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1 | MOTIVATION

Phenomena of fluid-structure interaction (FSI) are ubiquitous
in many areas of civil and offshore engineering. For example,
a dam, as well as any other barrier for hydraulic protection,
should be built in order to withstand the static forces exerted by
the contained water. The role of FSI is even more important for
offshore structures, where the solid body undergoes dynamic
time-dependent fluid actions. Therefore, accurate predictions
of fluid forces are instrumental to an effective design of
such types of structures (Kiihner, Crouse, Rank, Tolke, &
Krafczykl (2004); |Leonardi, Wittel, Mendoza, Vetter, &
Herrmannl! (2016)), as well as fluid dampers (Balendra, Wang,
& Cheong| (1995); |[Colwell & Basu| (2008); |Gao, Kwok,
& Samali| (1997); [Wang, Ni, Ko, & Spencer Jr| (2005))). In
order to achieve this goal, a very effective and consolidated
tool is represented by numerical simulations of computational
fluid dynamics (CFD), an area of fluid dynamics that has
seen increasing interest from both academic and industrial
researchers.

Traditionally, CFD simulations have been carried out
by solving the Navier-Stokes equations with finite volume
procedures. Despite its wide application, traditional CFD

In this paper, an original phase-field lattice Boltzmann scheme for a system
composed of two immiscible and incompressible fluids interacting with moving
solids is developed, presented and tested for the first time. The proposed approach
is benchmarked against experimental data and Smoothed Particle Hydrodynamics
simulations of four well-established two-dimensional problems where a rigid body
interacts with the interface between the two fluids. The outlined methodology
represents a very good candidate to perform fluid-structure interaction simulations

of hydrodynamic stability problems as well as water-entry and water-exit problems.
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suffers from several problems particularly emphasized in the
context of FSI analyses. For example, upon structure motion,
the fluid mesh in traditional CFD methods may need to be
re-generated at each time step, a process that can be very
expensive computationally speaking. Notice that traditional
CFD can use overset/chimera meshes, where high mesh detail
can be used on the solid body and complex 3D problems can be
solved with relative ease. This and other challenges (Manjula,
Ariyaratne, Ratnayake, & Melaaen| (2017); |Velazquez &
Castillo| (2008); |Zhu, Gu, & Chen| (2007)) constitute the basis
for researching more efficient algorithmic procedures.

In the last decades, the lattice Boltzmann method (LBM)
has attracted a progressively larger attention as an alternative
method to classical CFD (He & Luo| (1997); |Kriiger et al.
(2017)). Instead of solving the Navier-Stokes equations, the
LBM is based on the Boltzmann equation. The computational
domain is represented by a fixed Eulerian Cartesian lattice
grid where the fluid is idealized by distributions of particles
colliding and streaming along the links of this lattice. The
LBM exhibits several distinctive advantages, as for example
the simplicity of its mathematical formulation. Moreover,
there is no need to solve the Poisson equation to calculate the
pressure, as is done for incompressible Navier-Stokes solvers.

The outstanding popularity of LBM has been mainly
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(though not exclusively) due by the simplicity of its collision
operator, the Bhatnagar-Gross-Krook (BGK) one (Bhatnagar,
Gross, & Krook| (1954)), where distributions relax to a
certain equilibrium state with a common unique rate. Despite
its extensive adoption, the BGK approximation undergoes
instabilities when challenging
are undertaken, as for example those characterized by
high-Reynolds-number and high-density-ratio flows. Indeed,
this configuration is typical of water-entry and water-exit
problems, where the Reynolds number and the density
contrasts are usually very high. These limitations can be
attributed to the concurrent presence of two factors: (i) the
relaxation to a non-complete equilibrium state (Malaspinas
(2015)) and the presence of non-hydrodynamic ghost modes
(Latt & Chopard| (2006))). In order to overcome these issues,
a central-moments-based multiple-relaxation-time LBM has
been proposed recently (De Rosis, Huang, & Coreixas|(2019);
De Rosis & Luo|(2019)). Within this framework, the collision
process is performed in the space of central moments (CMs)
(Geier, Greiner, & Korvink! (2006)), relaxing to a complete
equilibrium (Coreixas, Wissocq, Puigt, Boussuge, & Sagaut
(2017); Malaspinas| (2015)) with different relaxation times,
thus allowing the damping of non-hydrodynamic modes.
When compared to the BGK approach, this new LB method
shows the same accuracy but remarkably higher stability
properties (De Rosis| (2016|2017)).

In this paper, an original central-moments-based
multiple-relaxation-time LBM for a system composed of
two immiscible and incompressible fluids is presented and
tested against experimental data and Smoothed Particle
Hydrodynamics (SPH) (Monaghan| (1992)) simulations of
four well-consolidated two-dimensional problems where a
rigid body interacts with the interface between the two fluids.
While the flow physics is governed by the incompressible
Navier-Stokes equations, the evolution of the interface obeys
the Allen-Cahn equation. The adoption of CMs with respect to
the BGK model is justified by numerical tests demonstrating
that the former outperforms the latter in terms of stability.
Numerical simulations herein prove that the new LB approach
is an excellent candidate for predicting fluid-structure
interaction phenomena when high-Reynolds-number and
high-density-contrast flows are considered. When compared
to the recent work by Dinesh Kumar, Sannasiraj, & Sundar
(2019), our work shows two distinct features (see also
Section : (i) the inclusion of the complete set of Hermite
polynomials for all the equilibrium and forcing terms, and (ii)
the use of central moments, instead or raw ones, in the collision
operators. These allow us to run numerical simulations at
a Reynolds number of order 10° as opposed to a Reynolds
in the order 10* for cases in [Dinesh Kumar et al.| (2019), as
well as to enhance the stability and accuracy of these types of

