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Abstract 1 

     In this work, the dual-mesh hybrid RANS-LES approach was applied for the first time to a natural convection 2 

flow, namely a high Rayleigh number differentially heated square cavity flow. This approach involves running an 3 

unsteady Reynolds Averaged Navier-Stokes (RANS) simulation and a coarse Large Eddy Simulation (LES) 4 

simultaneously using two different grids that overlap each other (typically, a highly wall-refined grid is used for 5 

the RANS, whereas a more homogenous and isotropic mesh is used for the LES). The two simulations correct 6 

each other using a switching criterion that determines the driving and the driven simulations at every point in 7 

space. It is demonstrated that the flow unsteadiness and the coexistence of laminar and turbulent regions in the 8 

square cavity complicate the task of choosing a suitable switching criterion. Accordingly, a new criterion based 9 

on comparing the turbulence lengthscales to the grid size was developed to account for the presence of the 10 

aforementioned complex flow features. The behaviour of this criterion and comparisons of the dual-mesh 11 

predictions against pure RANS, pure coarse LES and Direct Numerical Simulation (DNS) results are also 12 

presented in the current paper. 13 

1. Introduction 14 

   The buoyancy driven flow in a heated cavity is a key benchmark for many civil or power-generation engineering 15 

applications such as solar collectors or passive safety nuclear plant designs. One important difference between the 16 

square and the tall buoyant cavities is that the former features a stronger stable stratification that results in 17 

significant damping of turbulence. As a result, the Rayleigh number required for the transition to turbulence is 18 

higher in the square cavity than in a tall cavity. According to Henkes & Le Quéré (1996) and Xin & Le Quéré 19 

(2001), the critical Rayleigh number at which transition to turbulence occurs in a square cavity configuration with 20 

perfectly conducting horizontal walls is of the order of 106. On the other hand, the Rayleigh numbers of the flow 21 

in the cavity with a 28:1 aspect ratio (with height =28*width) studied experimentally by Betts & Bokhari (2000) 22 

were 0.86 ∗ 106 and 1.43 ∗ 106 and the flow was fully turbulent. Wall-resolved Large Eddy Simulation (LES) or 23 

Direct Numerical Simulation (DNS) such as Sebilleau (2016), Wu et al. (2017a), Wu et al. (2017b), Wu et al. 24 

(2019), Benhamadouche et al. (2020) and Ahmed et al. (2020) are very expensive for high Reynolds and/or 25 

Rayleigh number flows as it requires a very fine mesh in the near-wall regions in all three directions to resolve the 26 

turbulence structures. 27 

   Hybrid RANS-LES methods can provide a cheaper way of computing the square cavity flow compared to LES, 28 

Revell et al. (2020). In these hybrid methods, the near-wall region is handled by the RANS model which allows 29 

wall normal refinement with high-aspect ratio cells that are at odds with LES theory. The dual-mesh hybrid RANS-30 



 

 

LES technique used in this work was developed by Xiao & Jenny (2012) for isothermal flows and a number of 31 

improvements were suggested by Tunstall et al. (2017)  and Tunstall (2016) who also extended the idea of the 32 

approach to heat transfer problems.  33 

   In previous studies of the square cavity in the literature, separate LES and RANS works can be found. Peng & 34 

Davidson (2001) performed an LES study for a Rayleigh number of 1.58 ∗ 109. For this Rayleigh number the 35 

levels of the turbulence in the cavity are relatively low. The dynamic Smagorinsky model yielded good predictions 36 

of the mean quantities of the flow and thermal fields despite the fact that some discrepancies were observed in the 37 

prediction of the second moments. 38 

   One example of a RANS study of the square cavity can be found in Omranian et al. (2014) where both eddy 39 

viscosity and Reynolds stress models were used with different turbulent heat flux models. In addition, different 40 

near-wall treatments were tested, namely the low Reynolds-number treatment, the standard wall function (which 41 

is based on the logarithmic velocity distribution) and the analytical wall function (see Craft et al. (2002)). 42 

   As regards hybrid RANS-LES simulations of the square cavity flow, Abramov & Smirnov (2006) studied the 43 

case at a Rayleigh number of 1.58 ∗ 109 using a Detached Eddy Simulation (DES) based on the one equation 44 

model that solves for the turbulent kinetic energy. The predictions of the mean flow and thermal fields were 45 

reasonable. However, close to the downstream ends of the vertical walls, the authors observed an under-prediction 46 

of the vertical walls’ boundary layer thickness and an overprediction of the vertical velocity peaks in these 47 

boundary layers. Another hybrid RANS-LES study can be found in Kocutar et al. (2015), where the boundary 48 

elements method was used to study both laminar and turbulent natural convection. 49 

   Most of the studies found in the literature are limited to low Rayleigh numbers, as there was a lack of 50 

experimental and DNS data for high Rayleigh numbers. In fact, until recently the maximum Rayleigh number 51 

reported in experiments and in DNS studies was of the order of 109 which can be found in Ampofo & Karayiannis 52 

(2003) and Puragliesi & Leriche (2012), respectively. However, Sebilleau (2016) conducted DNS studies in which 53 

the Rayleigh numbers were 108, 1.58 ∗ 109, 1010  and 1011. The author generated fine DNS data (was later 54 

published in Sebilleau et al. (2018)) which he used to perform an extensive analysis of different RANS closure 55 

techniques. The present work utilizes this DNS data to shed some light on whether hybrid RANS-LES can provide 56 

an alternative to both LES and RANS for simulating high Rayleigh number square cavity flows. 57 

   The organisation of this paper is as follows. The second section provides an explanation of the square cavity 58 

configuration studied here. The third section gives insight into the dual-mesh approach by explaining both the flow 59 

and the heat transfer related parts of the method. This section also briefly mentions the RANS and the LES models 60 

that were chosen to conduct this work. The fourth section highlights the code and the discretization techniques that 61 



 

 

were used here. The results obtained here are included in the fifth section which is followed by the concluding 62 

section. 63 

2. The differentially heated square cavity 64 

   The square cavity test-case shown in Fig. 1 (with periodic boundary conditions in the z-direction to represent a 65 

cavity that is infinitely long in this direction) is computed for a Rayleigh number (𝑅𝑎) of 1011, a fluid Prandtl 66 

number (𝑃𝑟) equal to 0.71 and a linear temperature boundary condition at the horizontal walls (i.e. the temperature 67 

varies linearly between the hot wall temperature (𝑇ℎ) and the cold wall temperature (𝑇𝑐)). This linear temperature 68 

variation represents the case of ‘’highly conductive’’ horizontal walls more relevant to industrial components with 69 

thick steel walls. Note that 𝑅𝑎 of 1011 is also industrially relevant (similar to a Reynolds number of 105).  70 

 

 

(a) 
(b) 

Fig. 1. Schematic representation of different cross sections of the buoyant square cavity. g is the gravity 

vector. 

   In this study, pure unsteady RANS, pure coarse LES and dual-mesh hybrid RANS-LES simulations were run 71 

and the results were compared to the DNS data of Sebilleau et al. (2018). The LES and RANS meshes were both 72 

generated using STARCCM+ v11.02 in which the available hyperbolic tangent grid stretching function was used 73 

when creating the two grids. The length of the domains in the spanwise direction was chosen to be 0.15 𝐻, where 74 

𝐻 is the cavity height as in the DNS study of Sebilleau et al. (2018) who checked the decay of two-point 75 

correlations. 76 

   The RANS mesh consists of 250*250*1 cells with near-wall grid spacing of 0.0002 𝐻. The same near-wall grid 77 

spacing was used in the RANS simulations of Sebilleau (2016) and it allows the near-wall nodes to be located 78 

within the viscous sublayer. Using a finer RANS grid was found to have little impact on the results.  79 

   On the other hand, the LES mesh has 150*150*23 cells with near-wall grid spacing of 0.003137 𝐻. The LES 80 

mesh had to be refined in the wall normal direction because of the small thickness of the boundary layers. However, 81 

the grid is still too coarse for the LES to fully resolve the near-wall region. Indeed, using the local DNS wall shear 82 
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stress values, the average value of 𝑥+ (𝑥+ =
𝑥 √

𝜏𝑤
𝜌

𝜈
, where 𝑥 is the wall-distance of the near-wall node and 𝜏𝑤, 𝜌 83 

and 𝜈 are the wall shear stress, fluid density and kinematic viscosity, respectively) over the hot wall is 84 

approximately 14. Note that 𝑥+ better represents this quantity compared to 𝑦+, since the direction normal to the 85 

hot wall here is the 𝑥 direction. The local values of this parameter as well as 𝛥𝑦+ and 𝛥𝑧+ (𝛥𝑦+ =
𝛥𝑦 √

𝜏𝑤
𝜌

𝜈
 and 86 

𝛥𝑧+ =
𝛥𝑧 √

𝜏𝑤
𝜌

𝜈
, where 𝛥𝑦 and 𝛥𝑧 are the near-wall grid spacings in the 𝑦 and 𝑧 directions, respectively) over the 87 

hot wall are shown in Fig. 2.  88 

 89 

                                               (a)                                                                                 (b) 90 

Fig. 2. Local values of 𝑥+ (shown in (a)), 𝛥𝑦+ and 𝛥𝑧+ (both are shown in (b)) along the hot wall. These values 91 

were estimated using the local wall shear stress from the DNS data of Sebilleau (2016). 𝐻 is the cavity height. 𝑦 92 

was used here to represent the vertical distance from the bottom wall. 93 

   The LES mesh of 0.5 million cells plus the negligible cost of the RANS simulation provide enormous economy 94 

compared to the 726 million nodes DNS simulation.   95 

3. Methodology 96 

3.1. The dual-mesh approach 97 

   In the dual-mesh approach, two computational domains are overlapped, one of these domains is used to solve 98 

the RANS equations and in the other domain, LES equations are solved. The two solutions are “nudged” together 99 

on the fly similarly to two-phase flow modelling where drift terms couple the fields of both phases, here the RANS 100 

and the time averaged LES fields, which could be imagined as high and low inertia phases respectively, e.g. solid 101 

particles in gas flow in the two fluid model of Zhang & Reese (2003). 102 



 

