P,K‖2

0,K .

A second attractive feature is that the stability of the local problem (3.29) is guaranteed—there is no
need to construct compatible correction spaces. In next theorem, we derive an equivalence result for the
Poisson problem estimator.

THEOREM 3.4 The local problem estimator ηP,K defined by (3.28) and (3.29) is equivalent to the energy-
based local error estimator ηB,K defined by (3.13),

ηP,K . ηB,K . ηP,K , ∀K ∈Th. (3.30)

Proof. By (3.15) and (3.29), for any K ∈Th and (vvv,qT ,qF) ∈QK , we have

2µ (∇eeeP,K ,∇vvv)K−ρ
−1
d (εT

P,K ,qT )K−
2α2

λ
(εF

P,K ,qF)K− (κ∇ε
F
P,K ,∇qF)

= (RRRK vvv)− ∑
E∈∂K

(RRRE ,vvv)E − (RK ,qT )+(RK ,qF)K− ∑
E∈∂K
〈RE ,qF〉E

= 2µ(εεε(eeeB,K),εεε(vvv))K− (εB,K ,∇ · vvv)K− (∇ · eeeB,K ,qT )−
1
λ
(εB,K ,qT )

+
α

λ
(εT

B,K ,qF)K−
2α2

λ
(εF

B,K ,qF)K− (κ∇ε
F
B,K ,∇qF)

= B((eeeB,K ,ε
T
B,K ,ε

F
B,K);(vvv,qT ,qF)). (3.31)
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Using the local B stability bound from Lemma 3.2 gives

|||(eeeB,K ,ε
T
B,K ,ε

F
B,K)|||K . max

(vvv,qT ,qF )∈QK

B((eeeB,K ,ε
T
B,K ,ε

F
B,K);(vvv,qT ,qF))

|||(vvv,qT ,qF)|||

= max
(vvv,qT ,qF )∈QK

BP,K((eeeP,K ,ε
T
P,K ,ε

F
P,K);(vvv,qT ,qF))

|||(vvv,qT ,qF)|||K
.

Applying the Cauchy–Schwarz inequality implies that

|||(eeeB,K ,ε
T
B,K ,ε

F
B,K)|||K . ηP,K . (3.32)

To establish the upper bound, we take vvv ∈ QQQ3(K). Using (3.15a) and (3.29a) then leads to

2µ(∇eeeP,K ,∇vvv)K = (RRRK vvv)− ∑
E∈∂K

(RRRE ,vvv)E

= 2µ(εεε(eeeB,K),εεε(vvv))K− (εB,K ,∇ · vvv)K . (3.33)

From (3.15b) and (3.29b), for any qT ∈ Q2(K), it holds

ρ
−1
d (εT

P,K ,qT )K = (RK ,qT )K

= (∇ · eeeB,K ,qT )K +
1
λ
(εT

B,K ,qT )K−
α

λ
(εT

B,K ,qF)K . (3.34)

By (3.15c) and (3.29c), for any qF ∈ Q3(K) we have

−2α2

λ
(εF

P,K ,qF)K− (κ∇ε
F
P,K ,∇qF) = I(qF)

=
α

λ
(εT

B,K ,qF)K−
2α2

λ
(εF

B,K ,qF)K− (κ∇ε
F
B,K ,∇qF). (3.35)

Using (3.33) gives

(2µ)1/2‖∇eeeP,K‖0,K = max
v∈QQQ3(K)

2µ(∇eeeP,K ,∇vvv)
(2µ)1/2‖∇vvv‖0,K

= max
v∈QQQ3(K)

2µ(εεε(eeeB,K),εεε(vvv))K− (εB,K ,∇ · vvv)K

(2µ)1/2‖εεε(vvv)‖0,K
. (3.36)

Applying the Cauchy–Schwarz inequality leads to

(2µ)1/2‖∇eeeP,K‖0,K . (2µ)1/2‖εεε(eeeB,K)‖0,K +(2µ)−1/2‖εT
B,K‖0,K . (3.37)
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Using (3.34), we have

ρ
−1/2
d ‖εT

P,K‖0,K = max
q∈Q2(K)

ρ
−1
d (εT

P,K ,q)

ρ
−1/2
d ‖q‖0,K

= max
q∈Q2(K)

(∇ · eeeB,K ,q)K + 1
λ
(εT

B,K ,q)K− α

λ
(εF

B,K ,q)K

ρ
−1/2
d ‖q‖0,K

6 max
q∈Q2(K)

