
The University of Manchester Research

Brewing the first ever automatic memory management
utility for SpiNNaker: Real-Time Garbage Collection for
STDP simulations
DOI:
10.1109/IJCNN.2017.7966229

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Mikaitis, M., & Lester, D. (2017). Brewing the first ever automatic memory management utility for SpiNNaker: Real-
Time Garbage Collection for STDP simulations. In 2017 International Joint Conference on Neural Networks
(IJCNN) (pp. 3008-3015) https://doi.org/10.1109/IJCNN.2017.7966229

Published in:
2017 International Joint Conference on Neural Networks (IJCNN)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact openresearch@manchester.ac.uk providing relevant details, so
we can investigate your claim.

Download date:23. Jun. 2025

https://doi.org/10.1109/IJCNN.2017.7966229
https://research.manchester.ac.uk/en/publications/3c2e2cd3-1be7-4150-8a58-d1139349ddd1
https://doi.org/10.1109/IJCNN.2017.7966229


Brewing the first ever automatic memory
management utility for SpiNNaker: Real-Time

Garbage Collection for STDP simulations
Mantas Mikaitis, David R Lester

The Human Brain Project
APT Research Group

University of Manchester, Manchester, UK
{mikaitis, dlester}@cs.man.ac.uk

Abstract—First generation SpiNNaker chip uses ARM968, with
highly limited internal memory space, as its core element. In
simulations of learning algorithms, many biologically plausible
learning rules require history traces of each neuron’s activity
to be stored. As a result, the history traces of neurons rapidly
fill the internal memory space eventually reaching the limits
of ARM968. To lower the possibility of memory overflow, we
propose to introduce a memory management routine working
in the background, which must respect the biological timing
constraints of the SpiNNaker simulations. Real-time garbage
collection is an automatic memory management technique that
can satisfy these requirements. This study presents the first ever
implementation of real-time garbage collector for SpiNNaker
architecture and evaluates the performance, carefully considering
the biological real-time constraints of the system.

Index Terms—garbage collection, automatic memory manage-
ment, hard real-time systems

I. INTRODUCTION

One of automatic computer memory management tech-
niques is garbage collection. To demonstrate, we allocate three
objects, A, B and C on the memory heap using e.g. malloc()
in C programming language. If object B eventually becomes
inactive, i.e. the variable that used to point to it is assigned a
different address, the memory that B occupies can be used for
other purposes. The garbage collector’s task is to enter while
the main application is idle and do the following: Remove B
object from memory and re-manage the locations of A and C
in order to reclaim free space between them. After these steps,
the space that B occupied is now residing in the whole block
of free space at the end of the heap, where it can be re-used
for new object allocation.

It is estimated that 213 events occur on a single core in
SpiNNaker per each mili-second when simulation is run with
biological time constraints [1]. A large part of these events
leave traces in the memory that are used in further simulation
activities. Current approach uses fixed size buffers to store
traces. If a buffer becomes full, the last trace will be dropped
out of memory unconditionally, even if it is still useful for fu-
ture simulation activities. In comparison, other neuromorphic
systems apply a manual memory management [2] or build

Fig. 1. Basic garbage collector operation: Reclaiming memory space
occupied by a dead object B and compacting live objects A and C

mathematical models to detect memory critical areas of the
system [3]. The research into the automatic memory man-
agement on SpiNNaker is interesting because the limitations
of the internal memory space of the SpiNNaker cores have
many implications for simulation activities mentioned above.
The demonstrated work should be useful to computational
neuroscience community and in particular to builders and users
of massively parallel neuromorphic platforms. This study will
provide useful insights into how memory can be managed
on SpiNNaker and similar neuromorphic systems, and where
specifically automatic management could be useful for such
architectures.

The contributions are provided in the following order: We
start by introducing background information about SpiNNaker
computer (Sec.II). We then present two foundational garbage
collection algorithms: copying collector (Subsection III-A) and
generational collector (Subsection III-B). Then, the manuscript
is continued with the details of implementing two afore-
mentioned garbage collection algorithms on SpiNNaker chips
(Sec.IV). After that, we evaluate garbage collection on SpiN-
Naker, given the memory limitations described in section II-A,
and biological real-time constraints of learning mechanisms
introduced in sections III-C and III-D. The analysis is given
in section V.