 

   The advantage of this overlapping flow-models approach is that it avoids the interface problem that occurs with 103 

single-mesh hybrid methods that try to match the highly fluctuating LES quantities with the smooth RANS 104 

ensemble-averaged quantities. On the other hand, in the dual-mesh approach the RANS quantities are compared 105 

to corresponding LES quantities that are averaged in time. Following Xiao & Jenny (2012), the averaging operator 106 

here is an Exponentially Weighted Averaging operation 〈 〉𝐸𝑊𝐴: 107 

〈𝜙〉EWA(𝑡) = ∫ 𝜙
𝑡

−∞

(𝑡′)
1

𝑇𝑎𝑣𝑔
𝑒𝑥𝑝 (−

(𝑡 − 𝑡′)

𝑇𝑎𝑣𝑔
)𝑑𝑡′ (1) 

where 𝜙 can be any variable, t denotes the current point in time, t′ represents times that precede the current time, 108 

𝑇𝑎𝑣𝑔 is the averaging time scale. 109 

    A first order approximation of this operation allows the exponentially weighted averaged (EWA) quantities to 110 

be estimated as: 111 

〈𝜙〉𝐸𝑊𝐴,𝑛 = (1 − 𝛼)𝜙𝑛 + 𝛼〈𝜙〉𝐸𝑊𝐴,𝑛−1 (2) 

where 𝑛 represents the current time step, 𝑛 − 1 refers to the previous time step and 𝛼 =
1

1+
𝛥𝑡

𝑇𝑎𝑣𝑔

 in which 𝛥𝑡 is the 112 

time step size. 113 

3.1.1. Consistency of the flow fields   114 

   In the dual-mesh approach, the classic RANS and LES momentum equations, with Boussinesq approximation 115 

for density variation and eddy viscosity models for turbulent stresses, are supplemented with the “drift force” 116 

source terms 𝑄𝑅 and 𝑄𝐿:    117 

∂〈𝑈𝑖〉

∂𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
= −

1

𝜌𝑟𝑒𝑓

𝜕〈𝑝〉

𝜕𝑥𝑖
 

+
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈𝑡) (

𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
))

+ (1 − β (〈𝑇〉 − 𝑇𝑟𝑒𝑓)𝑔𝑖

+ 𝑄𝑖
𝑅 

 

 

 

 

(3) 
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∂𝑈�̅�
∂𝑡
+ 𝑈�̅�

𝜕𝑈�̅�
𝜕𝑥𝑗

= −
1

𝜌𝑟𝑒𝑓

𝜕𝑝

𝜕𝑥𝑖
 

+
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈𝑠𝑔𝑠) (

𝜕𝑈�̅�
𝜕𝑥𝑗
))

+ (1 − β (𝑇 − 𝑇𝑟𝑒𝑓)𝑔𝑖 

+𝑄𝑖
𝐿,𝑢 + 𝑄𝑖

𝐿,𝑔 

 

 

 

 

(4) 

where the angle brackets 〈 〉 and the overbar    denote Reynolds averaged and spatially filtered quantities, 119 

respectively, 𝜈𝑡 is the RANS eddy viscosity and 𝜈𝑠𝑔𝑠 is the sgs viscosity. β is the thermal expansion coefficient 120 

and 𝑇𝑟𝑒𝑓  and 𝜌𝑟𝑒𝑓  represent the reference temperature and reference density, respectively. The drift terms are 121 

defined as: 122 

𝑄𝑖
𝑅 = 𝜎 𝐿

〈𝑈�̅�〉
𝐸𝑊𝐴 − 〈𝑈𝑖〉

𝛾𝑟1
   (5) 

 

𝑄𝑖
𝐿,𝑢 = (1 − 𝜎 𝐿) (

〈𝑈𝑖〉 − 〈𝑈�̅�〉
𝐸𝑊𝐴

𝛾𝑙1
) (6) 

𝑄𝑖
𝐿,𝑔 = (1 − 𝜎 𝐿) (

𝐺𝑖
𝛾𝑙2
) (7) 

where 𝛾𝑟1, 𝛾𝑙1 and 𝛾𝑙2 are timescales that control how fast the solutions relax towards each other and 𝐺𝑖 is a 123 

function of the resolved LES velocity fluctuation. 124 

   The drift term added to the RANS momentum equation (𝑄𝑖
𝑅 in Equation (3)) drives the RANS velocity field 125 

towards the EWA LES velocity field where the LES is superior to the RANS (far from the walls). On the other 126 

hand, the source term in the LES momentum equation (𝑄𝑖
𝐿,𝑢 in Equation (4)) acts to modify the LES velocity field 127 

in a way that makes the LES EWA velocity field consistent with the RANS velocity field at locations where one 128 

knows that the RANS performs better than the LES (near the walls). 129 

   The switch function 𝜎 𝐿 takes values 0 or 1 (depending on whether the RANS drives the LES or vice versa) in 130 

most of the domain except in a narrow model-transition layer, the position and width of which is defined by the 131 

specific choice of the 𝜎 𝐿 function. Its choice depends on the user-chosen or affordable LES grid. This re-opens 132 

the large research topic of quality criteria for LES (Salvetti et al. (2010)) and will be revisited in section 5.2.   133 

   To disconnect LES mesh requirements from viscous scaling and avoid the difficult buffer layer resolution, i.e. 134 

to start trusting the LES only in the fully turbulent Log-layer, Tunstall et al. (2017) specified the interface below 135 

which the RANS drives the LES and above which the LES drives the RANS as the location where the quantity 136 

𝑅𝑒𝑦 =
√𝑘𝑅𝑦

𝜈
 equals 200:  137 



 

 

𝜎 𝐿 = 0.5 (1 +  𝑡𝑎𝑛ℎ (
𝑅𝑒𝑦 − 200

10
)) (8) 

𝑘𝑅 is the RANS turbulent kinetic energy, 𝑦 is the wall distance and 𝜈 is the kinematic viscosity. 138 

   Similar to the velocity fields, the total turbulent kinetic energies of the RANS and the LES are made consistent 139 

by the addition of source terms to the momentum and turbulence equations. In regions where the LES is under 140 

resolved, the source term 𝑄𝑖
𝐿,𝑔 (in Equation (4)) adjusts the LES resolved fluctuations to make the LES total 141 

(EWA) turbulent kinetic energy (𝑘𝐸𝑊𝐴 ) equal to the RANS turbulent kinetic energy (𝑘𝑅).  In order to enhance 142 

this consistency in regions where the contribution of the modelled turbulent kinetic energy to the total turbulent 143 

kinetic energy is significant, Tunstall et al. (2017) decided to adjust the subgrid-scale (sgs) turbulent kinetic energy 144 

𝑘𝑠𝑔𝑠 through the addition of a source term (𝑄𝑘𝑠𝑔𝑠) to the 𝑘𝑠𝑔𝑠 transport equation (Equation (11)), which is solved 145 

when using the one equation 𝑘 LES model. The function 𝐺𝑖 in Equation (7) reads: 146 

𝐺𝑖 = (1 −
𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
)
𝑘𝑅 − 𝑘𝐸𝑊𝐴

𝑘𝑅 + 𝑘𝐸𝑊𝐴
(𝑈�̅� − 〈𝑈�̅�〉

𝐸𝑊𝐴) (9) 

𝑘𝐸𝑊𝐴 = 〈0.5 𝑢𝑖
′′ 𝑢𝑖

′′〉𝐸𝑊𝐴 + 𝑘𝑠𝑔𝑠
𝐸𝑊𝐴  (10) 

where 𝑘𝑠𝑔𝑠 is the sgs turbulent kinetic energy, 𝑢𝑖
′′ = 𝑈𝑖 − 〈𝑈𝑖〉

𝐸𝑊𝐴  is the resolved LES velocity fluctuation and 147 

𝑘𝐸𝑊𝐴 is the EWA total LES turbulent kinetic energy. The LES sgs k equation reads: 148 

𝜕𝑘𝑠𝑔𝑠

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝑘𝑠𝑔𝑠𝑈�̅�) = 2𝜈𝑠𝑔𝑠𝑆𝑖𝑗

2
 

+
𝜕

𝜕𝑥𝑗
(𝜈𝑠𝑔𝑠

𝜕𝑘𝑠𝑔𝑠

𝜕𝑥𝑗
) − 𝜀𝑠𝑔𝑠+𝐺𝑘𝑠𝑔𝑠 

          +𝑄𝑘𝑠𝑔𝑠 

 

 

 

(11) 
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𝑄𝑘𝑠𝑔𝑠 = (1 − 𝜎 𝐿)
   𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
𝑘𝑅 − 𝑘𝐸𝑊𝐴

𝛾𝑟2
 (12) 

where 𝜀𝑠𝑔𝑠 and 𝑆𝑖𝑗  are the sgs dissipation rate and the filtered strain rate tensor, respectively. 𝐺𝑘𝑠𝑔𝑠 is a buoyancy 150 

production term (see Appendix B). 151 

   On the other hand, in regions where the LES is well resolved, the RANS turbulent kinetic energy is forced 152 

towards the LES “total EWA turbulent kinetic energy” by modifying the turbulent kinetic energy production term 153 

in the RANS turbulence equations as shown in Equation (13). 154 

𝑃𝑘 = 𝑃𝑘
𝑚𝑜𝑑𝑒𝑙 + 𝜎 𝐿

𝑘𝐸𝑊𝐴 − 𝑘𝑅

𝛾𝑟2
 (13) 

where 𝑃𝑘 is the modified RANS turbulent kinetic energy production term and 𝑃𝑘
𝑚𝑜𝑑𝑒𝑙  represents the original 155 



 

 

RANS turbulence production term. The quantities 𝛾𝑙1, 𝛾𝑙2 , 𝛾𝑟1 and 𝛾𝑟2 are called the relaxation time scales and 156 

are defined as: 157 

𝛾𝑙1 = 𝛾𝑟1 = 𝑚𝑎𝑥 (𝐶𝛾1
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) (14) 