ρ
1/2
d ‖∇ · eeeB,K + 1

λ
εT
B,K−

α

λ
εF
B,K‖0,Kρ

−1/2
d ‖q‖0,K

ρ
−1/2
d ‖q‖0,K

6 ρ
1/2
d ‖∇ · eeeB,K +

1
λ

εB,K−
α

λ
ε

F
B,K‖0,K . (3.38)

By (3.27), it holds

ρ
−1
d ‖ε

T
P,K‖2

0,K 6 ρd‖∇ · eeeB,K +
1
λ

εB,K−
α

λ
ε

F
B,K‖2

0,K

. (2µ)‖εεε(eeeB,K)‖2
0,K +(λ )−1‖εT

B,K‖2
0,K +α

2(λ )−1‖εF
B,K‖2

0,K . (3.39)

Similarly, it is easily shown that

α2

λ
‖εF

P,K‖2
0,K +‖κ1/2

ε
F
P,K‖2

0,K .
1
λ
‖εT

B,K‖2
0,K +

α2

λ
‖εF

B,K‖2
0,K +‖κ1/2

∇ε
F
B,K‖2

0,K . (3.40)

Combining (3.37), (3.39) and (3.40) gives the required upper bound. �

REMARK 3.3 All the constants that arise in the proof of Theorem 3.3 and Theorem 3.4 are independent
of hE , hK , µ , λ , α and κ . This confirms our assertion that the proposed local error estimators ηB,K and
ηP,K are fully robust.

4. Computational results

Some numerical results are presented in this section. These support the theoretical results presented
previously. More specifically, we discuss computational results for the residual estimator η defined in
Section 3.1 and the Poisson problem local estimator ηP defined in Section 3.3. In our first test problem
a three-field approximation is computed with QQQ2–Q1–Q2 square elements using functionality from the
IFISS toolbox3 (see Elman et al. (2014) for a review). Note that, for a uniform mesh with n degrees
of freedom, we have that O(n−r)≈ O(h2r), where r > 0. In our second test problem we use PPP2–P1–P2
triangular elements. We start from an initial mesh T0 and then run the iterative refinement loop

Solve→ Estimate→Mark→ Refine

to generate a (nested) sequence of regular meshes {T`} using functionality taken from the T-IFISS
toolbox4; see Bespalov et al. (2020) for details. The ingredients are as follows.

3IFISS version 3.6 runs under MATLAB or Octave. It can be downloaded from http://www.manchester.ac.uk/
ifiss/download.html and is compatible with Windows, Linux and MacOS computers.

4 The software can be downloaded from http://www.manchester.ac.uk/ifiss/tifiss.html.
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Solve : solve the problem (2.14) for each T` to generate the finite element approximation (uuuh, pT,h, pF,h).

Estimate: compute η` = ∑K∈Th
ηK or η` = ∑K∈Th

ηP,K .

Mark : determine a minimal subset M` of marked triangles such that ∑K∈M`
η2

K > θη2
` (and similarly

with ηP,K), where θ = 0.5 is the bulk parameter (Dörfler, 1996).

Refine : use the red-green-blue strategy (Verfürth, 2013) for mesh refinement.5

4.1 Analytic solution

The first problem is posed on a square domain Ω = (0,1)× (0,1) with a zero essential boundary condi-
tion on ∂Ω = Γ . The exact displacement vector uuu = (u1,u2)

> and the exact fluid pressure pF are given
by the following expressions

uuu =

{
u1 = π cos(πy)sin2(πx)sin(πy)
u2 =−π cos(πx)sin2(πy)sin(πx)

pF = x(1− x2)y(1− y2). (4.1)

FIG. 2. Energy error |||e||| and estimated energy errors η and ηP computed using QQQ2–Q1–Q2 approximation for the first test
problem with λ = 1 (left) and λ = 104 (right).