II. BACKGROUND

The SpiNNaker project aims to create a massively parallel
million-core computer, specifically constructed for large-scale
neural network simulations, such as mammalian brain [4]. This
chapter will introduce SpiNNaker in detail and identify the
main applications that it targets. Additionally, the principles
of garbage collection and the purposes of implementing it on
SpiNNaker will be discussed.

A. SpiNNaker Chip

SpiNNaker chip is made out of 18 ARM968 processors as
well as a block of shared SDRAM of 128Mbytes. The board
in Fig.2, on which the project was also developed, comprises 4
SpiNNaker chips. Typically each ARM968 in the SpiNNaker
chip will be allocated up to 255 neurons.

ARM968 contains 64Kbytes of data storage memory,
DTCM1, and also 32Kbytes of instruction memory, named
ITCM. The compiled binary is downloaded onto ITCM and
any data structures that are used while user’s application is
running, are stored in DTCM. DTCM is the main area of
interest in this study as this is the memory space where
allocable heap resides, and where hundreds of history traces
are recorded while simulation is running.

B. Fundamentals of Garbage Collection

Garbage collection is a technique of optimising memory
without interference of the programmer. One of the first
examples of garbage collection can be recognised in the early
implementation of LISP programming language. The basic
principle was detecting the non-free registers that are not
referenced from anywhere in the application. Such a register
may be considered abandoned by the program, because its
contents can no longer be found by any process on the

1TCM - Tightly Coupled Memory. TCM is very close to CPU as it can be
accessed on every cycle. Contrary to the ordinary memory, there are no caches
involved when accessing TCM thus avoiding any indeterminacy associated
with caches [5]

Fig. 2. 4-Node SpiNNaker development board

machine; hence we would like to reclaim the space, that the
unused register occupies and recycle it for further use [6].

In the late 1990s and early 2000s, a commercial adoption of
programming languages allowed Real-Time garbage collection
to be invented. Real-Time garbage collection is required when
the specific system is considered to be a real-time system:
object creation and access times of those objects are in the
specific time boundaries [7]. A common example is a control
of an aeroplane, where the delay between pilot’s command and
the occurrence of the action must be as minimal as possible.
Because of this, in any given time window, garbage collection
has to occur in an organised manner so that it would not violate
the running periods of the mutator2.

III. THEORY

A. Copying garbage collector

One of the first ideas of real-time garbage collection was
studied and presented by H. Baker [9] with useful notes on it
written by Lieberman et al [7]. Baker proposes the available
memory space to be divided into two parts, called fromspace
and tospace. The memory allocation (e.g. using malloc() in
C or CONS in Lisp) is allowed only in tospace and the
garbage collection process traces the accessible objects in
fromspace, incrementally moving them to tospace. When no
objects remain in fromspace, it can be used for allocating new
objects. The operation called flip occurs which interchanges
the roles of two spaces. Thus, after the flip, tospace becomes
a free memory block that was previously labelled fromspace.

When an object is moved from fromspace to tospace, an
invisible pointer is left in fromspace that will direct any access
to tospace where object now resides. After any such access,
the reference must be updated to point directly to the new
location of the object in tospace.

When an object is evacuated to tospace, some of the compo-
nents in the object might be pointing back to fromspace. Such
pointers cannot persist as we need to recycle the whole space
that fromspace occupies. The operation called scavenging
is undertaken to remove such pointers. Scavenging copies
all objects that are referenced from the particular object in
tospace, to tospace, and updates the pointers to point to the
new locations. Noteworthy, the type of objects that we will
collect in SpiNNaker never have pointers to other memory
areas, therefore we will not need to undertake scavenging.

Baker’s algorithm is a simple, yet efficient solution for
garbage collection, therefore has been chosen as the foundation
theory for this SpiNNaker project.

B. Generational garbage collector

Lieberman and Hewitt [7] have demonstrated an improve-
ment over Baker’s copying garbage collector, by introducing
heuristic techniques to differentiate the rates of garbage col-
lection of different memory regions. Their main idea is to

2An application that has allocated a set of objects and is periodically
reading and writing them is called mutator. Mutator and collector are normally
separated into two different entities as first demonstrated by Dijkstra et al [8]
where two different processors were used for executing both programs.



implement a garbage collector that is based on the lifetimes
of objects, i.e. if a particular group of objects is predicted to
live in the system longer, we do not need to check whether
they are dead as often as the ones that are more temporary.