𝛾𝑙2 = 𝛾𝑟2 = 𝑚𝑎𝑥 (𝐶𝛾2
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) (15) 

where 𝜀𝑅 is the RANS turbulence dissipation rate, 𝐶𝛾1 = 0.1 and 𝐶𝛾2 = 0.01.  158 

   Even though the forcing of the turbulence levels of the LES towards the RANS turbulence levels described above 159 

only enforces consistency between the total turbulent kinetic energies, one can choose to make all the components 160 

of the LES total turbulent stress tensor consistent with their RANS counterparts instead. A drift term formulation 161 

that can accomplish this consistency can be found in Xiao & Jenny (2012) who pointed out that the stress 162 

consistency would be better justified when the estimated RANS turbulent stress tensor can be trusted (e.g. when 163 

using a Reynolds stress model) compared to when using an eddy viscosity model.  164 

   Another drift term that enforces the stress consistency was suggested by de Laage de Meux et al. (2015) in the 165 

framework of anisotropic linear forcing for the generation of turbulence near the inlet of an LES domain. The 166 

authors added a drift term to the LES momentum equation to drive the LES mean velocity and resolved stresses 167 

towards target RANS velocity and stresses provided by a RANS simulation that used the elliptic blending Reynolds 168 

stress model (see Manceau & Hanjalić (2002)). However, the same forcing strategy used by the authors can be 169 

used in the dual-mesh framework. 170 

   It is also worth noting that some dual-mesh methods proposed in the literature enforce the consistency between 171 

the LES and the RANS not via a relaxation forcing but in implicit ways that effectively correct the LES total 172 

turbulent stresses. More details about these methods can be found in Xiao et al. (2016) and Nguyen et al. (2020). 173 

Furthermore, another dual-mesh method was suggested by Davidson (2019) in which the author coupled a DES 174 

solution with a steady RANS solution and the coupling strategy involved using relaxation forcing.  175 

3.1.2. Consistency of the thermal fields   176 

   Regarding the thermal fields, Tunstall (2016) decided to achieve the consistency between the RANS and the 177 

LES fields by ensuring consistency between the RANS temperature and the LES EWA temperature as well as 178 

making the LES total EWA temperature variance consistent with the RANS temperature variance. Consequently, 179 

when using the dual-mesh approach to solve heat transfer problems one needs to solve transport equations for the 180 

RANS temperature variance and the LES sgs temperature variance where the later gives the modelled part of the 181 



 

 

LES total temperature variance.  182 

   By using an eddy-diffusivity hypothesis to model the heat flux, the RANS and LES temperature equations read, 183 

respectively: 184 

𝜕〈𝑇〉

𝜕𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑇〉

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
((
𝜈

𝑃𝑟
+
𝜈𝑡
𝑃𝑟𝑡
)
𝜕〈𝑇〉

𝜕𝑥𝑗
)

+ 𝑄〈𝑇〉 

 

(16) 

 

𝜕𝑇

𝜕𝑡
+ 𝑈�̅�

𝜕𝑇

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
((

𝜈

𝑃𝑟
+
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
)
𝜕𝑇

𝜕𝑥𝑗
)

+ 𝑄𝑇 

 

 

(17) 

   For both the turbulent Prandtl number 𝑃𝑟𝑡 and the sgs Prandtl number 𝑃𝑟𝑠𝑔𝑠 a value of 0.9 was used in this study. 185 

The drift terms in the above temperature equations are defined as: 186 

𝑄𝑇

= (1 − 𝜎 𝐿)
〈𝑇〉 − 〈�̅�〉𝐸𝑊𝐴

𝛾𝑙3

+ (1 − 𝜎 𝐿) (1 −
𝛩𝐸𝑊𝐴𝑠𝑔𝑠

𝛩𝐸𝑊𝐴
)
𝛩𝑅 − 𝛩𝐸𝑊𝐴

𝛩𝑅 + 𝛩𝐸𝑊𝐴
�̅� − 〈�̅�〉𝐸𝑊𝐴

2𝛾𝑙4
 

 

 

 

(18) 

𝑄〈𝑇〉 = 𝜎 𝐿
〈�̅�〉𝐸𝑊𝐴 − 〈𝑇〉

𝛾𝑟3
 (19) 

where 𝛩𝐸𝑊𝐴𝑠𝑔𝑠 =   〈 𝑇
′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅  〉𝐸𝑊𝐴 is EWA of the LES sgs temperature variance and 𝛩𝐸𝑊𝐴 is the EWA total LES 187 

temperature variance defined as 𝛩𝐸𝑊𝐴 = 〈(�̅� − 〈�̅�〉𝐸𝑊𝐴)2 + 𝑇′2𝑠𝑔𝑠
̅̅ ̅̅ ̅̅ ̅̅   〉𝐸𝑊𝐴. 𝛩𝑅 = 〈𝑇′

2〉 is the RANS temperature 188 

variance. 189 

   In regions where the LES is expected to be under-resolved, the mean temperature of the LES is modified by a 190 

source term that is added to its transport equation (Equation (17)). This source term is the first part of 𝑄𝑇 (defined 191 

in Equation (18)) and it increases or decreases the LES temperature to match the LES EWA temperature with the 192 

RANS temperature. At the other locations, the RANS temperature is driven towards the LES EWA temperature 193 

through the drift term 𝑄〈𝑇〉 in the RANS temperature equation (Equation (16)). 194 

   As regards the temperature fluctuations, at locations where the LES is under-resolved, both the resolved and 195 

modelled temperature fluctuations of the LES are adjusted to drive the EWA total LES temperature variance 196 

towards the RANS temperature variance. The resolved temperature fluctuations are modified by the second part 197 

of the source term 𝑄𝑇 (see Equation (18)) in the LES temperature equation (Equation (17)) and the modelled 198 



 

 

temperature fluctuations are altered by adding a source term (𝑄𝑇
′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
) to the sgs temperature variance transport 199 

equation: 200 

𝜕𝑇′
2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑡
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𝜕𝑇′
2
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̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
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̅̅ ̅̅ ̅̅ ̅̅  
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𝜕𝑥𝑗
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𝜈

𝑃𝑟
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𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
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𝜕𝑇′

2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
) + 𝑄𝑇
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𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

 

 

 

(20) 

where: 201 

𝑄𝑇
′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
= (1 − 𝜎 𝐿)

𝛩𝐸𝑊𝐴𝑠𝑔𝑠

𝛩𝐸𝑊𝐴
𝛩𝑅 − 𝛩𝐸𝑊𝐴

𝛾𝑙4
 (21) 

and 202 

𝜀𝐿 = 2𝜈𝑆𝑖𝑗̅̅̅̅  𝑆𝑖𝑗̅̅̅̅ + 𝜈𝑠𝑔𝑠𝑆𝑖𝑗̅̅̅̅  𝑆𝑖𝑗̅̅̅̅  (22) 

   On the other hand, at locations where the LES is well-resolved, the RANS temperature variance is relaxed 203 

towards the EWA total LES temperature variance by the term 𝑄〈𝑇
′2〉 in the RANS temperature variance equation: 204 

𝜕〈𝑇′
2〉

𝜕𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑇′
2〉

𝜕𝑥𝑗
= 2

𝜈𝑡
𝑃𝑟𝑡

𝜕〈𝑇〉

𝜕𝑥𝑖

𝜕〈𝑇〉

𝜕𝑥𝑖
 

−
1

𝑅𝑡

𝜀𝑅

𝑘𝑅
〈𝑇′

2〉 +
𝜕

𝜕𝑥𝑗
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𝜈

𝑃𝑟
+
𝜈𝑡
𝑃𝑟𝑡
)
𝜕〈𝑇′

2〉

𝜕𝑥𝑗
)

+ 𝑄〈𝑇
′2〉 

 

 

 

 

(23) 

where 𝑅𝑡 (the thermal to dynamic time scales ratio) was set equal to 0.5 and the drift tem 𝑄〈𝑇
′2〉 reads: 205 

𝑄〈𝑇
′2〉 = 𝜎 𝐿

𝛩𝐸𝑊𝐴−𝛩𝑅

𝛾𝑟4
  (24) 

   The relaxation time scales of the thermal field read: 206 

𝛾𝑙3 = 𝛾𝑟3 = 𝑚𝑎𝑥 (𝑅𝑡𝐶𝛾1
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) (25) 

𝛾𝑙4 = 𝛾𝑟4 = 𝑚𝑎𝑥 (𝑅𝑡𝐶𝛾2
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) 

(26) 

3.2. Turbulence models 207 

   The LES and RANS models used here are the one equation 𝑘 model and the 𝐵𝐿 𝑣2/𝑘 model of Billard & 208 

Laurence (2012), respectively. The equations of the versions of these models that were used in this study are 209 



 

 

provided in the Appendix. Details of the RANS model can be found in Billard and Laurence (2012), Uribe (2006), 210 

Hanjalić et al. (2004), Manceau et al. (2002) and Durbin (1991). The reader is also referred to Yoshizawa and 211 

Horiuti (1985) and Fureby et al. ( 1997) for details about the LES model. 212 

4. Computational implementation and discretization techniques 213 

   All the simulations of this study were run in OpenFOAM 2.3.x using the dual-mesh code of Tunstall (2016). 214 

However, the heat transfer part of the dual-mesh formulation of Tunstall (2016) has been implemented  as part of 215 

this work. Additionally, the dual-mesh code was combined with “buoyantBoussinesqPimpleFoam”, which is an 216 

OpenFOAM solver for buoyant flows. The buoyancy related terms were also added to the equations of the RANS 217 

model.  218 

   A second-order accurate backwards scheme is used for the temporal discretization of both the RANS and the 219 

LES simulations. Regarding the spatial discretization, central differencing was used for the LES. On the other 220 

hand, the van Leer scheme (van Leer (1974)) was used for all the RANS equations with the exception of the 221 

momentum equation in which  the second-order  accurate upwind scheme was employed. The adjustable time step 222 

option in OpenFOAM was used to ensure that the Courant number remains less than 1. The pressure velocity 223 

coupling was handled using the PISO algorithm (Issa (1986)). The solver and the discretization procedures have 224 

been extensively tested and benchmarked over a variety of heat transfer and thermal hydraulics applications in the 225 

past, see Guleren et al. (2010), Han et al. (2012), Afgan et al. (2008), Kahil et al. (2019), Abed & Afgan (2017), 226 