103 104

10-1

100

101

103 104

10-1

100

101

The convergence profile of the energy norm of the exact error e = |||(uuu−uuuh, pT − pT,h, pF − pF,h)|||
and the estimates obtained with the alternative error estimation strategies are shown in Figure 2. In this
experiment, µ , α , and κ are fixed and we choose two representative values of λ . In either case, we
observe that the energy norm error decays to zero at the optimal rate O(n−1

do f ) for a smooth solution.
The fact that the convergence plots of the estimators η and ηP are parallel to the convergence plot of the
exact error provides confirmation that both estimators are efficient and reliable. The plots also show that
local problem estimator ηP is a more accurate estimate of the error than η . This point is reinforced by
the computed effectivity indices tabulated in Table 1. These numbers confirm that the effectivity indices

5 The refinement strategy built into T-IFISS version 1.2 is a variant of the newest vertex bisection (NVB) method.
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of the Poisson problem local estimator are close to unity for a range of different values of α and λ .
Other computations (not reported here) show that the effectivity of both estimators is also completely
insensitive to the value of κ (we tested κ = 1 and κ = 10−10). This provides confirmation that the
estimators are robust with respect to all the underlying physical parameters.

4.2 Singular solution

A more realistic test of the error estimation strategies arises with a mixed boundary condition. To
illustrate this, let us consider the square domain Ω = (−1,1)× (−1,1) with Γuuu = {{−1}× [−1,1)}∪
{[−1,1)×{−1}} and Γp = {{1}× [−1,1]}∪{[−1,1]×{1}}. The parameters are fixed so that µ = 1,
α = 0.01 and κ = 10−10. We then solve the problem with fff = (1,1)>, g = 1, ggg = 000 and h = 0. Since
the solution does not even have H2 regularity—there are strong singularities at the two corners where
the boundary condition changes—we anticipate that adaptive refinement will be needed if the optimal
rate of convergence is to be realised.

Table 1. Effectivity indices computed using the residual and local Poisson problem estimators, for fixed µ = 1 and κ = 10−5

together with varying λ , α and h.

λ = 1 λ = 102 λ = 104

h η/e ηP/e η/e ηP/e η/e ηP/e

α = 1

1/4 2.88 1.33 2.89 1.36 2.89 1.36
1/8 2.69 1.37 2.70 1.40 2.70 1.40

1/16 2.62 1.36 2.63 1.39 2.63 1.39
1/32 2.60 1.35 2.61 1.38 2.61 1.38

α = 10−2

1/4 2.88 1.33 2.89 1.36 2.89 1.36
1/8 2.69 1.37 2.70 1.40 2.70 1.40

1/16 2.62 1.36 2.63 1.39 2.63 1.39
1/32 2.60 1.35 2.61 1.38 2.61 1.38

α = 10−4

1/4 2.88 1.33 2.89 1.36 2.89 1.36
1/8 2.69 1.37 2.70 1.40 2.70 1.40

1/16 2.62 1.36 2.63 1.39 2.63 1.39
1/32 2.60 1.35 2.61 1.38 2.61 1.38

The results obtained using our adaptive refinement algorithm are compared with those obtained
using uniform refinement in Figure 3. Looking at the error plots it is evident that, independent of λ , the
convergence rate of ηP is limited by the solution regularity when the grid is refined uniformly. We also
see that both η and ηP converge to zero with the optimal rate O(n−1

do f ) when the grid is refined adaptively.
The refinement pattern generated by the adaptive algorithm is slightly different in the two cases that
we consider. While there is local refinement to resolve the strong singularities in both cases, there is
additional local refinement to resolve the weak singularity that is generated at the corner (−1,−1) in
the (compressible) case λ = 1.
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FIG. 3. Comparison of estimated energy errors η and ηP computed using PPP2–P1–P2 approximation for the second test problem
with λ = 1 (left) and λ = 104 (right).

103 104 105

10-6

10-5

10-4

103 104 105

10-6

10-5

10-4

5. Concluding remarks

There are two important contributions in this paper. First, we have identified three parameter-robust
error estimators for computing approximations of poroelasticity problems. We have shown that these
estimators give reliable estimates of the approximation error, even when one is arbitrarily close to the
incompressible limit. Second, we have identified a practical error estimation strategy based on solv-
ing three uncoupled Poisson problems that yields effectivity indices close to unity in all cases tested.
Extending this work to enable the adaptive solution of poroelasticity problems with uncertain material
parameters is ongoing research; see Khan & Powell (2020). Ensuring robustness in the error estimation
process is fundamentally important when solving problems with large variability in the measurement of
such parameters.
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Appendix A. Residual estimator error bounds

The starting point for showing the reliability of the residual estimator introduced in Section 3.1 is the
following lemma.