numerical simulations

simulations (see Appendix [A]for more details). Very recently,
central moments have also been adopted by |Gruszczynski,
Mitchell, Leonardi, Laniewski-Wollk, & Barber, (2019).
With respect to this work, our approach is not based on the
so-called cascaded LBM, where moments are built on the
continuous equilibrium and forcing terms, but on a theoretical
formulation where the discrete counterparts are adopted. As
a consequence, the resultant algorithmic procedure is very
general, can be extended to any lattice discretization and shows
intelligible derivations and an easy practical implementation.
The reason behind the choice of Smoothed Particle
Hydrodynamics as a validation tool is twofold: on the one
hand, SPH is a fully Lagrangian meshless method that is
known to handle free-surface and interfacial flow quite well,
making it a good benchmark candidate. Several instances of
using SPH for marine and offshore structure problems can
be found in recent works (Crespo, Altomare, Dominguez,
Gonzalez-Cao, & Goémez-Gesteira) (2017); |Dominguez et
al|(2019); Mogan, Chen, Hartwig, Sahin, & Tafuni| (2018));
Tafuni, Sahin, & Hyman| (2016))). On the other hand, both
LBM and SPH solve incompressible flow problems with
a weakly-compressible hypothesis, making the pressure
treatment similar and therefore allowing for a more consistent
comparison of pressure outcomes between the two methods.
The rest of the paper is organized as follows. In Section [2]
the modeling approach is outlined. Results from numerical
tests are discussed in Section Bl Some conclusions are
drawn in Section E} Eventually, additional details about the
computations presented in this work are given in Appendix.

2 | MODELLING APPROACH

In this section, we first state the macroscopic equations
governing the system. Secondly, we summarize the BGK LBM
in |Fakhari, Mitchell, Leonardi, & Bolster (2017). Finally, we
present our original LB approach based on central moments.

2.1 | Governing equations

Let us consider a system composed of two immiscible and
incompressible fluids. The macroscopic behavior is governed
by the Navier-Stokes equations:

V-u=0,
p [0,u+(u-V)u] = -Vp+uV’u+F, (1)

where ¢ is the time, u is the flow velocity, p is the density, p
is the pressure, y is the dynamic viscosity and F accounts for
any external force. In order to track the interface between the
two fluids, an additional equation must be solved. Specifically,
here we consider the conservative form of the Allen-Cahn
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equation /Allen & Cahnl(1976) proposed in|Chiu & Lin|(2011),
that is

Vo 1-4(dp—dy)

0p+V-pu=V-M |V — , @)
' V| ¢

where M is a mobility coefficient, £ is the interface thickness,

¢ is the order parameter that varies between ¢p; = 1 for

the heavier fluid and ¢; = O for the lighter one, and ¢, =
(¢H + ¢L) /2.

2.2 | BGKLBM
Let us consider a two-dimensional Cartesian space
x = [x,y], where x and y denote the horizontal and

vertical coordinates, respectively. In order to predict the
behavior of a two-fluids system, two groups of particle
distribution functions (or populations) are considered.
The former, |£,) = [fo. f1- for f3: far f5 for Fon £
controls the velocity field, while the latter, |g;) =
[go, g1 82 &3 845 855 86> &7 gg]T, monitors the evolution
of the order parameter. Notice that |¢) denotes a column
vector and the superscript T indicates the transpose
operator. In the D2Q9 model (Succi (2001)), populations
move on a fixed Cartesian square lattice along the
generic link i = 0...8 with velocity ¢, = [|cy), |¢);)]
defined as |c,;) = [0,1,0, —1,0,1,—1,—1,1]" and
|cy,-) = [0,0,1,0,-1,1, 1, —1, —l]T. The governing LB
equations reads as follows:

Ifix+c,t+ 1) = |f (x,0), (3)
lgi(x+ ¢, 1+ 1) = |gf(x, ). “4)

where the superscript * represents the so-called post-collision
state. To lighten the notation, the dependence on space x and
time ¢ will be implicitly assumed in the rest of this section.

Within the BGK approximation (Bhatnagar et al| (1954)),
post-collision populations can be computed as

* 1 eq _

fE=tit o U = 1)+ F )
* 1 e

§ =8t (& - &)+ G (©6)

where the equilibrium states are

C.-u (ci .u)2 u2
fieq — I/U,- ﬁ+ 1 > + ,
Cs

c;-u

2
+ ow) _ lfi] ; ®)

T=wep 1+
& 9 l 2c4

p=rp/ (pcf) being the normalized pressure and w = [u,,u,].
The symbol - denotes the scalar product of two vectors.
Weighting factors are wy, = 4/9, w; 4 =1/9, ws_g=1/36

and the lattice sound speed is ¢, = c/\/g, with ¢ = 1 (Succi
(2001)). The relaxation times are evaluated as

- M
=71, + ¢¢H _¢(;L (TH - TL) s T, = E, ©)]

where 7, = p; /(pc?) and 7, = py /(pc?) are the relaxation
times associated to the fluids of dynamic viscosities y; and
My, respectively. Notice that 7 is computed by applying the
linear interpolation proposed by |Gruszczynski et al. (2019),
that has been proved to be able to reduce spurious currents.
According to [Fakhari et al.| (2017), the two forcing terms can
be written as

e (10)

where
1-4(6-0) vo
¢ Vol

V being the gradient operator. The force F = [F,, F,] gathers
four contributions:

Fy=[F 4. F,,)=c (11)

F=F +F,+F,+F, (12)
F accounts for the surface tension as
F, = u, Vo, (13)
with the chemical potential
Hy =48 (¢ —¢1) (6= ) (6= o) —xV’0,  (14)

where f = 12¢/¢ and k¥ = 30&/2, o being the surface
tension. Notice that the gradient and Laplacian operators of ¢
are computed by isotropic finite differences:

1
Vo = < 2 wed(x+e),
2
Vi = 5 Dwlpxte)-dw]. (5
The pressure and viscous forces are
F,=—pc)¥p,  F,=v[Vu+(Vw'|-Vp,  (16)

respectively, where the fluid kinematic viscosity is v = rcf.