Abed & Afgan (2020), Abed et al. (2020a), Abed et al. (2020b) and Benhamadouche et al. (2020). 227 

5. Results 228 

   In the results presented here, the same nondimensionalization as the one chosen by Sebilleau et al. (2018) was 229 

used: 230 

𝐔 =
𝑼𝐻𝑃𝑟

𝜈 𝑅𝑎0.5
 , T =  

𝑇 − (
𝑇ℎ + 𝑇𝑐
2

)

𝛥𝑇
 , 𝐱 =

𝒙

𝐻
 (27) 

where 𝑼 is the velocity vector, 𝑇 is the temperature, 𝒙 is the position vector, 𝐻 is the cavity height and 𝛥𝑇 is the 231 

temperature difference:  𝑇ℎ − 𝑇𝑐. It should be noted that the terms’’ hybrid RANS ‘’ and ‘’hybrid LES’’ are used 232 

for the RANS and the LES simulations that are run simultaneously when using the dual-mesh approach. On the 233 

other hand, what is meant by ‘’pure RANS’’ and ‘’pure coarse LES’’ are the RANS and coarse LES simulations 234 

that are run without being corrected and forced towards each other.  The second moments of all the simulations 235 

reported in this section were calculated as the sum of their resolved and modelled components. For details about 236 

how this calculation can be done, the reader can refer to Sebilleau (2016). 237 



 

 

   Regarding the parameters of the dual-mesh method, the only parameter that needs to be chosen before the 238 

simulation which is the averaging period (𝑇𝑎𝑣𝑔) has been specified here as 32 
𝐻

√𝑔𝛽𝐻𝛥𝑇
 , where √𝑔𝛽𝐻𝛥𝑇 is a buoyant 239 

velocity scale (see for example Kumar & Dewan (2016) and Ammour et al. (2013)).  240 

   In section 5.1, the results obtained from the pure RANS and pure coarse LES simulations are reported. This 241 

allows the reader to get an idea of some of the shortcomings of these standalone simulations. In section 5.2, a new 242 

“resolution based” criterion for determining 𝜎 𝐿 is suggested. Section 5.3 discusses the dual-mesh results obtained 243 

when 𝜎 𝐿 was evaluated using the new criterion.   244 

5.1. Pure RANS and pure coarse LES results: 245 

   Profiles of the mean velocity, total turbulent kinetic energy, total turbulent shear stress1 and mean temperature 246 

from the pure RANS and pure coarse LES simulations are shown in Fig. 3-Fig. 5. All these statistics have been 247 

computed using the classic arithmetic mean operation (not to be confused with the EWA operation). It can be seen 248 

that the coarse LES predictions of the velocity and temperature are reasonable away from the wall. The LES 249 

predictions of the turbulent shear stress can be observed to improve towards the outer edge of the boundary layer. 250 

However, the coarse LES cannot be relied upon to provide wall parameters such as the Nusselt number and the 251 

wall shear stress. 252 

 253 

 254 

 
1 It should be noted that the quantities called the total turbulent kinetic energy and the total turbulent shear stress 

do not only represent the fluctuations due to turbulence but also the fluctuations that are caused by mean flow 

instabilities.    



 

 

 255 

                                                           (a)                                                               (b) 256 

Fig. 3. Plots showing the pure coarse LES and pure RANS predictions of the mean vertical velocity profiles near 257 

the hot wall at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻. (a) 258 

is a semi logarithmic plot (b) is a linear plot. 259 

 260 
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          (a)                                                                          (b) 

Fig. 4. Plots showing the pure coarse LES and pure RANS predictions of the profiles near the hot wall at 

horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻. (a) turbulent 

shear stress (b) total turbulent kinetic energy. 

 284 

 

Fig. 5. A plot showing the pure coarse LES and pure RANS predictions of the mean temperature profiles near 

the hot wall at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 0.5𝐻 and 0.7𝐻.  



 

 

   The pure RANS predictions of the velocity profiles are unsatisfactory. At the heights of 0.1𝐻 and 0.3𝐻, the 285 

velocity in the immediate vicinity of the wall is overpredicted. This is because at these locations there is an 286 

underprediction of the wall normal mixing of wall parallel momentum clearly seen in the turbulent shear stress 287 

profiles at these locations (Fig. 4 (a)). The inadequate wall normal mixing of the RANS at y=0.1𝐻 and 0.3𝐻 is 288 

consistent with the fact that the RANS underpredicts the thickness of the momentum boundary layer at the height 289 

of 0.3𝐻 as well as the width of the thermal boundary layer at both y=0.1𝐻 and 0.3𝐻. At the vertical locations of 290 

𝑦 = 0.7𝐻 and 0.9𝐻, the pure RANS seems to underpredict the velocity in the entire boundary layer. The total 291 

turbulent kinetic energy (TTKE) is underpredicted at all the locations apart from the height of 0.1𝐻 at which the 292 

RANS overpredicts the TTKE. The pure coarse LES predictions of the TTKE are in better agreement with the 293 

reference DNS data than the pure RANS.  294 

   One important thing to note is that this flow features the presence of unstably stratified flow regions particularly 295 

near the top right and bottom left corners. This unstable stratification is caused by the linear temperature profile at 296 

the horizontal walls. As explained by  Sebilleau et al. (2018), this unstable stratification causes the appearance of 297 

buoyant plumes which rise along the hot wall and fall along the cold wall. This instability is the main reason why 298 

turbulence levels in this cavity are greater than what the turbulence levels would be in a cavity with horizontal 299 

walls that are adiabatic at the same Rayleigh number. These large turbulence levels can be observed in Fig. 6 in 300 

which a snapshot of the velocity field of the pure coarse LES simulation is shown.  301 

  302 

Fig. 6. An instantaneous snapshot of the LES velocity magnitude from the pure coarse LES simulation. 303 

   The high turbulence levels and the instabilities present in this flow are the reasons why no problem regarding 304 

the transition of the flow to a turbulent state was faced when the one-equation 𝑘 model was used even though this 305 

model is dissipative and the LES grid is coarse. The same LES model was one of the models used by Kumar & 306 

Dewan (2016) in their wall-resolved LES study of the square cavity. The temperature variation imposed by the 307 

authors at the horizontal walls is likely to be the reason why no transition problem was reported. On the other 308 

hand,  Barhaghi & Davidson (2007) experienced a transition delay problem when using the Smagorinsky model 309 

(which is also dissipative) to simulate a tall buoyant cavity which can be attributed to the adiabatic condition at 310 



 

 

the horizontal walls of the cavity. Contrarily, the authors attained a good transition prediction with the dynamic 311 

Smagorinsky model.    312 

   Snapshots of the instantaneous temperature fields from the pure RANS and pure coarse LES simulations are 313 

shown in Fig. 7 and Fig. 8. In order to well visualize the aforementioned instability, a closer view of the flow near 314 

the bottom left corner is provided for both the pure RANS and the pure coarse LES temperature snapshots. In the 315 

RANS zoomed-in view, the unstable stratification that triggers the instability can be clearly seen near the bottom 316 

wall. This stratification increases from right to left (following the flow direction) until it is strong enough to allow 317 

the instability to form. It can be observed that the onset location of the pure coarse LES instability is upstream of 318 

the location where the RANS instability starts. However, the RANS instability appears to have a larger lengthscale 319 

than the LES instability. This might be the reason why the RANS predicts a high TTKE at the height of 0.1𝐻 since 320 

at this location the RANS resolved variances are significantly greater than the modelled variances. The dominance 321 

of the RANS resolved component of the TTKE over the modelled one in the boundary layer was observed to 322 

almost vanish near the midheight of the cavity.    323 

 324 

Fig. 7. An instantaneous snapshot of the temperature from the pure coarse LES simulation. A zoomed-in view of 325 

the contours near the bottom left corner is provided as well. 326 

 327 

Fig. 8. An instantaneous snapshot of the temperature from the pure RANS simulation. A zoomed-in view of the 328 

contours near the bottom left corner is provided as well. 329 



 

 

5.2. Estimating the LES zone weight (𝝈 𝑳) by comparing the turbulence lengthscales and 330 

the grid size 331 

   One of the main purposes of this study is to design a new criterion that determines 𝜎 𝐿 by assessing the resolution 332 

of the LES grid and successfully use this criterion in a dual-mesh simulation of the square cavity flow. The basic 333 

idea behind a criterion of this type is that it gives 𝜎 𝐿 = 1 at the locations where the LES is well-resolved and gives 334 

𝜎 𝐿 = 0 at the remaining locations. The development of this criterion was motivated by the complexity that is 335 

present in this flow as it features coexistence of laminar and turbulent zones. The 𝑅𝑒𝑦 criterion (see Equation (8)) 336 

gives 𝜎 𝐿 = 0  in the laminar regions and thus cannot distinguish between the laminarization in these regions and 337 

the laminarization that occurs in the viscosity affected region. Details of this behaviour as well as the results 338 

obtained using the 𝑅𝑒𝑦 criterion are included in Appendix C. 339 

   Three important studies in which the LES resolution was assessed by comparing the grid size to the turbulence 340 

lengthscales are the studies of Xiao et al. (2014), Addad et al. (2008) and Uribe et al. (2010). Xiao et al. (2014) 341 

designed a criterion that assesses the grid resolution in the three different directions by defining a turbulence 342 

lengthscale associated with each direction and comparing it to the filter width in that direction. In this study, 343 

however, for simplicity we base our criterion on turbulence lengthscales that are scalar quantities rather than 344 

vectors or tensors. Addad et al. (2008) argued that the LES can be considered to be well-resolved at locations 345 

where the grid size (𝛥) satisfies the following condition: 346 

𝛥˂max (𝜆,
𝐿𝑅𝑀
10
) (28) 

where 𝐿𝑅𝑀 and 𝜆 are the RANS predictions of the integral and Taylor lengthscales, respectively: 347 