LEMMA A.1 (Clément interpolation estimate) Given vvv ∈ HHH1
Γuuu,0

and qF ∈ H1
p,0, let vvvh ∈ XXXh

uuu,0 and qF,h ∈
Xh

p,0 be the quasi-interpolant of vvv and qF defined by averaging (Clément, 1975). For any K ∈ Th we
have

ρ
−1
1,K‖vvv− vvvh‖0,K . (2µ)1/2|vvv|1,ωK , ρ

−1
2,K‖qF −qF,h‖0,K . (κ)1/2|qF |1,ωK ,

where | · |1,ωK is the H1(ωK) seminorm. Moreover, for all E ∈ ∂K we have

ρ
−1/2
1,E ‖vvv− vvvh‖0,E . (2µ)1/2|vvv|1,ωK , ρ

−1/2
2,E ‖qF −qF,h‖0,E . (κ)1/2|qF |1,ωK ,

where ωK is the set of rectangles sharing at least one vertex with K.

THEOREM A.1 (Reliability estimate) Suppose that (uuu, pT , pF) is the weak solution satisfying (2.1) and
that (uuuh, pT,h, pF,h) ∈ XXXh

uuu×Mh×Xh
p is a conforming mixed approximation. Defining η and Θ to be the

error estimator and the data oscillation term, we have an upper bound on the approximation error,

|||(uuu−uuuh, pT − pT,h, pF − pF,h)|||. η +Θ . (A.1)

Proof. Since (uuu−uuuh, pT − pT,h, pF − pF,h) ∈ HHH1
Γuuu,0
×M×H1

Γp,0
then from Lemma 2.1, it holds that

|||(uuu−uuuh, pT − pT,h, pF − pF,h)|||2 .B(uuu−uuuh, pT − pT,h, pF − pF,h;vvv,qT ,qF)

with |||(vvv,qT ,qF)|||6 |||(uuu−uuuh, pT − pT,h, pF − pF,h)|||. Using (2.3) and (2.14) then gives

B(uuu−uuuh, pT − pT,h, pF − pF,h;vvv,qT ,qF)

= B(uuu−uuuh, pT − pT,h, pF − pF,h;vvv− vvvh,qT ,qF −qF,h)

= ( fff ,vvv− vvvh)−2µ(εεε(uuuh),εεε(vvv− vvvh))+(pT,h,∇ · (vvv− vvvh))

−(qT ,∇ ·uuu)+(qT ,∇ ·uuuh)−
1
λ
(qT , pT )+

1
λ
(qT , pT,h)

+
α

λ
(pF ,qT )−

α

λ
(pF,h,qT )+(g,qF −qF)

+
α2

λ
(pF,h,qF −qF,h)+(κ∇(pF,h),∇(qF −qF,h))

= ( fff − fff h,vvv− vvvh)+(g−gh,qF −qF,h)

+ ∑
K∈Th

{(
∇ · (2µεεε(uuuh))−∇pT,h + fff h,(vvv− vvvh)

)
0,K

+ ∑
E∈∂K

(〈
RRRE ,vvv− vvvh

〉
E +

〈
RE , pF − pF,h

〉
E

)
+
(
qT ,∇ ·uuuh +

1
λ

pT,h−
α

λ
pF,h
)

0,K

+
(
gh−

α

λ
(pT,h−2α pF,h)−∇ · (κ∇pF,h),qF −qF,h

)
0,K

}
(A.2)
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where
〈
RRRE ,vvv− vvvh

〉
E =

∫
E RRRE · (vvv− vvvh) and

〈
RE , pF − pF,h

〉
E =

∫
E RE · (pF − pF,h). Next, using the

Cauchy–Schwarz inequality in (A.2) leads to

B(uuu−uuuh, pT − pT,h, pF − pF,h;vvv,qT ,qT,h)