The main principles of Lieberman’s collector is to fragment
the memory into small regions as opposed to Baker’s division
into two parts. Memory regions contain two values that allow
us to control the rate of garbage collecting them: generation
number and version number. When the region becomes used
for storing objects, its generation number gets assigned a
current generation number. The current generation number
is then incremented. The garbage collection process is very
similar to Baker’s: copy all accessible objects from a region
to a new space, scavenge all back-pointers and recycle the
old space. When such region is garbage collected, its version
number (now in a new location) is incremented. As a result
of all above, the generation and version numbers tell us how
old the region is and how much it was garbage collected.
These two numbers allow to predict how relatively temporary
or permanent the data on the specific region is, and therefore,
enables control over how often we should put our processing
power into scanning the objects in it.

C. Synaptic plasticity on SpiNNaker

Spike-Timing-Dependant Plasticity(STDP) [10] is a com-
monly used model of synaptic plasticity. At it’s core, STDP
draws a simple idea: a neuron is capable of receiving input
spikes through channels, called synapses, that connect it to
other neurons. Then, the input arrival a few mili-seconds
before neuron fires, leads to strengthening of that channel,
whereas input arrival a few mili-seconds after neuron fires,
leads to weakening of the channel. This change in the channel
strength between neurons is important because synaptic plas-
ticity, in general, is believed to be one of the main phenomena
driving learning and memory activities in the brain [11]. In
order to calculate relationships between spikes, spiking history
traces must be stored at the end of post-synaptic neuron.

How do we handle memory objects generated by STDP? In
a general garbage collector, the references to the objects can
be traced and the decision made whether it is garbage or not
depending on the count of the references. In our application-
specific collector, this decision is made in a different manner,
by considering the specific data structures used in synaptic
plasticity. The history trace of synaptic event is dead when
it has served its purpose for the currently running simulation
on the SpiNNaker. For this project, we will assume that the
history trace can be considered outdated after it has been in
the system for 500ms (A consequence of time constants used
by Morrison et al [12]). Noteworthy, the difference between
general garbage collector and application specific collector that
is being implemented, is that we do not consider references
to the history traces but their lifetime in the system.

D. SpiNNaker Real-Time Constraints

A major goal of the SpiNNaker architecture is to be able to
run brain simulations in real time [4]. SpiNNaker has a timer

Fig. 3. Simulation activities that are taking place on each timer
interrupt. T - Timer, GC - Garbage Collection, S - Spike processing.
a) Activities that are marked T run for some fraction of time per
each timer interrupt. b) Spike processing events have higher priority,
therefore timer interrupt activities get spread out. c) Garbage collec-
tion is added to each timer interrupt. d) Garbage collection cannot
be interrupted, it locks CPU, therefore some spikes get deferred. e)
Real-time violation occurs if garbage collection takes too long and
spike processing cannot finish on this timer interrupt.

which is used to manage most of the events on the system. The
main event that happens periodically is a timer interrupt, on
which neuron states are evaluated and spike transmissions are
performed. The period of timer interrupt can be chosen by the
user, but most commonly it is set to 1ms. Any code that runs
as part of timer interrupt must finish before another interrupt
arrives, including new garbage collection routines introduced
in this project.

When neuron potentials are evaluated on timer interrupts,
some neurons fire spikes and therefore another event on the
system, caused by arriving neuronal spikes, is spike process-
ing. Spike processing makes efferent neuron processors read
new information from SDRAM and store it in the internal
memory. This interrupt has a higher priority than timer inter-
rupt and thus it will be executed instantly, this way, pausing
timer interrupt activities.

Figure 3 demonstrates the activities that happen between
two timer interrupts. Spikes interfering the timer interrupt
will spread it out across the given period of time. If timer
does too much work while high spiking rate occurs, timer
interrupt process will not be able to finish in a given period
and synchronisation will be violated. Additionally, garbage
collection operation is atomic, because it collects all the
garbage or none. Due to these reasons, it can defer some
spikes.