 348 

 349 

   The lengthscale 
𝐿𝑅𝑀

10
 was introduced as a lower limit in Equation (28) because for high Reynolds numbers, the 350 

grid size does not need to be as small as the Taylor lengthscale (𝜆) and the resolution can be considered adequate 351 

if the grid allows resolving eddies with lengthscales greater than one tenth of the integral lengthscale (Addad et al. 352 

(2008)).  353 

   In the study of Uribe et al. (2010), the authors formulated their RANS-LES blending functions as: 354 

𝐿𝑅𝑀 =
𝑘3/2

𝜀
 (29) 

𝜆 = √
10𝜈𝑘

𝜀
 (30) 



 

 

𝑓𝑏 = 𝑡𝑎𝑛ℎ (𝐶1
𝜑𝑘3/2

𝜀𝛥
)

𝑛

 (31) 

where 𝐶1 and 𝑛 are constants. This function assesses the resolution of the LES grid by comparing the grid spacing 355 

𝛥 to the lengthscale 
𝜑𝑘3/2

𝜀
 which represents the integral lengthscale 

𝑘3/2

𝜀
 multiplied by the wall-normal anisotropy 356 

𝜑 =
  〈𝑣2〉

𝑘
 (the ratio of the wall-normal Reynolds stress to the turbulent kinetic energy). Multiplying the integral 357 

lengthscale by 𝜑 provides a damping of the former in the near-wall region as 
𝑘3/2

𝜀
 can become large in this region. 358 

A comparison of 
𝑘3/2

𝜀
 and 

𝜑𝑘3/2

𝜀
 in the near-wall region of a channel flow can be found in Uribe (2006). 359 

   In this study we first choose to combine the resolution criterions of Addad et al. (2008) and Uribe et al. (2010). 360 

This was done by starting from Equation (28) and multiplying both the integral and Taylor lengthscales by a 361 

damping function as: 362 

𝛥˂max (𝜓𝜆, 𝜓
𝐿𝑅𝑀
10
) (32) 

where the damping function 𝜓 was defined using the elliptic blending parameter 𝛼 (see Appendix A) as follows: 363 

𝜓 =
3

2
((1 − 𝛼3)𝜑 + 𝛼3

2

3
) (33) 

   Using this function in Equation (32) damps the integral and Taylor lengthscales close to the wall since as the 364 

wall is approached the values of 𝛼 and 𝜑 go to 0 and as a result the damping function 𝜓  becomes approximately 365 

equal to 
3

2
𝜑 which approaches 0. On the other hand, at locations far enough from the wall for 𝛼 to become close 366 

to 1,  𝜓 approaches 1 and thus the lengthscales 𝜆 and 
𝐿𝑅𝑀

10
 in Equation (32) are not damped. 𝜓 was not formulated 367 

using 𝜓 =
3

2
𝜑 since far from the wall 𝜑 is not guaranteed to become equal to 

2

3
 (meaning 𝜓 can be smaller than 1 368 

at large wall distances). For instance even in the centreline of a channel, turbulence is not isotropic (the three 369 

normal Reynolds stresses are not equal at this location) and thus 𝜑 does not equal 
2

3
 (see for example the DNS data 370 

of Kawamura et al. (1998)). 371 

   In contrast to the flow studied here, the test cases in Xiao et al. (2014), Addad et al. (2008) and Uribe et al. (2010) 372 

do not feature unsteadiness, buoyancy forces or flow laminarization. Therefore, the new criterion has to be 373 

designed to account for these flow features. This gives the new criterion the advantage that it can be used for 374 

buoyancy driven flows, where the aforementioned features are quite often found.   375 

   One point worth noting is that the lengthscales 𝜆 and 𝐿𝑅𝑀 were calculated here using the total RANS turbulent 376 

kinetic energy (𝑘𝑅𝑇𝑜𝑡𝑎𝑙) and the total RANS dissipation rate (𝜀𝑅𝑇𝑜𝑡𝑎𝑙) which were calculated from the pure RANS 377 

results as: 378 



 

 

𝐿𝑅𝑀 =
𝑘𝑅𝑇𝑜𝑡𝑎𝑙

3/2

𝜀𝑅𝑇𝑜𝑡𝑎𝑙
 (34) 

 379 

𝜆 = √
10𝜈𝑘𝑅𝑇𝑜𝑡𝑎𝑙
𝜀𝑅𝑇𝑜𝑡𝑎𝑙

 (35) 

where 𝑘𝑅𝑇𝑜𝑡𝑎𝑙 and 𝜀𝑅𝑇𝑜𝑡𝑎𝑙 were calculated as: 380 

𝑘𝑅𝑇𝑜𝑡𝑎𝑙 = {𝑘
𝑅} + 𝑘𝑅𝑅𝑒𝑠 (36) 

 381 

𝜀𝑅𝑇𝑜𝑡𝑎𝑙 = {𝜀
𝑅} + 𝜀𝑅𝑅𝑒𝑠 (37) 

where {} is used here to represent quantities averaged in time using a simple arithmetic mean operation. 𝑘𝑅 and 382 

𝑘𝑅𝑅𝑒𝑠 are the pure RANS modelled and resolved turbulent kinetic energies2, respectively. 𝑘𝑅𝑅𝑒𝑠 was calculated 383 

as:  384 

𝑘𝑅𝑅𝑒𝑠 = 0.5 ∗ {𝑢𝑖
′′𝑅  𝑢𝑖

′′𝑅} (38) 

where 𝑢𝑖
′′𝑅 = 〈𝑈𝑖〉 − {〈𝑈𝑖〉} represents the resolved RANS velocity fluctuation. In addition, 𝜀𝑅 and 𝜀𝑅𝑅𝑒𝑠 are the 385 

pure RANS modelled and resolved turbulent dissipation rates3, respectively. 𝜀𝑅𝑅𝑒𝑠 was estimated using: 386 

𝜀𝑅𝑅𝑒𝑠 = 2𝜈{〈𝑆𝑖𝑗〉〈𝑆𝑖𝑗〉} (39) 

〈𝑆𝑖𝑗〉 = 0.5 (
𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
+
𝜕〈𝑈𝑗〉

𝜕𝑥𝑖
) (40) 

   The problem with Equation (32) is that in laminar zones it is difficult to predict the behaviour of the lengthscales 387 

𝐿𝑅𝑀 and 𝜆. The definitions in Equations (34) and (35) are not guaranteed to give lengthscales that are greater than 388 

0 in all the laminar zones. If 𝐿𝑅𝑀 and 𝜆 both become equal to 0 at a particular location, Equation (32) will see that 389 

the grid size is greater than the turbulence lengthscales, which is a false indication of an under-resolved LES at 390 

this location. As a result, in the dual-mesh context the LES will be forced towards the RANS at this location. This 391 

can be problematic at the laminar locations where instabilities that enhance the turbulence levels form (in this 392 

cavity flow these instabilities exist near the top right and bottom left corners). Forcing the LES fluctuations at 393 

these locations can destroy the LES instabilities and affect the predicted turbulence levels. In addition, one would 394 

 
2 What is meant here by the RANS resolved turbulent kinetic energy is the kinetic energy of the unsteady motions 

resolved in the RANS simulation which represent mean flow instabilities rather than turbulence.  
3 The RANS resolved turbulent dissipation rate term was used to represent the rate at which the energy of the 

unstable motions resolved in the RANS simulation is dissipated into heat.  



 

 

want the LES to drive the RANS at all the laminar locations as the LES does a better job than the RANS in 395 

predicting the interaction of the laminar zones with the turbulent ones.  396 

   To prevent the condition in Equation (32) from being violated in the laminar zones, the lengthscales were limited 397 

by making use of the pure RANS prediction of the Kolmogorov lengthscale (𝜂) as: 398 

𝛥˂max (𝜓𝜆, 𝜓
𝐿𝑅𝑀
10

, 8𝐶𝑘𝑜𝑙𝑚𝜂) (41) 

where: 399 

𝜂 = (
𝜈3

{𝜀𝑅}
)

1
4

, (42) 

 400 

𝐶𝑘𝑜𝑙𝑚 =                            1          𝑓𝑜𝑟 d ≥ 𝛥𝑚𝑎𝑥, 

                                0.3125      𝑓𝑜𝑟 d < 𝛥𝑚𝑎𝑥 

 

(43) 

where 𝑑 is the wall distance and 𝛥𝑚𝑎𝑥 = max (𝛥𝑥, 𝛥𝑦 , 𝛥𝑧) is the largest cell size in the three directions. 401 

   It can be observed that the time average of the RANS modelled dissipation rate ({𝜀𝑅}) is used in the definition 402 

of the Kolmogorov lengthscale and not the total dissipation rate 𝜀𝑅𝑇𝑜𝑡𝑎𝑙 (𝜀
𝑅
𝑇𝑜𝑡𝑎𝑙 was used in the definitions of the 403 

integral and Taylor scales). This is to make the product 8 𝜂 much larger than the grid size 𝛥 in the laminar zones 404 

where 𝜀𝑅 → 0. This in turn allows the criterion in Equation (41) to correctly predict that the LES is well-resolved 405 

at the laminar zones. 8𝜂 is multiplied by 𝐶𝑘𝑜𝑙𝑚 in order to provide a damping in the viscous sublayer as 8 𝜂 becomes 406 

much larger than 𝜓𝜆 and 𝜓
𝐿𝑅𝑀

10
 and might become larger than the grid size in this region. This damping thus 407 

prevents the quantity 8𝐶𝑘𝑜𝑙𝑚𝜂 from becoming larger than the grid size in the viscosity affected region (otherwise 408 

the criterion might falsely indicate that the LES is well-resolved at some locations in the sublayer). 409 

   In Equation (43), it is assumed that wall distances lower than the value of  𝛥𝑚𝑎𝑥  correspond to the viscous 410 

sublayer. The justification for this assumption is that the purpose of damping the Kolmogorov lengthscale using 411 