The gradient of density is determined based on the gradient of
the order parameter, that is

P~ PL
v
The last term, F,, accounts for a generic body force (e.g.
gravity).
Macroscopic variables are readily available as

ﬁ=Zfi’ u=Zfici+£v d):Zgi.

a7

(18)
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Eventually, the fluid density p is computed by a linear
interpolation, that is

-,

_— 19
e 19)

p=p.+ (P —rL)-

2.3 | CMs-based LBM

Here, we discuss our proposed modelling approach, where the
two collision processes in Egs. (3][6) are executed in the space
of central moments.

2.3.1 | CMs-based LBM for f;

The post-collision populations can be written as

|f e, ) =1, 0) + Al fx, 0) = | fi(x,1))]

(20)
+A-A/D|F(x,0).

The collision matrix is A = T KT, where K =
diag[1, 1, 1, 1, o, w, 1, 1, 1] is the relaxation matrix, with
o = 1/(r + 1/2). T is a non-orthogonal basis of moments
taking the form (De Rosis|(2016)):

0 ~ = =2 =2 =2 =2
= <|ci| | ’ <Cix| ’ <Ciy| ’ <C,'x + C,‘yl » <Cix - C,‘yl ’

T
<chCly|] ’

where (¢;,| = {(¢;x — u,|, (€| = (c;, — u,| are the lattice
directions by the local fluid velocity, with (¢;| = [{¢;,[, (¢;, ]
(Geier et al.|(2006)). (¢| denotes a row vector.

The collision stage is performed in the space of central
moments as follows:

2y

<C_1x_ly <C Czy| <C1x iy

kY==K lk)+KIKH+ (1= T) IR), @)
where pre-collision, equilibrium and post-collision CMs are
gathered through the vectors |k;), kaq), and |k), respectively.
The first two quantities are evaluated by applying the
matrix T to the corresponding distribution, that is |k;)
TI|f), |k;y = T|f7). Instead of representing the
equilibrium distribution by Eq. (7), we follow Malaspinas
(2015) and|Coreixas et al.|(2017)), where it has been shown that
the full potential of the D2Q9 discretization can be exploited by
expanding the equilibrium distributions into a basis of Hermite
polynomials H™ up to the fourth order in the D2Q9 space.
Therefore, we can write

1
u, +H u u2> + —HW uzuz] ,

ixxyy“x"y

(23)

where
0 a1 _
Hix = Cix> Hiy clY’
2) 2 2 2 _ 2 2 @ _
Hixx =G T 6o 7-llyy - cty > Hlxy clxcly’
@ _ (.2 _ 3) 2 _ 2
Htxxy - (cix ¢ ) cly’ Hlxyy < iy ¢ ) Cix»

(24)

To obtain the central moments of the forcing term |R;) =
T | F;), we employ the expression adopted in |Huang, Wu, &
Adams| (2018)), with Hermite polynomials of the maximum
admissible order (i.e., four):

[Fu] ,®

F ~d
F=w|—" H( ) + -H
pe, 2pc?
’ (25)
[Fuu] A (3) [Fuuu] @
. H ,
6 p c3 [xyyl,[xxy] 24 pc4 [xxyy]

where the square bracket in Hermite coefficient denotes
permutations (e.g., [Fuu] = Fuu + uFu + uufF), and 1
is obtained by replacing ¢; by ¢;/c, and cf by 1 in Eqs..
Eventually, we obtain the following post-collision central
moments:

K =5
ki = (1=pu,+F./(2p),
KX = (1= pu, + F,/ 2p),
kY =ﬁ(ui+ui+26s2) —ui—ui,
K =U-ok+oG-D (=),
kK= (- @) ks + o (= Duu,
k=1 =p) (2 +c)u,+ Fe?/(2p),
K= (1-p) <u2+c2>u + F. 2/ (20),
kg =[3[c32+c?(u +u )+u u]

2

y

2(.2 2 2
- c <ux +uy> u

k4=Zfi (C_,-zx—c_izy>’ kS:Z

1

(26)
where

Clxczy

@7

Notice that present post-collision CMS degrade exactly into
those obtained in |De Rosis & Luo| (2019) for one-component
flows when p = pcf. Then, post-collision populations
are reconstructed as |f*) = T~'|k), that are eventually
streamed by Eq. (3).

We the LBE in a general
multiple-relaxation-time (GMRT) framework (Fei & Luo
(2017); |Fei1, Luo, & Lif (2018)). Indeed, the matrix T can be
written as the product of two contribution, T = NM. Hence,
post-collision populations can be rewritten as

1£7) =T k) = MIN"! &),

now  rewrite

(28)
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where the transformation matrix M transforms the distribution
functions into raw moments and is obtained by replacing ¢;
with ¢; in Eq. (2I).The shift matrix (originally introduced in
Asinari| (2008)) is N = TM~! and transforms raw moments
into central moments. If this shift is neglected, i.e., N = I, then
T = M. In other words, the classical (raw-moments-based)
multiple-relaxation-time can be viewed as a particular case
of a general (central-moments-based) multiple-relaxation-time
LBM. In practical terms, we first compute post-collision raw
moments |r*) as [r) = N™' [k}), and then we transform into
populations as | f;*) = M™" |r}).