We predict that if garbage collection operations can be made
as efficient as possible in order not to add significant amount
of work per each timer interrupt, then the real time simulation
capabilities of the SpiNNaker system will be preserved. If



there is a need to defer spike processing by some fraction
of a mili-second, it is allowed to do that as long as it will
be processed in the same mili-second in order not to overload
the event queue. At the end of the mili-second, another timer
interrupt will occur and before that all of the queued events
must finish processing.

IV. DEVELOPMENT

This section covers the main algorithms that were devel-
oped. The development consisted of 3 main components that
when combined, form a variant of Henry Baker’s copying
garbage collector: scanner, buffer extender and memory com-
pactor.

A. Synaptic event history trace buffers

Current SpiNNaker implementation of history trace buffers
allocates a fixed amount of memory for each buffer and stores
them in a single consecutive block. These data structures are
then considered to be standard C arrays.

In order to do garbage collection we must be able to
relocate the objects in the memory heap. However, with the
implementation of a standard C array the base address of the
array is constant and therefore cannot be updated [13]. The
solution to this is to allocate memory in DTCM heap using
sark malloc() from SARK library and keep a record of the
pointer to it, in order to access the elements. In this way
we are able to update the pointer to point to a new location.
If memory is copied correctly from one location to another,
and the reference is updated, the higher level application will
be able to access data without any noticeable change. This
proposal is demonstrated in Figure 4. Each buffer now contains
times* and traces* pointers instead of fixed size arrays as
shown in the previous section. Additionally, new variable size
is introduced in order to find the end address of each buffer
and allow variable sized buffers.

B. Memory compactor

One of the most basic techniques to manage memory is
memory compaction. Memory compactor processes memory
heap at certain periods and it has a capability of moving
objects from their original locations. There are 2 main require-
ments for an effective and secure memory compactor: 1) After
compactor finishes, all objects on the heap must be in a single
consecutive block followed by a free block of memory (if any
left) and 2) On any successful move operation of the memory
block, compactor must update all references to this block. This
must be done independently from the user’s application that
will be using the reference to access the relocated block.

The memory compactor works as follows: each neuron’s
buffer is copied to a pre-allocated space on SDRAM. Any free
holes in the memory are not taken by the copying operation
and the result is a single consecutive block of buffers in
SDRAM. Then, the whole consecutive block of buffers is
copied back to DTCM, starting at address that was originally
allocated for the purpose of storing post trace buffers. The
references to each neuron’s buffer are then updated and

Fig. 4. Experimental synaptic history trace buffer structure

therefore the mutator application can continue adding traces to
the buffers. As a result, all of the previous data with memory
holes in it is overwritten and thus recycled (Fig.5).

The specific implementation of compactor in SpiNNaker
considers post-event history trace buffers that were presented
in section IV-A, as atomic objects. In order to understand the
start and end addresses of the buffer, compactor refers to the
special variables stored in the buffer, i.e. start address and size
of the buffer. Therefore the size variable of each buffer must
be strictly managed by other parts of garbage collection in
order for the compaction operation to recognise correct data
regions for copying.

Fig. 5. A visualisation of the compactor



C. Buffer extender

In order to use the space of the buffers, that are not filled
completely, the proposal is to initially set the initial number
of events to a small number and extend each buffer that needs
more space, dynamically. If there is a buffer that needs to add
a trace, but is already full, copy the buffer to the end of the
data structure of all buffers, into the allocated extra space,
and update the reference of it. Relocation of buffers requires
to update their base addresses. This is a direct application of
the experimental buffer structure proposal that was introduced
in Section IV-A.

D. Scanner

Scanning is the main operation that finds garbage on the
heap and recovers the memory space that the outdated objects
occupy. In general, scanner finds garbage in each of the history
trace buffers. Because history traces are in fact time stamps,
they occur in sequential order and the oldest ones, that will be
collected first are always at the top. Then, in order to collect
them we can simply move the base pointer down and decrease
the size variable in the buffer, to redefine the boundaries.

E. Generational garbage collector for SpiNNaker

Baker’s garbage collector suffers from the need to linearly
scan the whole memory space to find garbage. Similarly, our
variant of garbage collector looks for outdated traces in every
buffer. I.e. If simulation has 255 neurons per core, 255 buffers
will be checked on every scanner iteration. That results into
255 accesses to the stack to retrieve the addresses to the
buffers.