𝐶𝑘𝑜𝑙𝑚 is to prevent the maximum lengthscale in Equation (41) from becoming larger than the grid size near the 412 

wall for coarse LES grids. For these grids, a wall distance equal to the maximum grid spacing 𝛥𝑚𝑎𝑥  corresponds 413 

to a 𝑦+ that is definitely greater than 11. Thus, the Kolmogorov damping we introduced remains active over the 414 

entire viscous sublayer (the viscosity affected region extends up to a 𝑦+ of about 11). The criterion in Equation 415 

(41) can be used to estimate the LES zone weight (𝜎𝐿) in the hybrid simulation using: 416 

𝜎𝐿 = {
1      𝑓𝑜𝑟 𝛥˂max (𝜓𝜆, 𝜓

𝐿𝑅𝑀
10

, 8𝐶𝑘𝑜𝑙𝑚𝜂) 

0        𝑓𝑜𝑟 𝛥 > max (𝜓𝜆, 𝜓
𝐿𝑅𝑀
10

, 8𝐶𝑘𝑜𝑙𝑚𝜂)

 

 

(44) 



 

 

  One observation that can be made about this equation is that 𝜎𝐿 does not need to be calculated repeatedly during 417 

the entire dual-mesh hybrid simulation. This is because all the turbulence lengthscales in Equation (44) are 418 

calculated from the pure RANS results. The use of hybrid RANS to estimate these lengthscales was avoided as the 419 

relaxation forcing in the LES regions can pollute predictions of the turbulence quantities in these regions. 420 

Therefore, one can run the pure RANS simulation, calculate the required lengthscales and then run the dual-mesh 421 

simulation (it is a good practice to run the pure RANS before the dual-mesh simulation since the pure RANS 422 

results give good initial conditions for the hybrid RANS simulation). 𝜎𝐿 can then be calculated at one of the initial 423 

time steps of the dual-mesh simulation since nothing in Equation (44) changes during this simulation. In order to 424 

calculate 𝜎𝐿 in the hybrid simulation, the turbulence lengthscales in Equation (44) need to be interpolated into the 425 

LES grid so that they can be compared to 𝛥, which we chose to calculate as the cubic root of the volume of the 426 

cell4 (𝛥𝑥𝛥𝑦𝛥𝑧)
1/3

. After this 𝜎𝐿 can be interpolated into the RANS grid so that it can be used in the RANS 427 

equations.  428 

   In Fig. 9, a contour plot of 𝜎𝐿 from a hybrid simulation in which it was estimated using the new lengthscale 429 

criterion is presented. It can be seen that Equation (44) gives the required behaviour of 𝜎𝐿. 𝜎𝐿 is equal to 1 in the 430 

laminar core and the regions where 𝜎𝐿 is equal to 0 (RANS regions) near the top right and bottom left corners are 431 

very thin. Profiles of 𝜎𝐿 near the hot wall are also shown in Fig. 10. 432 

 433 

Fig. 9. Contours of the LES zone weight (𝜎 𝐿) from a hybrid simulation in which it was estimated using Equation 434 

(44).  435 

 436 

 437 

 
4 𝛥 was not calculated as 𝑚𝑎𝑥(𝛥𝑥 , 𝛥𝑦, 𝛥𝑧) in order to avoid ending up with thick RANS regions (with 𝜎𝐿 = 0) 

close to the horizontal walls. 



 

 

 438 

Fig. 10.  Mean values of the LES zone weight (𝜎 𝐿) from a hybrid simulation in which it was calculated using 439 

Equation (44). This figure shows 𝜎 𝐿 profiles at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 440 

0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻.  The horizontal axis is in log scale. 441 

   Plots of the lengthscales 𝜓𝜆, 𝜓
𝐿𝑅𝑀

10
 ,8𝐶𝑘𝑜𝑙𝑚𝜂, 8𝜂 and 𝛥 at four cavity heights are shown in Fig. 11 (a)-(d). The 442 

damping of the integral and the Taylor lengthscales that is introduced by the function 𝜓 results in a relatively 443 

smooth change of these lengthscales with the wall distance in the wall vicinity compared to the behaviour of the 444 

undamped lengthscales 𝜆, 
𝐿𝑅𝑀

10
 which can be seen in Fig. 12. The undamped lengthscales can also be observed to 445 

become quite large close to the wall. 446 

   It can be seen from Fig. 11 that close to the wall, the quantity 8𝜂 becomes much larger than the lengthscales 𝜓𝜆 447 

and 𝜓
𝐿𝑅𝑀

10
. On the other hand, the quantity 8𝐶𝑘𝑜𝑙𝑚𝜂 which equals 2.5 𝜂 at wall distances less than 𝛥𝑚𝑎𝑥  (see 448 

Equation (43)) appears to provide a much more reasonable estimation of the near-wall turbulence lengthscale than 449 

8𝜂.  8𝐶𝑘𝑜𝑙𝑚𝜂 can be observed to become quite large at 𝑥 = 0.1 (which corresponds to an average 𝑥+ of around 450 

 885). This is because of the almost vanishing turbulence at this location (see the pure RANS turbulent kinetic 451 

energy profiles in Fig. 4 (b)) which causes a small value of 𝜀𝑅 which leads to a large estimation of 8𝐶𝑘𝑜𝑙𝑚𝜂 (see 452 

the definition of 𝜂 in Equation (42)). 453 

   Fig. 11 shows that 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 are not close to 0 at 𝑥 = 0.1. This is because these two lengthscales have been 454 

based on the RANS total turbulent kinetic energy (𝑘𝑅𝑇𝑜𝑡𝑎𝑙) and the RANS total dissipation rate (𝜀𝑅𝑇𝑜𝑡𝑎𝑙). These 455 



 

 

two quantities do not approach 0 at 𝑥 = 0.1. Even though at this location the turbulent fluctuations are very weak 456 

(meaning both 𝑘𝑅 and 𝜀𝑅 approach 0), the unsteady motion of the core makes 𝑘𝑅𝑅𝑒𝑠 and 𝜀𝑅𝑅𝑒𝑠 non-zero resulting 457 

in nonzero values of 𝑘𝑅𝑇𝑜𝑡𝑎𝑙 and 𝜀𝑅𝑇𝑜𝑡𝑎𝑙. The large values of 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 serve to prevent 𝜎𝐿 from falling to 458 

zero, and hence prevent the RANS from driving the LES outside the boundary layer.  459 

   As mentioned previously, the lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂 is used in Equation (44) to provide an additional safeguard 460 

that prevents the condition in the equation from being violated in laminar zones, where the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 461 

𝜓𝜆 are not guaranteed to become large. In Fig. 11 (e), a plot of the turbulence lengthscales at a vertical line located 462 

at a horizontal distance of 0.1𝐻 from the hot wall is shown. This location features low turbulence levels but is 463 

dominated by the unsteady motions which have been discussed previously. The low turbulence levels at this 464 

location result in a low 𝜀𝑅 and make 8𝐶𝑘𝑜𝑙𝑚𝜂 larger than the other lengthscales (𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆) up to a wall 465 

distance of about 0.01𝐻. This relatively high near-wall value of 8𝐶𝑘𝑜𝑙𝑚𝜂 makes 𝜎𝐿 rise to 1 at a distance of about 466 

0.008 from the wall as a consequence of 𝛥 becoming less than 8𝐶𝑘𝑜𝑙𝑚𝜂 at this wall distance (Fig. 13).  467 

   If one was relying only on the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆, the distance at which 𝜎𝐿 becomes 1 would have been 468 

larger than 0.008. This can be observed from Fig. 11 (e) which shows that the wall distance after which 𝛥 becomes 469 

smaller than the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 is larger than the distance where 𝛥 starts becoming smaller than the 470 

lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂. It is better to minimize the wall distance at which 𝜎𝐿 becomes 1 near the top right and bottom 471 

left corners in order to avoid the risk of damping the instabilities present in the hybrid LES simulation at these 472 

locations. Introducing the lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂  as an argument in Equation (44) thus serves as a shield against a 473 

late RANS-LES switch near the top right and bottom left corners. However, one still needs to avoid having a large 474 

grid size 𝛥 near these corners as this can result in a delay of the RANS-LES switch. 475 

 476 

 477 

 478 



 

 

 479 

                                               (a)                                                                                 (b) 480 

 481 

                                               (c)                                                                                 (d) 482 

 483 

  (e) 484 

Fig. 11. Plots of the lengthscales 𝜓𝜆, 𝜓
𝐿𝑅𝑀

10
, 8𝜂 and 8𝐶𝑘𝑜𝑙𝑚𝜂 as well as the filter width 𝛥 (calculated as the cubic 485 

root of the volume of the cell) at horizontal lines that correspond to cavity heights equal to (a) 0.1𝐻 (b) 0.3𝐻 (c) 486 

0.5𝐻 (d) 0.7𝐻. The profiles of the lengthscales and the filter width shown in (e) are at a vertical line that is 487 

located at a distance of 0.1𝐻 from the hot wall. The horizontal axis is in log scale. 488 



 

 

 489 

Fig. 12. A plot of the lengthscales 𝜆, 
𝐿𝑅𝑀

10
, 8𝜂 and 8𝐶𝑘𝑜𝑙𝑚𝜂 as well as the filter width Δ (calculated as the cubic 490 

root of the volume of the cell) at a horizontal line that corresponds to the cavity height equal to 0.7𝐻. The 491 

horizontal axis is in log scale. 492 

 493 

Fig. 13. A plot of the LES zone weight (𝜎 𝐿) at a vertical line that is located at a distance of 0.1𝐻 from the hot 494 

wall. This plot is from a hybrid simulation in which 𝜎 𝐿 was estimated using Equation (44). The horizontal axis 495 

is in log scale. 496 

5.3. Dual-mesh results obtained using the new resolution criterion 497 

   The fact that the regions in which 𝜎𝐿 is 0 near the top right and bottom left corners are thin causes the hybrid 498 

RANS instability to be almost eliminated (see Fig. 15). The reason why the hybrid RANS becomes steady is the 499 

vigorous forcing of the RANS towards the LES in these regions. The averaged LES field is steady (the chosen 500 

EWA averaging period is large enough to smooth the LES field) and forcing the RANS towards it in a significant 501 

part of the region where the RANS instability forms eliminates the unsteadiness.  502 