2.3.2 | CMs-based LBM for g,

Very interestingly, the same algorithmic procedure above
described for f; can be adopted to derive a CMs-based
formulation for the other set of populations, g;. In this case, the

post-collision populations are
g (x, 1)) =1g,(x. ) + Ayllg; (x, D) — |g,(x,0)]
+ (A= Ay/D |G (x, ).
Similarly to the approach adopted for f;, the equilibrium

distributions can be projected into a basis of Hermite
polynomials H™ as

(29)

c-u

g?“=w,-¢[1+ —+ ok
c

2c4
N

+ H:(‘Z) D uu

1 3 2 3 2 L @ 229
+2_c6 (Hl.xxyuxuy + Hixyyuxuy> + EHixxyyuxuy
N N

(30)

that recovers Eq. when H® and H® are disregarded.
By using the very same shifting matrix (see Eq. (ZI))), the
collision matrix can be written as Aqb = T‘1K¢T, where
K¢ = diag[1, @y, Dy, 1, 1, 1, 1, 1, 1] is the corresponding
relaxation matrix, with oy, = 1/(z, + 1/2). By collecting
pre-collision, equilibrium and post-collision CMs as |k, ;) =
T|g;), Iki?ﬁ =T| gf’q), and |k: ¢), respectively, the latter can
be written as

K
¢
(3D
Again, we need to compute the central moments of the discrete
forcing term. Analogously to what we have done for F;, here we

propose to adopt the full set of Hermite polynomials, leading
to

F, |
e (B

[Fyul e

¢, 2c? 32)
[F¢uu] ~ (3) [F¢uuu] ~ (4)
6c3 | Loylleo] 2404 el )
N N
The CMs of the present discrete force term can be computed as
IR, ;) =TI|G,;) andread as R, , = F, 4, Ry y = F, 4, Rg y =

2 2 :
Fy’(pcs, R7’¢ = Fx’qﬁcs, Wlth R0’¢ = R3’¢ = R4’¢ = RS»d’ =

Ry 4 = 0. Post-collision CMs are:
ko y = @
kg = (1= w4) kig+ Fy/2,
K3y = (1=wg) kyy+ F /2,
kY, = 262,
key = Fppcl/2,
k;,d) = x,¢cf/2,

kg = del. (33)

where
(34)

k1,¢ = Zgic_ix’ k2,¢ = z 8Ciy-
i i
Before being streamed by Eq. (@), the post-collision
populations are reconstructed as

gy =T |kr,) = M™'N"! [k*). (35)

By using the very same arguments as those explained for f;,
the LBE governing the evolution of g; can be rewritten in
the GMRT framework. Indeed, the two sets of populations
share not only the same space-and-time discretization, but
the same discrete velocity representation too (i.e., the D2Q9
model). Consistently, the matrices T, M and N remain
unchanged. Once again, we can assess that the classical
raw-moments-based multiple-relaxation-time LBM can be
obtained as a particular case of the present methodology that is
obtained when N = I. To adopt the “two-step" reconstruction
(Fei & Luo| (2017)), we can compute post-collision raw
moments |7 5) as Iry 5 = N~! |k )» and then we transform
into populations as |g*) = M~ |r; o)

It should be noted that boundary conditions for the phase
field can be applied similarly to the ones for the flow field. For
example, the presence of a straight wall at a certain location x’
obeys the bounce-back rule and reads as follows:

[0 = frn,

where i' is the lattice direction opposite to i.

gi(x', 1) =gl (x',n), (36)

2.3.3 | Algorithm of computation

For an easy reproducibility of the results presented in the
next section and to fully understand the algorithmic procedure,
herein we report the actions to be taken within the typical time
step according to the proposed scheme.

e Compute the macroscopic variables:
Zfi’ u= Zficiv ¢ = Z‘gi’

b—¢;
_pL+¢H—¢L

p

(P —rL)- (37
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e Evaluate the spatial derivatives of the order parameter
by Egs. (I5), as well as those of the velocity (Vu) and
density (Vp).

e Calculate v = rc2 by interpolating 7 as

K
by — b

e Obtain the forces F = F; + F, + F, + F,, where

F,=u,V¢, F, =

(38)

T=TL (TH—TL)

F,=v[Vu+(Vw)'] - Vp,

(39
where pu, is the chemical potential in Eq.@ and F,
accounts for gravity and immersed boundary forces (see
De Rosis, Ubertini, & Ubertini| (2014)).

~ 2
—pc;Vp,

e Correct the fluid velocity:

u=Y fie,+ F (40)
e Determine the vector F¢:
2
-4 (47 - 4’0) Vo
F,=¢? . ) 41)
¢ ¢ Vol

e Compute the only non-zero pre-collision central
moments:

ky = Zf (2-2). k=YX
kg = Zgicix’ kyp = Zg,-c',-y. (42)

e Calculate the post-collision ones |k) and |k ) as in
Eqgs.(26) and Eqs.(33), respectively. Notice that these
depend on previously computed quantities: p, u, ¢, F
and F¢, as well as on the relaxation frequencies w =
1l/(z+1/2)and 0, = 1/(z, + 1/2).

ctxcly’

e Reconstruct post-collision populations for the flow and
phase fields, respectively:

If7) =MTINTH k), lgf) = MTINTHKT,) . (43)
e Stream both the sets of populations as
|fi(x+cj3t+ 1)) = |fl'*(x’t))’
lg(x +c.t+ 1)) = [gf(x.1), (44)

and advance in time.

Furthermore, the script D2Q9CentralMomentsPhaseField.m is
attached as Supplementary Material. It allows the reader to
perform all the involved symbolic manipulations in order to
re-build our proposed model.

3 | NUMERICAL EXPERIMENTS

The results of our numerical investigation are presented herein.
Specifically, the numerical performance of the novel LB
methodology outlined in Section [2.3] is elucidated against
four benchmark problems: a stability analysis for a partially
submerged cube in an unstable equilibrium after an initial
perturbation is imposed (Campbell & Vignjevic| (2012);
Fekken| (2004)); the free fall of a cylinder in quiescent water
(Colicchio, Greco, Miozzi, & Lugni| (2009)); the rise of a
submerged cylinder in quiescent water (Campbell & Vignjevic
(2012); [Fekken| (2004)); and the vertical penetration of a
wedge (Wagner| (1932)). In all the computations, we consider
a system composed of two immiscible fluids: the heavy one,
water, with p; = 1000kg/m? and v; = 10°m?/s, and
the light one, air, with p, = 1.225kg/m? and v, = 1.5 X
1073 m?/s. At the beginning of each run, the two fluids are at
rest, i.e. uy (= 0) = 0. A gravitational acceleration equal to
a=9.281 m/s2 is used. In addition, we set M = 0.1 and & = 4.
These values stem from preliminary analyses, where M and &
have been varied in a wide range and then selected in order to
obtain an optimal balance between stable and accurate runs.
Moreover, we choose o = 1 x 107, Unless otherwise stated,
the leading dimension of the submerged rigid body is idealized
by 100 points. Computations performed in this research are
in dimensionless lattice units, where the time step and grid
spacing are both equal to 1. In order to simulate a real-life
scenario, a conversion of units must be carried out previously.
An example is given in Appendix [B]