Instead of scanning all the buffers, they can be categorised
into specific groups, further called generations (Fig.7). Which
buffer is put into which generation depends on how likely
they can contain outdated traces: older generations contain
buffers with high probability of having garbage in them. We
will make this decision according to the simulation clock and
the time entry of the oldest trace in a particular buffer. In
order to accommodate this new functionality, scanner needs a
small modification in order to scan only buffers that are in the
current generation.

V. ANALYSIS

For testing purposes, a simulation of 2500 neurons with a
timer interrupt period of 1ms was run. Such a simulation uses
a single SpiNNaker chip on the developer board and occupies
10 ARM968 cores in that chip, resulting in 10 copies of the
garbage collector running at once.

A. Efficient data copying using ARM block-copy

An implementation of ARM block copy [14] is provided
as part of this project. It achieves more effective copying
operation for block sizes that are multiple of 4 words. Each
iteration of ARM block copy routine copies 4 words or 16
bytes with a single instruction. If the number of words in
a given block is not a multiple of 4, the remaining words
are copied one at a time. Using this method, the number of

instructions to copy the block of n bytes is denoted by the
following equation:

4(b n

16
c+ dn (mod 16)

4
e) + 9 (1)

The following figure compares ARM block copy with other
available copying routines on SpiNNaker:

0 200 400 600 800 1,000
0

200

400

600

800

1,000

Size of data block [bytes]

N
um

be
r

of
in

st
ru

ct
io

ns
ru

n ARM block copy
sark mem cpy

DMA

Fig. 6. Growth of the number of instructions required to copy data
using different copying routines. sark mem cpy copies data byte per
loop iteration.

B. Memory compactor

Table I summarises the time it takes to compact the memory
with differently sized history trace buffers used and different
numbers of neurons per core. From the given run-times it
is evident that the fastest copying routine is ARM block
copy with standard C memcpy() showing slightly smaller
performance. Sark mem copy is too slow, due to byte by byte
copying. Additionally, DMA is slower because our atomic data
elements are of small size.

To sum up the results, for the compaction operation, ARM
block copy is best suited to copy small data blocks, therefore it
will be used for copying individual neuron buffers to SDRAM.
On the other hand, DMA is best suited to copy big blocks
(more than 250Bytes, as established above), thus it will be
used to copy all blocks back to DTCM.

The timing statistics also show that the compaction oper-
ation, in the most common case of 255 neurons, runs for
400-900 micro-seconds. As this is close to 1ms, it would vio-
late real-time requirements of the SpiNNaker system (III-D).
Therefore, the compactor’s work must be divided into smaller
chunks, i.e. the working space will be divided into 4 or more
regions (Fig.8) and on each call of the compactor only one of
the regions will be compacted, but different region each time.

C. Buffer extender

The buffer extender (IV-C) operates by copying a single
buffer and shifting elements down by a small number of
bytes. Table IV summarises the running times of extension



Fig. 7. Generational garbage collection at two specific time instants. The oldest trace time was set to current time−500ms. The generation
step is 50ms. All traces are additionally categorised into two higher level generations, old generation and new generation similarly as
demonstrated in Garbage Collection Handbook, Chapter 9 [15]. At any point in time, the current buffer (marked light colour) that is garbage
collected, may contain both new and old generation traces, but only old traces are removed from the system. The generations that are marked
darker colour are already collected and will not be checked again.

type of simulation ARM Block Copy memcpy DMA sark mem cpy
40/4/32b 0.039 ±0.0013 0.044 ±0.0005 0.064 ±0.0 0.146 ±0.004
255/4/16b 0.4 ±0.08 0.66 ±0.08 0.91 ±0.09 1.7 ±0.1
255/4/32b 0.95 ±0.043 1.06 ±0.13 1.07 ±0.13 3.87 ±0.09

TABLE I. Average running times of the compaction operation. The time is expressed in mili-seconds and standard error is also provided.
The run-times were evaluated by running compactor more than 20 times. Each row represents the type of simulation, with the parameters,
respectively: number of neurons per core, number of history traces in the buffer and the initial size of the buffer. Each column represents
the copying method used to copy buffers to SDRAM.

type of simulation time (ns)
40/16/64b 3870 ±20
40/16/128b 3913 ±28
255/4/16b 36578 ±1410
255/4/32b 43171 ±1645

TABLE II. Running times of the scanning operation (ns). Type
of simulation parameters are, in order: number of neurons, initial
number of traces and size of the buffer.

operations with various, differently sized buffers. On average,
the extender is called 3.5 times per SpiNNaker time step thus
it approximately occupies only 1% of the time available in a
single timer interrupt.