   The fact that the hybrid RANS becomes steady simplifies the application of the dual-mesh approach as one does 503 

not need to take into account the time dependency of the RANS simulation when coupling the RANS and the LES. 504 



 

 

In this case, the only requirement that has to be satisfied by 𝑇𝑎𝑣𝑔 is that it has to be large enough to smooth the 505 

LES quantities and remove all the fluctuations. Although not shown here, the fact that the results of this section 506 

hardly changed when the averaging time scale was doubled suggests that 𝑇𝑎𝑣𝑔 = 32 
𝐻

√𝑔𝛽𝐻𝛥𝑇
 is large enough to 507 

smooth out the turbulence structures.  508 

   The hybrid simulations perform well in predicting the vertical velocities near the hot wall as shown Fig. 16 (a). 509 

This is because the hybrid RANS-LES coupling does not damp the instability in the hybrid LES simulation as can 510 

be seen from the snapshot of the hybrid LES temperature field shown in Fig. 14. The reason why the LES instability 511 

is not damped is that at the locations where the LES instability is dominant (near the top right and bottom left 512 

corners), the LES is forced towards the RANS in only a thin layer close to the wall. Capturing this instability 513 

allows the LES to predict the high turbulence levels along the vertical walls as these high levels are triggered by 514 

the flow unsteadiness. 515 

 516 

 517 

Fig. 14. An instantaneous snapshot of the LES temperature from a hybrid simulation in which the LES zone 518 

weight was calculated using Equation (44). A zoomed-in view of the contours near the bottom left corner is 519 

provided as well. 520 

 521 

Fig. 15. An instantaneous snapshot of the RANS temperature from a hybrid simulation in which the LES zone 522 

weight was calculated using Equation (44). A zoomed-in view of the contours near the bottom left corner is 523 

provided as well. 524 

   The predictions of the total turbulent kinetic energy profiles of the flow near the hot wall are shown in Fig. 16 525 

(b). The reasonable hybrid predictions of these profiles at the downstream locations of the boundary layer are a 526 



 

 

consequence of not damping the plume instability in the hybrid LES simulation. However, admittedly the hybrid 527 

method’s predictions of the TTKE profiles worsen as the bottom wall is approached due to the low turbulence 528 

levels in the upstream region of the hot wall’s boundary layer. The significant underprediction of the TTKE at the 529 

height of 0.1𝐻 is consistent with the poor hybrid velocity predictions at the same location. Fig. 17 also shows that 530 

the temperature profiles are of reasonable accuracy at all the locations apart from the height of 0.1𝐻.  531 

   It can be observed from Fig. 16 (a) that the hybrid LES simulation does a good job in capturing the interaction 532 

of the turbulent boundary layer with the laminar core. Note that the coarseness of the LES grid only allows 533 

capturing the outer edge of the boundary layer, since only the first and second cells contain the peak of the velocity 534 

profile, and the wall-jet side is fairly well modelled with the hybrid RANS. Conversely, the pure RANS simulation 535 

performed rather poorly on the cavity side but the RANS is aptly corrected by the LES when run in a hybrid 536 

simulation (the continuous red line is almost overlapped by the DNS symbols at most of the locations).  537 

  538 

                                           (a)                                                                                               (b) 539 

Fig. 16. Plots showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the profiles of 540 

the mean vertical velocity (shown in (a)) and the total turbulent kinetic energy (shown in (b)) near the hot wall at 541 

horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻. In the hybrid 542 

simulations 𝜎 𝐿 was calculated using Equation (44).  543 



 

 

 544 

Fig. 17. A plot showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the mean 545 

temperature profiles near the hot wall at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 546 

0.5𝐻 and 0.7𝐻. In the hybrid simulations 𝜎 𝐿 was calculated using Equation (44).  547 

   The horizontal velocity profiles at the midwidth obtained using the different simulations are shown in Fig. 18. It 548 

can be seen from this figure that the hybrid simulations and the pure coarse LES do a much better job in predicting 549 

the velocity profile than the pure RANS. This is because the pure RANS performs worse than the other simulations 550 

in predicting the velocities at the hot wall boundary layer (Fig. 16 (a)). 551 

 552 

Fig. 18. A plot showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the mean 553 

horizontal velocity at the cavity midwidth. In the hybrid simulations 𝜎 𝐿 was calculated using Equation (44).  554 



 

 

   The wall shear stress (WSS) profiles along the hot wall are shown in Fig. 19 (a). It can be seen that the hybrid 555 

LES does not accurately predict the WSS. This is because even though the EWA velocities at the near-wall nodes 556 

of the LES are forced towards the corresponding RANS velocities, the wall distances of these nodes are large 557 

enough to make the error associated with the finite difference approximation of the velocity gradient at the wall 558 

non-negligible. This is the reason why the inaccuracy of the hybrid LES WSS is inevitable and one should consider 559 

the hybrid RANS WSS predictions instead. In fact, the hybrid RANS gives reasonable predictions of the WSS 560 

apart from a small overprediction between 𝑦 = 0.4 and 𝑦 = 1 which is caused by an overprediction of the velocity 561 

peaks at these heights. This overprediction can be seen in the velocity profiles at the heights of 0.5𝐻, 0.7𝐻 and 562 

0.9𝐻 (Fig. 16 (a)). On the other hand, the pure RANS slightly overestimates the WSS at the bottom half of the hot 563 

wall which is consistent with the overprediction of the velocity in the immediate wall vicinity which can be clearly 564 

seen in Fig. 16 (a). 565 

   As regards the Nusselt number (𝑁𝑢) predictions shown in Fig. 19 (b), the hybrid RANS does not seem to be 566 

superior to the pure LES. However, one can observe that the hybrid RANS seems to give a more accurate prediction 567 

of the locations of the local minima and local maxima of the 𝑁𝑢 profile (between about 𝑦 = 0.2 and 0.4) in 568 

comparison to the pure coarse LES and pure RANS simulations. The local maxima and minima of the Nu are 569 

related to a turbulence enhancement that occurs along the hot wall (Sebilleau (2016)). The fact that the locations 570 

of these points are captured with the hybrid method suggests that the method is able to accurately predict the 571 

location of the turbulence enhancement. The underprediction of the Nu by the hybrid RANS seems to be because 572 

the RANS closure is incapable of accurately predicting the 𝑁𝑢 in this flow. Future studies should focus on studying 573 

the impact of using different RANS models and different turbulent heat flux treatments on the predicted Nusselt 574 

number profile.   575 

 576 

 577 

 578 

 579 



 

 

 580 

                                                    (a)                                                                       (b) 581 

Fig. 19. Predictions of the wall shear stress (shown in (a)) and the Nusselt number (shown in (b)) along the hot 582 

wall of the pure RANS, pure LES, hybrid RANS and hybrid LES simulations. In the hybrid simulations 𝜎 𝐿 was 583 

calculated using Equation (44).  584 

   The temperature variance predictions are presented in Fig. 20. It can be seen that at the heights of 0.3𝐻, 0.5𝐻, 585 

0.7𝐻 and 0.9𝐻, the hybrid RANS and hybrid LES are superior to the pure coarse LES in predicting the temperature 586 

variance at locations to the right of the peaks of the variance. This is because forcing the LES towards the RANS 587 

close to the wall solves the problem of overpredicting the variance that is present in the pure coarse LES results. 588 

However, the peaks of the temperature variance are underestimated by the hybrid simulations at all the cavity 589 

heights. Again, the problem here lies in the RANS closure, which is unable to accurately predict the temperature 590 

fluctuations in the immediate near-wall region. 591 

 592 

 593 

 594 



 

 

 595 

Fig. 20. A plot showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the temperature 596 

variance profiles near the hot wall at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 0.3𝐻, 597 

0.5𝐻, 0.7𝐻 and 0.9𝐻. In the hybrid simulations 𝜎 𝐿 was calculated using Equation (44).   598 

6. Conclusions 599 

   In this study, the performance of different turbulence modelling approaches in predicting a high Rayleigh number 600 

buoyant square cavity flow was assessed. This flow features boundary layers with a relatively small thickness (due 601 

to the high 𝑅𝑎) , a laminar stably stratified core and unstably stratified regions near the downstream halfs of the 602 

horizontal walls. The latter causes the presence of an instability in this flow that enhances the turbulence levels. 603 

The simulations that were run included a pure unsteady RANS, a pure coarse LES as well as dual-mesh hybrid 604 

RANS-LES simulations.  605 

   The RANS was found to perform poorly in capturing the flow in the later stages of the boundary layer. Contrarily, 606 

the coarse LES was found to be superior to the RANS in capturing the outer edge of the boundary layer. The main 607 

problem with the pure coarse LES is that it is unable to predict the near-wall part of the boundary layer. The 608 

reasons for this are mainly that the coarse LES does not capture the structures in the viscosity affected region and 609 

that the near-wall nodes are located at a distance large enough to prevent an accurate estimation of the near-wall 610 

gradients. In addition, an overestimation of the temperature fluctuations in the coarse LES results was observed.  611 

   It has been found that in order to successfully compute this flow with the dual-mesh approach, the 𝜎𝐿 determining 612 

criterion has to be able to distinguish the laminar zones in this flow from the viscosity affected near-wall regions 613 

of the turbulent zones. Consequently, a new criterion that can be considered to belong to the family of criterions 614 



 

 

based on comparing the turbulence lengthscales and the grid size was developed and analysed here. This criterion 615 

was designed in a way that makes it suitable for natural convection flows featuring laminar regions that coexist 616 

with other regions that are turbulent. This criterion also has the advantages of the criterions of both Addad et al. 617 

(2008) and Uribe et al. (2010) and can be used when computing non-buoyant flows. For these flows, however, 618 

there is no need to include the lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂 in Equation (44). 619 

   The dual-mesh results yielded by the new lengthscale criterion for the square cavity flow were found to be of 620 

reasonable accuracy. Future dual-mesh studies of the square cavity should focus on finding which RANS closures 621 

can provide accurate estimations of the Nusselt number and the temperature variance in the immediate wall 622 

vicinity. A subsequent paper will show that the new lengthscale criterion performs satisfactorily in determining 623 

the RANS and the LES regions in a buoyant flow in a cylindrical annuli. These cylindrical annuli results can also 624 

be found in the PhD thesis of the first author (Ali (2020)) and in Revell et al. (2020). 625 
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Appendix A. The ‘’elliptic blending 𝒌 − 𝜺 − 𝒗𝟐/𝒌’’ or the 𝑩𝑳 𝒗𝟐/𝒌 model 765 