When a moving solid body is considered, its presence
is accounted for by the Immersed Boundary method (Feng
& Michaelides| (2009); Mittal & Iaccarino| (2005); |Peskin
(2002)). In short, the solid surface is represented by a set
of nodes that can freely move on the underlying lattice
grid. The no-slip condition at the fluid-structure interface
is enforced by interpolation/extrapolation rules, generating a
body force term that is accounted for in Eq. (IZ) (De Rosis
et al.| (2014)). Here, we restrict our analyzes to squared and
cylindrical solids. However, the generality of the adopted
Immersed Boundary method allows us to compute fluid
forces acting upon any arbitrarily shaped bodies. Our tests
involve rigid moving bodies whose dynamics is evaluated by
a second-order accurate Adam-Bashfort scheme (Butcher &
Goodwin| (2008))). Vectors collecting the displacements and
velocities of the center of mass of the rigid body are denoted
as q = [qx,qy] and q = [q‘x,q'y], respectively, where the

0
superimposed dot indicates the time derivative, i.e., q = _q

Finally, the SPH solver DualSPHysics (Crespo et al. (2015))
is used for validation purposes. Simulations are run using a
Weakly-Compressible SPH (WCSPH) formulation where the
Euler equations are stabilized by an artificial viscosity, also
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acting as an effective fluid bulk viscosity. Boundary conditions
for the solid objects are enforced through SPH particles and
ghost nodes mirrored into the fluids, following a procedure
similar to the one inMarrone, Colagrossi, Antuono, Colicchio,
& Graziani (2013) and |[Tafuni, Dominguez, Vacondio, &
Crespo| (2018)). Other relevant simulation parameters are kept
constant throughout the different cases unless otherwise noted,
and are a smoothing-length-to-particle-spacing ratio of 1.5, a
speed of sound equal to 20 times the characteristic flow speed,
and the use of density diffusion to smooth the pressure field.

3.1 | Pitch decay of a partially submerged
object in an initially unstable equilibrium

As shown in FIGURE our first application of the model
involves a cube with sides of length L = 0.1 m is submerged
in water for half of its volume. A perturbation in the form

air

water

FIGURE 1 Pitch decay of a partially submerged object:
sketch of the problem setup.

of an initial angular velocity is applied to the cube. Due
to such perturbation, the initial, unstable equilibrium is lost
because the submerged portion of the cube volume changes
over time, causing the cube to pitch back and forth until a
new, stable equilibrium is achieved. The case configuration
followed herein is the same as in [Fekken| (2004) to allow
for a direct comparison of the numerical results. However,
results in|Fekken| (2004) were obtained by the volume-of-fluid
method. Our computational domain is composed of 500 x 500
lattice points.

In FIGURE 2] the time history of the rotation angle
obtained by the present LB scheme is compared to findings
from a SPH simulation, showing a very good match. Moreover,
these two solutions show an oscillatory transient behavior
strikingly similar to the one in[Fekken|(2004), with oscillations
characterized by slightly lower amplitudes. Notably, the
theoretical values of 45 degrees is successfully captured.

70
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FIGURE 2 Time history of the angle of rotation for the
pitch decay simulation. Numerical solutions generated by the
proposed LBM (solid line), SPH (dashed line) and CFD study
in [Fekken| (2004) (dotted line) are compared to the analytical
prediction of 45 degrees (straight line with circles).

3.2 | Impact of a free falling cylinder on a
quiescent viscous liquid

Next, the free fall of a cylinder as described in|Colicchio et al.
(2009) is analyzed. The sketch of this test case is presented in
FIGURE A cylinder with a diameter D = 0.3 m impacts
a body of quiescent water at a velocity of v; = 2.55m/s.
The domain is composed of 8000 and 3200 points in the

air

water

FIGURE 3 Falling cylinder: sketch of the problem setup.

horizontal and vertical directions, respectively. The diameter
of the cylinder is represented by 400 points. LB results are
reported in FIGURE[ |in terms of vertical component of the
cylinder velocity and displacement of the cylinder’s center of
mass, and compared to experimental and numerical findings
by the level set method in |Colicchio et al.| (2009) and SPH
simulations, respectively.

The new LB model predicts the entry phase (upto ¢ = 0.45)
very well. Interestingly, the computed negative peak in the
curve showing the position of the cylinder’s center of mass
overlaps the two other numerical results to a great extent. A
discrepancy is more noticeable when the cylinder moves back
upward: in this phase, the proposed LBM approach exhibits
a very similar peak value as the other techniques, but with a
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t[s]

FIGURE 4 Free falling cylinder: time evolution of the
vertical component of the velocity (top) and displacement
of the center of mass of the cylinder (bottom). Present LB
scheme (Pres., solid line), experimental (Exp., dashed line) and
numerical results (Num., dotted line) in|Colicchio et al.|(2009))
and SPH predictions (dash-dotted line).

slight anticipation in time. This behavior is attributed to the
discretization of the interface between the two fluids, currently
characterized by a finite thickness of four grid points (i.e.,
& = 4), while it should ideally be zero. This is a common issue
in the so-called diffuse interface methods. Indeed, the value of
& has been chosen through preliminary analyses to obtain an
optimal balance between stability and accuracy. For the sake
of completeness, an additional simulation has been performed
by halving the grid spacing, but the value of the discrepancy
still persists. Further refinements of the adopted grid can be
carried out at the price of an increased computational cost (see
Appendix [A). A more quantitative estimation is provided in
TABLE[], where the peak values of ¢, and g, are synthetically
reported.