6C
{(

∑
K∈Th

ρ
2
1,K‖ fff − fff h‖2

0,K

)1/2(
∑

K∈Th

ρ
−2
1,K‖vvv− vvvh‖2

0,K

)1/2

+

(
∑

K∈Th

ρ
2
2,K‖g−gh‖2

0,K

)1/2(
∑

K∈Th

ρ
−2
2,K‖qF −qF,h‖2

0,K

)1/2

+

(
∑

K∈Th

ρ
2
1,K‖RRRK‖2

0,K

)1/2(
∑

K∈Th

ρ
−2
1,K‖vvv− vvvh‖2

0,K

)1/2

+

(
∑

K∈Th

∑
E∈∂K

ρ1,E‖RRRE‖2
0,E

)1/2(
∑

K∈Th

∑
E∈∂K

ρ
−1
1,E‖vvv− vvvh‖2

0,E

)1/2

+

(
∑

K∈Th

∑
E∈∂K

ρ2,E‖RE‖2
0,E

)1/2(
∑

K∈Th

∑
E∈∂K

ρ
−1
2,E‖qF −qF,h‖2

0,E

)1/2

+

(
∑

K∈Th

ρd‖RK‖2
0,K

)1/2(
∑

K∈Th

ρ
−1
d ‖qT‖2

0,K

)1/2

+

(
∑

K∈Th

ρ
2
2,K‖RK‖2

0,K

)1/2(
∑

K∈Th

ρ
−2
2,K‖qF −qF,h‖2

0,K

)1/2}
. (A.3)

Using Lemma A.1, then leads to the desired upper bound

|||(uuu−uuuh, pT − pT,h, pF − pF,h)|||2

.B(uuu−uuuh, pT − pT,h, pF − pF,h;vvv,qT ,qF)

.

{(
∑

K∈Th

Θ
2
K

)1/2(
∑

K∈Th

ρ
−2
1,K‖vvv− vvvh‖2

0,K +ρ
−2
2,K‖qF −qF,h‖2

0,K

)1/2

+

(
∑

K∈Th

η
2
RK

)1/2(
∑

K∈Th

ρ
−2
1,K‖vvv− vvvh‖2

0,K +ρ
−2
2,K‖qF −qF,h‖2

0,K

)1/2

+

(
∑

K∈Th

η
2
EK

)1/2(
∑

K∈Th

∑
E∈∂K

ρ
−1
1,E‖vvv− vvvh‖2

0,E +ρ
−1
2,E‖qF −qF,h‖2

0,E

)1/2

+

(
∑

K∈Th

η
2
JK

)1/2(
∑

K∈Th

ρ
−1
d ‖qT‖2

0,K

)1/2}

.
(

∑
K∈Th

{
2µ |vvv|21,K+ρ

−1
d ‖qT‖2

0,K +‖κ∇qF‖2
0,K
}) 1

2
(

∑
K∈Th

(
η

2
K +Θ

2
K
)) 1

2
(A.4)

Thus,

|||(uuu−uuuh, pT − pT,h, pF − pF,h)|||2 . |||(vvv,qT ,qF)|||
(

∑
K∈Th

(
η

2
K +Θ

2
K
)) 1

2
,
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as required. �
Next, let K be an element of Th and suppose that χK is a (quartic) interior bubble function (positive

in the interior of K, zero on ∂K). Then the following estimates hold (Verfürth, 2013).

‖χKv‖0,K . ‖v‖0,K . ‖χ1/2
K v‖0,K , (A.5)

‖∇(χKv)‖0,K . h−1
K ‖v‖0,K , (A.6)

where v denotes a scalar-valued polynomial function defined on K. The efficiency of the residual error
estimator is a consequence of the following sequence of lemmas.

LEMMA A.2 Let K be an element of Th. The local momentum residual satisfies

ρ
2
1,K‖RRRK‖2

0,K . 2µ |uuu−uuuh|21,K +(2µ)−1‖pT − pT,h‖2
0,K +Θ

2
K .

Proof. See Khan et al. (2017). �

LEMMA A.3 Let K be an element of Th. The local mass conservation residual satisfies

ρ
2
2,K‖RK‖2

0,K . ‖κ
1
2 ∇(pF − pF,h)‖2

0,K +
1
λ
‖pT − pT,h‖2

0,K +
α

λ
‖pF − pF,h‖2

0,K +Θ
2
K .

Proof. For each element K in Th, we have RK = (gh− α

λ
(pT,h− 2α pF,h)−∇ · (κ∇pF,h))|K . Next,

introducing w|K = ρ2
2,KRK χK and using (A.5) we have

ρ
2
2,K‖RK‖2

0,K . (RK ,ρ
2
2,K χKRK)K = (gh−

α

λ
(pT,h−2α pF,h)−∇ · (κ∇pF,h),w)K .

Using integration by parts with w|∂K = 0 and (2.1c) implies

ρ
2
2,K‖RK‖2

0,K = (κ∇(pF,h− pF),∇w)K +
α

λ
(pT − pT,h,w)K−

2α2

λ
(pF − pF,h,w)K +(gh−g,w)K .

