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1. Introduction 

Interpretation of SSIMS spectra requires a great deal of experience and costly expertise. Human 
experts often support their knowledge by searching a library of known spectra for a suitable match to 
the unknown spectrum in a process that can be very tedious, time-consuming and uneconomic for 
industrial surface analysis. To make the power of SSIMS more widely and easily accessible to R&D 
and Quality Control laboratories, an intelligent automated search engine capable of recognising and 
classifying SSIMS spectral patterns is required to enhance rapid and efficient interpretation of spectra 

NeuroSpectraNet is a novel and unique neural networks mechanism designed to overcome these 
difficulties by providing an efficient search engine requiring little or no human assistance for an 
effective determination of the unknown spectrum 

1.1 Why Neural Networks For SSIMS? 
Neural networks are powerful computational software and hardware techniques designed to parallel 
the operations of the human brain in various tasks of pattern recognition, classification and intelligent 
data analysis. Currently regarded as the greatest technological advancement since the advent of 
transistors, neural networks consist of computational processing elements, called neurons, which cany 
out some specific computational task integral to the overall objective. Unlike classical data analysis, 
neural networks achieve their objectives by learning the data (which describes the unknown) and 
inductively reasoning out a solution, rather than being pre-programmed for a specific solution. Each of 
the various existing neural network paradigms combine the abilities and power of several statistical 
mechanisms into one powerful algorithm providing robustness against noise and outliers, high speed 
of operation, adaptive capability and better power of discrimination and prediction. 

SSIMS (Static SIMS)spectra are often complex and generally impure in nature. Furthermore, the 
molecular-ion is not observed in many SSIMS spectra, and ion recombinations can complicate 
analysis. For these reasons, neural networks may well become invaluable for intelligent interpretation 
of SSIMS by fully exploiting the following neural power: 
i Ability to learn, adapt and remember; 
ii. Efficiency at modelling non-linearities; 
iii. Robustness against inadequate and inconsistent data 
iv. Extensive knowledge indexing and automatic data abstraction; 
v. Ability to self-organise and readily generalise solutions; 
vi. Ability to self-generate own model. 



2. NeuroSpectraNet 

NeuroSpectraNet was designed to take advantage of both the self-organking and supervised properties 
of neural networks. The self-organking mechanism enables the network to organke spectral data 
according to their chemical similarities, while the supervised mechanism supports the ability to 
interpret a spectrum that is somewhat unique and not directly similar to any spectrum in the database. 
The supervised mechanism achieves this by detecting some specific chemical properties that the 
spectrum exhibits in common with some other spectra in the database. Thus, if the self-organising 
mode fails to find a match for the spectrum, interpretation can be assisted by switching to detection of 
chemical functionalities that may be evident in the spectrum 

Unlike other methods used for mass spectra analysis including MsNet [I], PCA [2], and STIRS [3], 
NeuroSpectruNet does not require knowledge of the molecular-ion or any specific significant peaks. 
Instead, it self-generates its own model of significant micro-features (peaks) from the raw composite 
spectrum of positive-ion and negative-ion spectra of a material. 

2.1 Design Principle 
The backbone of the design philosophy of NeuroSpectraNet is based on a self-organising mechanism 
similar to the ART2 [4] neural network which is capable of organising input data into categories of 
similar patterns without a priori training. The mechanism is also able to mimic the technique of 
spectral library searching more as an inteltigent search engine. Initially, NeuroSpectraNet models 
various SSIMS patterns into categories of chemical similarities. An unknown spectrum may then be 
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Fig. 1. Illustration of NeuroSpectraNet analysed to identify any 
chemical functionalities 

that may be present in the spectrum Fig. 1 illustrates the principle of this self-organking mechanism 

2.2 Data & Computation 
The positive-ion and negative-ion stick spectra of a material are normalised to the total intensities of 
their respective masses. The normalised positive-ion spectrum is then appended to the negative-ion 
counterpart to form a composite spectrum used as input to NeuroSpectruNet . 

2.2.1 Prototype Generation and The Self-organking Mechanism 
The first task is to generate a prototype that contains all the salient features of the original spectrum 
The prototype generation is performed by a multi-layer set of neurons. Each of the neurons in a layer 
is dedicated to computing the spectral information of a mass position. The composite spectrum is 
modified within the layers by a process that successively re-normalise the composite spectrum and 
provide contrast enhancements until the prototype generation process stabilises. Since low-intensity 
peaks at high mass are significant in SSIMS, NeuroSpectraNetS contrast enhancement provides a 



modified sigrnoid function to boost low-intensity peaks at high mass. Automatic bias filteration is also 
implemented within the mechanism to set a noise-kee threshold for each prototype. 