This test case is used to demonstrate the superior properties
of the CMs-based approach. Specifically, the LB run is
repeated by adopting the existing BGK LBM (see Section[2.2)).
In FIGURE [5 | the time evolution of the vertical component
of the velocity is presented by adopting the two LB schemes.
This comparison shows the superior stability properties of

Pres. Exp. Num. SPH
max (q'y) 0.9955 | 0.8912 | 0.7868 | 0.8798
—min (qy) 0.4459 | 0.4423 | 0.4185 | 0.4455

TABLE 1 Free falling cylinder: peak values of ¢, and g,
obtained by the present approach (Pres.), experimental (Exp.)
and numerical (Num.) findings in [Colicchio et al.| (2009) and
SPH run.

1 T
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FIGURE 5 Free falling cylinder: time evolution of the
vertical component of the velocity by different LB approaches:
present CMS-based LBM (solid line) and BGK LBM (dashed
line). The latter generates a simulation that blows up at t ~
0.2s.

the present novel methodology. The BGK run blows up at
t ~ 0.2, while the present CMs-based experiment is able to
simulate the entire time span. Therefore, we conclude that the
adoption of central moments is instrumental to perform more
stable simulations and to investigate a water-entry problem as
the one considered here.

FIGURE [6_] sketches the evolution of the water domain at
different time instants for our new LB model (top octuple)
and SPH (bottom octuple). For LB results, it can be seen that
the impact of the cylinder induces a symmetric deformation
of the interface. The cylinder penetrates the water until t =
0.4s. Then, the buoyancy force overcomes the weight and
the cylinder starts moving upward. It can be noticed how the
cylindrical body is perfectly impermeable, thus underlining the
ability of our novel LB scheme to enforce the no-slip condition
around a solid body in an excellent way. When comparing
the LB contours with the SPH contours in FIGURE [6] it
can be inferred that the two solutions agree to a good extent.
Although SPH delivers more details of the splashdown and
subsequent jet resurge thanks to its particle description, it can
be seen how the two methods agree on the overall time history
of free-surface deformation and cylinder position. Specifically,



DE ROSIS AND TAFUNI

(a) LBM

(b) SPH

FIGURE 6 Free falling cylinder: evolution of the water domain at different time instants for LBM and SPH simulations.
Considering one octuple, from left to right of the top panel: ¢+ = 0.1, 0.2, 0.3, 0.4 s; from left to right of the bottom panel:

t=0.5,0.6,0.7,0.8s.

both methods predict a penetration up to t = 0.4 s and
a subsequent rise of the cylinder due to the buoyant force
overtaking weight and the residual kinetic energy. The two
methods also agree on the ventilation and subsequent wetting
of the upper portion of the cylinder as it penetrates the water.
Overall, a good agreement is found. However, the SPH is more
capable of capturing the finest flow features, especially near
the interface. The discrepancies between the two solutions
should be addressed to how our LB method discretizes the
free surface, i.e. through a finite thickness, and also to the
substantially different nature of the two methods. In fact, the
Eulerian nature of the LBM admits smoother deformations of
the water-air interface, while the Lagrangian essence of the
SPH allows us to better capture violent and rapid changes in
the configuration of the free surface.

3.3 | Rising cylinder in a quiescent viscous
liquid

air

|

FIGURE 7 Rising cylinder: sketch of the problem setup.

water

This next case focuses on the rise of a fully submerged
cylinder to the free surface. The schematics of this simulation
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(a) LBM

(b) SPH

FIGURE 8 Rising cylinder in a quiescent liquid: evolution of the water domain at different time instants for LBM and SPH
solutions. Considering one sixuple, from left to right: # = 0, 0.5, 1.0, 1.5, 2.0, and 2.5 s.

are shown in FIGURE([T | where the submergence depth Y. is
calculated from the resting free surface to the geometric center
of the cylinder. For this test case, the conditions in
(2004) and [Campbell & Vignjevic| (2012) are considered for
an easy comparison of the results. The cylinder has a diameter
D = 2m, a density equal to 0.6 times that of water and its
center of mass initially at a depth of 5m from the water-air
interface, i.e. Yo = 2.5D. The fluid domain has a width of
3D and an initial water depth equal to 3.5D. 300 and 500
lattices are adopted in the horizontal and vertical directions,
respectively.

FIGURE [B] sketches the evolution of the water domain
at different time instants. Similarly to previous cases, a
symmetric deformation of the interface between the two fluids
and a perfect impenetrability of the solid surface can be
appreciated. LB results in FIGURE [87] (top panel) show a
very good agreement with those obtained with SPH (bottom
panel) with the same level of resolution, i.e. setting the particle
spacing in SPH to match the grid size in LB. The position of the
cylinder as predicted by the two methods in all time snapshots
is almost identical. Furthermore, the free surface deformation
which becomes more visible at times ¢t > 1.5 s is also strikingly
similar, highlighting the capability of the new LB approach to
tackle this problem.

In FIGURE E the vertical component of the velocity (4,)
and displacement of the center of mass (g,) of the cylinder
are reported. From a standpoint of flow velocity, these results

highlight a very good agreement with data in (2004)

2.5 R
92 L ]
Z 15| \
S 1+ 3
Pres. —
0.5 - / Fekken 1
I SPH -
0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

FIGURE 9 Rising cylinder: time evolution of the vertical
component of the velocity and displacement of the center of
mass of the cylinder by different approaches: present scheme

(solid line), findings in [Fekken| (2004) (dashed line) and SPH

simulation (dotted line).
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until #+ ~ 1.2's. Moreover, LB findings are also considerably
close to results obtained via SPH in the same time range.
For times larger than 1.2 s, our approach overestimates ¢,
when the cylinder crosses the interface. Again, we address this
behavior to the width of the interface between the two fluids in
the LB approach. Then, the gravitational force dominates the
cylinder dynamics, with the proposed scheme able to simulate
the downward motion similarly to data in [Fekken| (2004).
Interestingly, a very close agreement is found between the LB
and SPH solutions in terms of vertical displacement. For a
more quantitative comparison, TABLE [2 ] reports the peak
values of ¢, and g, by the different approaches.