D. Scanner

The scanner, that was introduced in section IV-D, is doing
a significant amount of work, while linearly scanning all
of the buffers and then shifting the array elements of the

type of simulation time (ns)
40/16/64b 3086 ±48
40/16/128b 3049 ±51
255/4/16b 6449 ±635
255/3/24b 8624 ±640

TABLE III. Generational collection: running times of the scanning
operation (ns). The simulation parameters are, in order: number of
neurons, initial number of traces and size of the buffer.

buffers that are found to contain garbage. The run times of
the scanner are summarised in Table II. We can observe that
scanner takes more time to execute as the number of neurons
increases. This is due to the fact that more neurons introduce
more data structures on the memory heap. Additionally, as
simulation complexity is increased (size of buffer increases),
element shifting is introduced which causes processor to spend
additional few thousand nanoseconds for executing scanning
operation.



E. Combined system performance analysis

In figure 10 (a), demonstrated are the numbers of bytes
reclaimed per each scanner invocation for scanning rates 1
kHz and 0.5 kHz. When the rate is 1kHz, i.e. 1 scan per timer
interrupt, a lot of cycles are wasted by reclaiming 0 bytes.
When the rate is decreased to 0.5 kHz, to scan the memory
on every other timer interrupt, we recycle more garbage on
each iteration but produce less wasted scan cycles. Therefore,
if we keep decreasing the rate of scanning, we will increase the
number of bytes reclaimed on each iteration and decrease the
number of wasted scans. In figure 10 (b), the rate of 0.25kHz
produces no wasted scan cycles in the simulation period 800-
1000 ms.

Figure 9 shows the memory occupation as simulation pro-
gresses, for both garbage collected and non-collected ap-
proaches. Memory utilisation in non-garbage collected envi-
ronment is constantly increasing as simulation progresses and
would eventually reach the limit of the allocated memory. On
the other hand, the memory usage in garbage collected run
jumps to around 4KB at the start and eventually stabilises to
approximately 2.5Kb starting with 501ms.

In order to preserve the biological real-time execution
property (III-D) of SpiNNaker simulations, any code that is
run when the timer interrupt happens must exit before another
interrupt occurs, most commonly, after 1ms. It was observed
that without garbage collection, timer interrupt callback code,
in the same simulation of 2500 neurons, on average runs for
0.55 ms. When Baker’s garbage collection was introduced with
a running frequency of 1kHz and the compactor fragmentation
factor of 4, the average run-time of a timer interrupt did not
change significantly.

F. Generational garbage collector

Generational garbage collector (IV-E) is the improvement
over copying collector, that tries to lower the size of the
scanning space. This is done by maintaining the structure of

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Compactor work space division factor

R
un

-t
im

e
(m

s)

Fig. 8. Run times of the single invocation of the compactor as values
of the compactor space division factor are increased.

type of simulation ARM Block Copy sark mem cpy
4/16b 1481 ±140 1831 ±188
4/32b 1598 ±178 1918 ±141
12/56b 2084 ±163 2518 ±236

TABLE IV. Average running times of the buffer extension (ns) for
different copying methods and different simulation types. Type of
simulation parameters are, respectively: initial number of traces and
size of the buffer.

generations with objects assigned to them. Then, only specific
generations are scanned for garbage, this way avoiding the
exhaustive search over all objects on the memory heap. In
this section we discuss the improvements and downsides that
generational collector provides.

The scanner (IV-D) is the main operation for which gen-
erational collector provides performance improvements. The
improvement is a result of not needing to scan the whole
memory space to find outdated traces. Table III summarises
the improved average run times of the scanner and it can be
seen that the growth is much slower than previously (Table
II). Additionally, figure 10 (c) demonstrates that generational
memory management does not reduce the numbers of bytes
collected per invocation of the scanner.

Fig. 9. Space used for history traces in a simulation with 255 neurons
per core.