Applying the Cauchy–Schwarz inequality leads to the bound

ρ
2
2,K‖RK‖2

0,K .
(
‖κ1/2

∇(pF − pF,h)‖2
0,K +

1
λ
‖pT − pT,h‖2

0,K +
α

λ
‖pF − pF,h‖2

0,K

+ρ
2
2,K‖g−gh‖2

0,K

) 1
2
(
‖κ1/2

∇w‖2
0,K +ρ

−2
2,K‖w‖

2
0,K

) 1
2
. (A.7)

Using (A.5) and (A.6) in (A.7) then gives the bound

ρ
2
2,K‖RK‖2

0,K .
(
‖κ

1
2 ∇(pF − pF,h)‖2

0,K +
1
λ
‖pT − pT,h‖2

0,K +
α

λ
‖pF − pF,h‖2

0,K +Θ
2
K
) 1

2
(
ρ

2
2,K‖RK‖2

0,K
) 1

2

as required. �

LEMMA A.4 Let K be an element of Th. The local pressure balance residual satisfies

η
2
JK
.
(

2µ |uuu−uuuh|21,K +
( 1

2µ
+

1
λ

)
‖pT − pT,h‖2

0,K +
α

λ
‖pF − pF,h‖2

0,K

)
.
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Proof. Noting that (∇ ·uuu+ 1
λ

pT − α

λ
pF)|K = 0 for the exact solution (uuu, pT , pF), we have

ρd‖∇ ·uuuh +
1
λ

pT,h−
α

λ
‖2

0,K = ρd‖∇ · (uuu−uuuh)+
1
λ
(pT − pT,h)−

α

λ
(pF − pF,h)‖2

0,K

. ρd‖∇ · (uuu−uuuh)‖2
0,K +

ρd

λ 2 ‖(pT − pT,h)‖2
0,K

+
ρdα2

λ 2 ‖(pF − pF,h)‖2
0,K ,

. 2µ |uuu−uuuh|21,K +
1
λ
‖pT − pT,h‖2

0,K +
α2

λ
‖pF − pF,h‖2

0,K , (A.8)

where the last line follows from the definition of ρd in (3.1). �
Next, let E denote an interior edge which is shared by two elements K and K′ and suppose that χE

is a polynomial bubble function on E (positive in the interior of the patch ωE formed by the union of K
and K′ and zero on the boundary of the patch). The following estimates are also due to Verfürth (2013),

‖q‖0,E . ‖χ1/2
E q‖0,E (A.9)

‖χEq‖0,K . h1/2
E ‖q‖0,E ∀K ∈ ωE , (A.10)

‖∇(χEq)‖0,K . h−1/2
E ‖q‖0,E ∀K ∈ ωE . (A.11)

Here, q is a scalar-valued polynomial function defined on E and qχ = χEq can be extended by zero
outside of the patch.

LEMMA A.5 Let K be an element of Th. The stress jump residual satisfies

∑
E∈∂K

ρ1,E‖RRRE‖2
0,E . ∑

E∈∂K

(
2µ |uuu−uuuh|21,ωE

+(2µ)−1‖pT − pT,h‖2
0,ωE

+Θ
2
ωE

)
,

where Θ 2
ωE

= ∑K∈ωE Θ 2
K is the localised data oscillation term.

Proof. See Khan et al. (2017). �

LEMMA A.6 Let K be an element of Th. The fluid flux jump residual satisfies

∑
E∈∂K

ρ2,E‖RE‖2
0,E . ∑

E∈∂K

(
2µ |uuu−uuuh|21,ωE

+(2µ)−1‖p− ph‖2
0,ωE

+Θ
2
ωE

)
,

where Θ 2
ωE

= ∑K∈ωE Θ 2
K is the localised data oscillation term.

Proof. Suppose E is an interior edge and let χE be a polynomial bubble function associated with E as
defined above. We define the localised jump term so that Λ = ρE J(κ∇pF,h) · nnnKχE . Using (A.9) and
(3.7) gives the estimate

ρ2,E‖RE‖2
0,E .