Pres. Num. SPH
max (q'y) 2.5079 | 2.3165 | 2.6184
max (qy) 5.4700 | 5.2368 | 5.5396

TABLE 2 Rising cylinder: peak values of ¢, and g, obtained
by the present approach (Pres.), numerical findings in [Fekken
(2004)) (Num.) and SPH run.

3.4 | Vertical penetration of a wedge

air

water

FIGURE 10 Vertical penetration of a wedge: sketch of the
problem setup.

As sketched in FIGURE [I0 | a symmetric wedge-shaped
body with deadrise angle { impacting the free surface is
simulated next. The length of the semi-wedge is D, = I'm
and it is represented by 500 grid points. 2000 and 1000 lattice
points are employed in the horizontal and vertical directions,
respectively. A constant uniform downward velocity equal to
v = 1lm/s is assigned. We compute the resultant of the
pressures acting upon the semi-wedge, P, and we compare our
findings to the analytical predictions by Wagner| (1932)

7>v2ay (1)

Fy®) = ry 4tang

where ay(f) = nvt/(2tand) is Wagner’s wetted length.
Wagner’s theory is built on the assumptions of incompressible

(45)

irrotational flow and inviscid fluid. Gravity and air trapping
are also neglected. In addition, it accounts for the motion of
the free surface by increasing the value of the wetted length
corresponding to a flat surface by a factor z /2, that is vt /(tan()
(see [Von Karman)| (1929)). The deadrise angle varies as { =
2°, 3°, 4° in our simulations.
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FIGURE 11 Vertical penetration of a wedge: time evolution
of the pressure force acting upon the semi-wedge computed
by the present approach (Pres. — solid line), Wagner’s equation
(W — dashed line) for different deadrise angles and SPH
simulations (SPH — dash-dotted line).
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FIGURE[IT ]depicts the time evolution of the LB pressure
resultant (obtained by integrating over the semi-wedge’s
length), P, and the same quantity predicted by Wagner|(1932),
Fy., together with findings from SPH simulations. One can
immediately appreciate that the results obtained by the two
numerical approaches are in very good agreement, hence
demonstrating the ability of our method to simulate this
problem. After some initial oscillations due to the transient
dynamics of the very beginning of the simulations, a linear
dependence of P on ¢ is found in the LB runs, consistently with
the theoretical predictions in Eq. (@5). Moreover, analytical
forces decrease as the deadrise angle ¢ increases and this is
also captured by the proposed approach. It should also be noted
that Wagner’s theory is valid for very small deadrise angle.
Hence, one expects that our numerical findings diverge from
the analytical ones as ¢ grows. Defining the slope of the P — ¢
diagram as Sp,, taken as the difference between the force
att = 0.004s and the one at + = 0.002s divided by the
corresponding time interval, we obtain
s = P(t =0.004s) — P(t =0.002s)

Pres 0.004s — 0.002 s
Analogously, Sy, is defined as the slope of the Fy, — ¢ curve,
that is

(40)

Fy(t =0.0045) — Fy(t =0.0025s)

Sy = , 47
w 0.004s — 0.002's “7)
and for the SPH runs
Feppy(f = 0.004 8) — Fopyy(r = 0.002 )
SSPH — SPH SPH (48)

0.004 s — 0.002 s

TABLE [3 ] quantifies the difference of present results
with respect to analytical model in terms of relative percent
discrepancy between the slopes, i.e.

-
Ewip = S—W x 100. (49)

Moreover, we report the relative difference between findings
obtained by the SPH runs and the predictions by Wagner as

SSPH B SW

Ev 5o = x 100. (50)

w

It is possible to observe that the discrepancy between the
numerical solution provided by the present scheme and the
analytical solution increases as ¢ grows. The SPH exhibits
the same trend. Notice that the difference is taken between
the slopes, rather than between the values of P itself, due
to the fact that the pressure resultant depends linearly on the
time (see Eq. (@3). Therefore, even in presence of a very
small mismatch between analytical and numerical solutions
in the local pressure computation, the discrepancy will be
unavoidably much more emphasized as the time advances.
Hence, the comparison between the slopes in the P —t diagram
represents a more reliable estimation of the accuracy of the
method.  As an additional tool to investigate the ability of the

¢ 20 30 4°
Ewip | 63266 | 29.4741 | 442311
Ewspi | 5-1568 | 32.2889 | 46.3319

TABLE 3 Vertical penetration of a wedge: percentage relative
discrepancy between (i) the slope of present results and
Wagner’s predictions, &y g, and (ii) the slope of SPH findings
and Wagner’s predictions, v gpy, for different deadrise angles

¢.

proposed scheme of reproducing the dynamics of the interface
around the wedge, additional runs are carried out by selecting
¢ = [20°, 25°, 30°, 35°]. The time evolution of the water
domain is plotted in FIGURE for { = 25°, where the
pile-up along the wedge can be clearly appreciated and further
compared to findings in|Zarghami et al.|(2014). An animation
is also available at https://www.youtube.com/watch?v=
1gJ5cndBf6A.

In FIGURE [I3°] the air-water interface is depicted at t =
0.01 s. Our results show a decrease of the relative water pile-up
with increasing deadrise angles. This corroborates findings
in Mei, Liu, & Yue| (1999), as well as those achieved by a
free-surface LB study in|Zarghami et al.[(2014).