VI. CONCLUSION

Using SpiNNaker chip, we have demonstrated that by
instantiating a structure of dynamic history trace buffers (IV-A)
we can add and remove ’live’ objects by simply shifting
the data and moving the boundary pointers (IV-D). We then
employed a periodical event that compacts memory on the
heap by referring to these ’live’ pointers, thus discarding
any ’dead’ objects to free memory (IV-B). Due to usage of
relatively slow SDRAM in memory compaction operation, we
have developed a basic approach to fragment the compaction
operation across multiple timer interrupts. The removal of data
is done by the scanner (IV-D) using exhaustive search. To
reduce the scanning area, we have developed a variant of gen-
erational garbage collector on SpiNNaker, that accurately finds



Fig. 10. Space reclaimed per each invocation of the scanner: a) scanning rates 1 and 0.5 kHz, b) rates 1 and 0.25 kHz and c) generational
collector with rates 1 and 0.2 kHz.

all ’dead’ objects without the exhaustive search (IV-E). Finally,
we have demonstrated how garbage collection, incorporated
into each timer interrupt together with neuron and synapse
updating routines, runs and completes in SpiNNaker’s time
boundary of 1ms per clock tick (III-D, V-E). With these contri-
butions we have demonstrated how classical garbage collection
algorithms can be transformed to apply to such problems as
history trace management in simulations of synaptic plasticity
as well as provided a basic foundation of automatic memory
management for SpiNNaker, which previously it did not have.

VII. ACKNOWLEDGEMENTS

This work was partially supported by ERC Advanced Grant
320689, FET grants FP7-604102 and DLV-720270, and an
EPSRC PhD studentship. We would also like to thank SpiN-
Naker team members: Jamie Knight, Andrew Rowley and Alan
Stokes for their invaluable help in this project and reviewers
for useful feedback on the manuscript.

REFERENCES

[1] T. Sharp and S. Furber, “Correctness and performance of the spinnaker
architecture,” in Neural Networks (IJCNN), The 2013 International Joint
Conference on, Aug 2013, pp. 1–8.

[2] S. Friedmann, J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier,
“Demonstrating hybrid learning in a flexible neuromorphic hardware
system,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11,
no. 1, pp. 128–142, Feb 2017.

[3] S. Kunkel, T. Potjans, J. Eppler, H. E. Plesser, A. Morrison, and
M. Diesmann, “Meeting the memory challenges of brain-scale network
simulation,” Frontiers in Neuroinformatics, vol. 5, p. 35, 2012. [Online].
Available: http://journal.frontiersin.org/article/10.3389/fninf.2011.00035

[4] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May
2014.

[5] “Arm information center, tightly-coupled memory.” [Online]. Available:
http://infocenter.arm.com/

[6] J. McCarthy, “Recursive functions of symbolic expressions
and their computation by machine, part i,” Commun. ACM,
vol. 3, no. 4, pp. 184–195, Apr. 1960. [Online]. Available:
http://doi.acm.org/10.1145/367177.367199

[7] H. Lieberman and C. Hewitt, “A real-time garbage collector based on the
lifetimes of objects,” Commun. ACM, vol. 26, no. 6, pp. 419–429, Jun.
1983. [Online]. Available: http://doi.acm.org/10.1145/358141.358147

[8] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens, “On-the-fly garbage collection: An exercise in cooperation,”
Commun. ACM, vol. 21, no. 11, pp. 966–975, Nov. 1978. [Online].
Available: http://doi.acm.org/10.1145/359642.359655

[9] H. G. Baker, Jr., “List processing in real time on a serial computer,”
Commun. ACM, vol. 21, no. 4, pp. 280–294, Apr. 1978. [Online].
Available: http://doi.acm.org/10.1145/359460.359470

[10] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science, vol. 275, no. 5297, pp. 213–215, Jan 1997.

[11] S. Nabavi, R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien, and R. Malinow,
“Engineering a memory with LTD and LTP,” Nature, vol. 511, no. 7509,
pp. 348–352, Jul 2014.

[12] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-dependent
plasticity in balanced random networks,” Neural Comput, vol. 19, no. 6,
pp. 1437–1467, Jun 2007.

[13] N. Parlante and J. Zelenski, “The ins and outs of c arrays, computer
science class handout, cs107,” Standford University, 2008.

[14] “Arm information center: Block copy with ldm and stm.” [Online].
Available: http://infocenter.arm.com/

[15] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook,
ser. Applied Algorithms and Data Structures Series, 2012.