(
J(κ∇pF,h) ·nnnK,Λ

)
E . (A.12)

Then, using (2.1c) for every qF ∈ H1
Γp,0

we have

∫
Ω

κ(xxx)∇(pF − pF,h) ·∇qF =
α

λ

∫
Ω

pT qF −
2α

λ

∫
Ω

pF qF −
∫

Ω

gqF −
∫

Ω

∇pF,h ·∇qF . (A.13)
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Integration by parts elementwise gives∫
Ω

gqF+
∫

Ω

∇pF,h ·∇qF = ∑
K∈Th

∫
K
(g−∇ · (κ∇pF,h))qF + ∑

E∈E (Th)

∫
E
J(κ∇pF,h) ·nnnKqF . (A.14)

Choosing the test function qF =Λ in (A.13) and (A.14), and then combining (A.12), (A.13) and (A.14),
we have

ρ2,E‖RE‖2
0,E . ∑

K∈ωE

∫
K

{
gh−αλ

−1(pT,h−2α pF,h)−∇ · (κ∇(pF,h))
}

Λ

+ ∑
K∈ωE

∫
K
{(g−gh)−αλ

−1(pT − pT,h)+2α
2
λ
−2(pF − pF,h)}Λ

+ ∑
K∈ωE

∫
K

{
−κ(∇pF −∇pF,h)

}
·∇Λ

. T1 +T2 +T3.

These three terms will be bounded separately.
First, using the definition of RK and applying the Cauchy–Schwarz inequality with Lemma A.3 gives

T1 .
( 1

λ
‖pT − pT,h‖2

0,ωE
+

α2

λ
‖pF − pF,h‖2

0,ωE
+‖κ(∇pF −∇pF,h)‖2

0,ωE
+Θ

2
ωE

)1/2

(
∑

K∈ωE

ρ
−2
K ‖Λ‖

2
0,K

)1/2
.

Next, given the shape regularity of the grid, using the definition of Λ and (A.10) gives

ρ
−2
2,K‖Λ‖

2
0,K . ρ

−1
2,Eh−1

E ‖Λ‖
2
0,K . ρ

−1
2,E‖ρ2,E RE ‖2

0,E .

Hence, the following estimate holds

T1 .
( 1

λ
‖pT − pT,h‖2

0,ωE
+

α2

λ
‖pF − pF,h‖2

0,ωE
+‖κ

1
2 (∇pF −∇pF,h)‖2

0,ωE
+Θ

2
ωE

) 1
2

(
∑

K∈ωE

ρE‖RE ‖2
0,E

)1/2
.

Second, combining the Cauchy–Schwarz inequality with the above construction gives

T2 .
(

∑
K∈ωE

ρ
2
2,K‖g−gh‖2

0,K +
1
λ
‖pT − pT,h‖2

0,ωE
+

α2

λ
‖pF − pF,h‖2

0,ωE

)1/2(
∑

K∈ωE

ρ
−2
K ‖Λ‖

2
0,K

)1/2

.
(

Θ
2
ωE

+
1
λ
‖pT − pT,h‖2

0,ωE
+

α2

λ
‖pF − pF,h‖2

0,ωE

) 1
2
(

∑
K∈ωE

ρE‖RE ‖2
0,E

)1/2
.

The third term can be bounded in a similar way,

T3 . ‖κ
1
2 (∇pF −∇pF,h)‖0,ωE

(
∑

K∈ωE

‖κ1/2
∇Λ‖2

0,K

)1/2
,
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where this time the second term is bounded using (A.11),

‖κ
1
2 ∇Λ‖2

0,K . ρ
−1
2,EhE‖∇Λ‖2

0,K . ρ
−1
2,E‖ρ2,E RE ‖2

0,E .

Combining the upper bounds for T1,T2 and T3, for any interior edge E, we have

ρ2,E‖RE‖2
0,E .

( 1
λ
‖pT − pT,h‖2

0,ωE
+

α2

λ
‖pF − pF,h‖2

0,ωE
+‖κ

1
2 (∇pF −∇pF,h)‖2

0,ωE
+Θ

2
ωE

)
.

If E ∈ ΓN , then the same result holds with ωE = K and we recall from (3.7) that RE = 0 for edges E on
ΓD. Hence, summing over all the edges of element K gives the required result. �

Combining Lemmas A.2–A.6 leads to the efficiency bound.

THEOREM A.2 Suppose that (uuu, pT , pF) is the weak solution satisfying (2.1) and that (uuuh, pT,h, pF,h) ∈
XXXh

uuu×Mh×Xh
p is a conforming mixed approximation. Defining η and Θ to be the error estimator and

the data oscillation term we have a lower bound on the approximation error,

η . |||(uuu−uuuh, pT − pT,h, pF − pF,h)|||+Θ . (A.15)