The first prototype to be generated is stored as an archetype representing the category of materials the 
spectrum belongs to. On encountering the second and any subsequent spectrum, the new prototype is 
compared for a match with the stored archetype of each of the existing categories. NeuroSpectraNet's 
matching process involves several numerical tests of similarity and dissimilarity in which the 
contribution of each mass in the unknown spectrum is aggregated to produce a unique validation index 
that is assessed to c o n f i  whether or not the spectra are chemically and structurally similar. The 
various tests are designed to numerically emphasise the spectral differences between dissimilar 
materials while similarities of spectra of hke materials are enhanced. As a result of the complexity of 
many SSIMS spectra no single test suffices to cover all the observed spectral differences. Therefore, 
the various tests operate to produce a joint decision, thus fully utilising the advantage of breaking a 
complex task into easier sub-tasks that are handled in parallel by different processing elements. 

If the archetype of a category is found largely similar to the new spectrum's prototype, it is entered into 
a pool of potential winners while the archetypes of remaining categories are similarly evaluated for a 
match. If more than one potential winner exists after all the categories have been tested, the potential 
winners are then re-assessed in an arbitration module to determine which of them has the best 
correlation to attract the unknown into it's category's membership. If only one winner exists in the 
pool its category automatically becomes the winner. 

However, if no match is found, the prototype of the unknown sets up a new category for attracting 
spectra of materials similar to it. Additional tests are then undertaken to detect predefined 
functionalities that may be present in the new spectrum via a process described in section $2.2.2. 

2.2.2 Supervised Training and Functionalities Identification 
The prototypes generated from the various spectra are ideal candidates for training a network for 
detection of some specific functionalities which may be hidden in the spectra of many materials. 
Through a supervised extension, the self-organising NeuroSpectraNet learns via examples, discovers 
and models the salient characteristics of a functionality. The functionalities present in an unknown 
spectrum then becomes identifiable through the models thus generated. Thus, NeuroSpectraNet is able 
to utilise collective information available throughout the database to efficiently model functionalities 
by self-discovery of the characteristics of a functionality, to make it ideal for SSIMS which often 
contain complex mixture of functionalities. 

This added advantage to NeuroSpectraNetS self-organising mechanism makes it a powerful tool for 
providing information on specific chemical functionalities that may be present in the unknown. 

3. Results and Discussion 

Our exploratory design based on ART2 [4] network correctly grouped closely-related materials 
together when tested on a small range of materials. However, the classification efficiency degraded 
over a broader range of materials. The phenomenon of re-grouping was also very evident as 
membership of categories readjusted when similar spectra of some materials that were previously 
categorised into some groupings decamped to some more recently-formed categories to which they 
were indeed closer. This, we found, was due to the original design of ART2 [4] being unsuitable for 



SSlMS where there is a very strong commonality amongst spectra of dissimilar materials. With 
NeuroSpectraNet, the re-grouping phenomenon is not observed; efficiency of classification is good 
over an unlimited range of materials, as the discrimination tests are comprehensive and numerically 
efficient. A typical classification such as Fig. 2 shows that there is a good correlation between spectra 
of many materials that have structural similarities. 

Fig.2. A Typical NeuroSpectraNet Grouping of Spectra of Similar Materials, Showing Their 
Correlation Factors Against Poly(2-chloroethyl methacrylate). 
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NeuroSpectraNet's classification is fast with an average classification time of 10 sec for a 2x1500 
a.mu spectrum search of 450 spectra in R e  Static SZMSLibrary [5]. 
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4. Conclusion 

NeuroSpectraNet has demonstrated that neural processing power can be harnessed for analysis of 
SSJMS spectra. If a spectrum similar to an unknown exist in NeuroSpectraNet's database, it would 
efficiently and correctly identify the unknown in a matter of seconds. If an unknown is so unique that 
it is completely new to NeuroSpectraNet's self-organising mechanism, NeuroSpectraNet is designed 
to help the analyst to correctly identify pre-defined functionalities that may be present in the unknown. 
Because the analysis is fast and reliable, the spectrometrist can focus his attention on more complex 
tasks better armed. 
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