4 | CONCLUSIONS

In this paper, an original phase-field lattice Boltzmann
method has been presented and tested against four benchmark
problems. The proposed scheme has demonstrated the ability
to accurately predict the hydrostatic and hydrodynamic
actions in the case of partially and totally submerged objects.
In combination with a time integration scheme for solid
dynamics, it can be concluded that the present LB scheme
is an excellent candidate to perform accurate simulations of
realistic hydrodynamic stability and water-entry and water-exit
problems. Moreover, the present LB algorithm is competitive
with respect to existing strategies in terms of stability of the
analysis, especially when high-density contrasts are involved.

The advantages of the proposed approach can be
summarized as follows: (i) increased stability with respect to
the BGK LBM; (ii) ability to account for high density and
viscosity contrasts; (iii) very general formulation, that can be
extended to any lattice velocity discretization; (iv) compact
practical implementation.

Our next step is the development to a three-dimensional
model, that will allow us to simulate more complex and
sophisticated problems, as the water-exit of a sphere (Haohao,
Yanping, Jianyang, Fu, & Tian| (2019)) and the water-entry
of hydrophobic objects (Shentu, Zhao, Li, & Zhao|(2019)). It
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FIGURE 12 Vertical penetration of a wedge: evolution of the water domain for { = 25° at salient time instants, i.e. f = 0.02s

(left), 0.06 s (mid), and 0.1 s (right).
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FIGURE 13 Vertical penetration of a wedge: air-water
interface at t = 0.01 s for different deadrise angle: 20° (solid
line), 25° (dashed line), 30° (dotted line) and 35° (dash-dotted
line).

should be pointed out that handling more complex geometries,
especially in three dimensions, may imply a huge amount of
computational time due to the corresponding high number of
required lattice points. This issue can be alleviated by using,
for example, block-structured grid refinements.

SUPPLEMENTAL MATERIAL

The script D2Q9CentralMomentsPhaseField.m allows the
reader to perform all the involved symbolic manipulations in
order to re-build our proposed model.
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APPENDIX

A RAW VERSUS CENTRAL MOMENTS

Let us use the Rayleigh-Taylor mechanism to compare
the stability of the scheme proposed in this paper to the
raw-moments-based multiple-relaxation-time LBM. Let us
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FIGURE A1 Rayleigh-Taylor instability: kinetic energy of
the system averaged by the area of the domain obtained by
the present scheme (solid line) and raw-moments-based MRT
. . 1 .
2y 2
LBM (dashed line). Notice that {pu“) = N X AN Z pu-, with

2 _ .2 2
u —ux+uy.

consider a two-dimensional domain of size N X 4N, with
N = 128, where a fluid of density p, is placed over a lighter
one of density p; = 1. The fluid is initially at rest and initial
conditions in terms of density read as follows

p(x,0) = py, if y>2N +0.05N [cos 2zx)],

p(x,0) = p,, otherwise. (Al)
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The domain is periodic at every side, except for the top
and bottom sections where the no-slip boundary condition is
assigned. The flow is driven by a gravitational body force, that
is

(A2)

Py tpL
————— a’
2

Fb(x7 t) = - |:p(xat) -

with a = (0, —a), and a chosen so that v/aN = 0.1. The
problem is governed by two dimensionless parameters, that
are the Reynolds number Re = N4/gN/v = 3000000,
and Atwood number, At = (py — p.)/(py + pr) = 0.1.
FIGURE [AT | depicts the kinetic energy of the system
averaged by the area of the domain by our approach and by
raw-moments-based MRT LBM. While the latter undergoes a
blow-up at around ¢ /1, ~ 17.07 (with ¢, = 4/ N /a), the former
can successfully simulate a larger time span. Therefore, we can
assess that the adoption of central moments is instrumental to
perform stable high-Reynolds-number-flow simulations.
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FIGURE A2 Rayleigh-Taylor instability: 10-base logarithm
of the requested CPU time against the 10-base logarithm of the
number of lattice points SN. CPU time is normalized by its
value at the coarsest grid resolution, i.e. N = 32. The slope of
the curve is 1.52.

This test case is further adopted to estimate the
computational cost in terms of CPU time involved by our
algorithm. Specifically, we run five different simulations by
varying N as N = 32, 64, 128, 256, 512. In FIGURE [A2 ]
the 10-base logarithm of the requested CPU time (normalized
by its value at N = 32) is plotted against the 10-base
logarithm of the number of lattice points 4 N2. This graph
shows a pretty straight line with slope of 1.52, meaning that
the run time of a simulation grows less than quadratically with
the number of points. Indeed, particular attention should be
paid when progressively higher grid resolutions are involved
in the computations.

B UNITS CONVERSION

To perform the conversion from the physical system to the LB
world (and vice versa), one should set some scaling factors.
Let us consider a cylinder of diameter equal to 1 m. Let us
discretize it by (for example) 100 grid points. In this way,
it is possible to define the scaling factor for the length as
5 = 2 = 0.01m. Similarly, a physical velocity of 1 m/s
can be represented by a value equal to 0.005 in LB units, thus

leading to a velocity scaling factor of s, = ! I(l)l({; =200m/s.
Moreover, the scaling factor for the mass génsny can be set
as s, = 1000 kg/m?>. Given this three values, the remaining
conversion parameters can be easily computed. For example,

the scaling factors for time, pressure and kinematic viscosity

s,s;', s = 5.5 s, = 525!

can be evaluated as s, = » Sp Sy 1S

respectively.

It should be pointed out that accuracy and stability of
any run depend on the selection of these scaling factor. In
fact, the LBM recovers the solution of the incompressible
Navier-Stokes equations in the limit of vanishing Mach
number. In other words, the lower the velocity in LB units,
the more accurate the solution is. In addition, high values of
the Mach number of the simulations can lead to unstable runs.
Moreover, the fluid kinematic viscosity v = rcf in lattice units

should correspond to 7 + 1 € (% : 1], with the stability

. 2
decreasing as v — 0.
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