 766 

• The elliptic blending parameter (𝛼) equation: 767 

𝛼 − 𝐿2𝜵2𝛼 = 1 (A.1) 

𝐿 = √𝐶𝐿
2 (
𝑘3

𝜀ℎ
2 + 𝐶𝜂

2 𝜈
1.5

𝜀ℎ
0.5) (A.2) 

• Turbulent kinetic energy (𝑘) equation: 768 

𝐷𝑘

𝐷𝑡
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𝑃𝑘 = 𝜈𝑡〈𝑆〉
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〈𝑆〉 = √2〈𝑆𝑖𝑗〉〈𝑆𝑖𝑗〉 (A.5) 
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𝑃𝑟𝑡

𝜕〈𝑇〉

𝜕𝑥𝑖
 (A.8) 

where 𝛽 is the thermal expansion coefficient, 𝑔𝑖 is the gravity vector and 𝐺𝑘 represents the buoyancy production 769 

of 𝑘 (the exact buoyancy production has a turbulent heat flux which was modelled here using the Standard gradient 770 

diffusion hypothesis). 771 

• Homogeneous dissipation rate (𝜀ℎ) equation: 772 

𝐷𝜀ℎ
𝐷𝑡

=
𝐶𝜀1𝑃𝑘 − 𝐶𝜀2

∗𝜀ℎ
𝜏

+
𝜕

𝜕𝑥𝑗
((
𝜈

2
+
𝜈𝑡
𝜎𝜀
)
𝜕𝜀ℎ
𝜕𝑥𝑗
)

+ 𝐺𝑘
𝜀  

 

 

(A.9) 

𝐶𝜀2
∗ = 𝐶𝜀2 + 𝛼

3(𝐶𝜀4 − 𝐶𝜀2)𝑡𝑎𝑛ℎ

(

 
 
|

𝜕
𝜕𝑥𝑗

(
𝜈𝑡
𝜎𝑘

𝜕𝑘
𝜕𝑥𝑗
)

𝜀ℎ
|

3
2

)

 
 

 

 

(A.10) 



 

 

where the buoyancy production of the turbulence dissipation rate (𝐺𝑘
𝜀) and the time scale 𝜏 read, respectively: 773 

𝐺𝑘
𝜀 = 𝐶𝜀1

𝐺𝑘
𝜏

 (A.11) 

𝜏 = √(
𝑘

𝜀ℎ
)
2

+ 𝐶𝑇
2 (
𝜈

𝜀ℎ
) (A.12) 

 774 

• Turbulent viscosity (𝜈𝑡): 775 

𝜈𝑡 = 𝑐µ𝜑𝑘min(𝜏, 𝜏min) (A.13) 

𝜏min =
𝐶𝑡

√3𝑐µ𝜑〈𝑆〉
 (A.14) 

• Equation for the quantity 𝜑 =
 〈𝑣2〉

𝑘
 (where 〈𝑣2〉 is the wall-normal Reynolds stress): 776 

𝐷𝜑

𝐷𝑡
= (1 − 𝛼3)𝑓𝑤 + 𝛼

3𝑓ℎ − 𝑃𝑘
𝜑

𝑘

+
𝜕

𝜕𝑥𝑗
((
𝜈

2
+
𝜈𝑡
𝜎𝜑
)
𝜕𝜑

𝜕𝑥𝑗
) 

 

(A.15) 

𝑓ℎ =
−1
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2
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𝑓𝑤 =
−𝜀ℎ𝜑

2𝑘
 (A.17) 

• The classic dissipation rate 𝜀 can be obtained from 𝜀ℎ using: 777 

𝜀= 𝜀ℎ + 0.5 𝜈 
𝜕2𝑘

𝜕𝑥𝑗
2  (A.18) 

   The formulation of the Reynolds stress tensor that was suggested by Sebilleau (2016) for use in the turbulent 778 

heat flux formulation when using the 𝐵𝐿 𝑣2/𝑘 model was utilised here to estimate 〈𝑢𝑖𝑢𝑗〉: 779 

〈𝑢𝑖𝑢𝑗〉 = [
2

3
𝛼3𝑘𝛿𝑖𝑗 − 2𝜈𝑡〈𝑆𝑖𝑗〉] 

+(1 − 𝛼3) [𝜑𝑘𝑛𝑖𝑛𝑗 +
2

3
𝑘(𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)] 

 

(A.19) 

   It can be observed that the buoyancy production of 𝜑 which equals −𝐺𝑘
𝜑

𝑘
 was not added to Equation (A.15). 780 

The reason for this is that in the core of the cavity, this source term becomes positive as the buoyancy production 781 

𝐺𝑘 is negative in this region (because of the stable stratification). This can cause 𝜑 to increase until it becomes 782 

unbounded eventually resulting in solution divergence (this was encountered particularly in the hybrid RANS 783 



 

 

simulations). Another remedy of this problem would be to clip 𝐺𝑘 to 0 which is the approach adopted in 784 

Code_Saturne. 785 

   Another point worth noting is that the divergence of the 𝜑 equation was also encountered because of the fact that 786 

in the hybrid RANS simulations, the production term 𝑃𝑘 is modified (see Equation (13)), which can cause 𝑃𝑘 to 787 

become negative at some locations. To fix this problem 𝑃𝑘 in the 𝜑 equation was clipped to 0 using 𝑚𝑎𝑥(𝑃𝑘 , 0). 788 

   When attempting to replicate the RANS results produced here, attention should be paid to the version of the 789 

Elliptic blending 𝑘 − 𝜀 − 𝑣2/𝑘’’ model used. It has been observed that using a version similar to the one 790 

implemented in STARCCM+ v11.02 can yield different results. The difference mainly lies in that in STARCCM+ 791 

v11.02 the term 𝑆𝜀, which gives additional dissipation in the buffer layer, is removed from the 𝑘 equation and an 792 

equivalent term is included in the dissipation equation.  793 

𝐶𝜀1 𝐶𝜀2 𝜎𝑘 𝜎𝜀 𝜎𝜑 𝑐µ 

1.44 1.83 1 1.5 1 0.22 

𝐶𝑇 𝐶𝑡 𝐶𝐿 𝐶ε3 𝐶ε4 𝐶1 

4 0.6 0.164 2.3 1 1.7 

𝐶2 𝐶𝜂 

0.9 75 

Table A.1. The 𝐵𝐿 𝑣2/𝑘 model constants. 794 
 795 

Appendix B. The one-equation eddy viscosity LES model 796 
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where the filter width 𝛥 was evaluated as the cubic root of the cell volume. 𝐶𝑘, 𝐶𝜀, 𝜅, 𝐴
+ and 𝐶𝛥 are constants. It 797 

can be noticed that the ‘’van Driest damping function’’ is included in the definition of the lengthscale used to 798 

estimate the modelled sgs viscosity 𝜈𝑠𝑔𝑠. The buoyancy production term 𝐺𝑘𝑠𝑔𝑠 was calculated as: 799 

𝐺𝑘𝑠𝑔𝑠 = 𝛽𝑔𝑖
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠

𝜕�̅�

𝜕𝑥𝑖
 (B.5) 

   As regards the boundary condition of 𝜈𝑠𝑔𝑠 at the walls, a zero gradient condition was used. However, the subgrid-800 

scale diffusivity 
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
 (which appears in the equations of the thermal field) was strictly set to 0 at the walls. Using 801 

a zero gradient or a fixed value of 0 for both quantities was found to yield rather poor pure coarse LES results for 802 

the square cavity flow. However, the hybrid method’s results showed a weak sensitivity to the wall boundary 803 

condition of 𝜈𝑠𝑔𝑠 as the LES is forced towards the RANS in the near-well cells in the dual-mesh simulation. 804 

𝐶𝑘  𝐶𝜀 𝜅  𝐴+  𝐶𝛥  

0.094 1.048 0.41 26 0.158 

Table B.1. The “one-equation eddy viscosity model” constants. 805 

 806 

Appendix C. Results obtained with an LES zone weight (𝝈 𝑳) based on 𝑹𝒆𝒚 807 

   Before discussing the dual-mesh results, it is useful to look at the behaviour of the LES zone weight in a hybrid 808 

simulation in which it was calculated using Equation (8). In Fig. C.1, a contour plot of the LES zone weight from 809 

the hybrid simulation is shown. As can be seen from this figure, 𝜎 𝐿 is equal to 0 not only near the cavity walls but 810 

also at other locations far from the walls. This can be clearly seen near the core of the cavity and can be explained 811 

by the fact that the flow is laminar in this region since the stable stratification destroys turbulence and as a result, 812 

the quantity 𝑅𝑒𝑦 becomes small (even though at the outside of the boundary layer the wall distance is relatively 813 

high, the low turbulence levels make the product 𝑘𝑅𝑦 small and thus result in a small 𝑅𝑒𝑦)5. In other words, the 814 

criterion provided by Equation (8) gives a 𝜎 𝐿 of 0 near the wall and in the cavity core as it fails to distinguish 815 

between the laminarization that occurs in the near-wall region due to the no-slip and no-penetration conditions and 816 

the far-from-the-wall laminarization caused by the stable stratification.  817 

 
5 At the outside of the boundary layer,  𝑘𝑅 (which is a hybrid RANS variable) is forced towards 𝑘𝐸𝑊𝐴 (which is a 

hybrid LES variable). Although 𝑘𝐸𝑊𝐴 approaches 0 in this region, it is greater than the pure RANS turbulent 

kinetic energy in the same region. If one replaces 𝑘𝑅 in Equation (8) with the pure RANS turbulent kinetic energy, 

a different behaviour of 𝜎 𝐿 would be obtained. 



 

 

 818 

Fig. C.1. An instantaneous snapshot of the LES zone weight from a hybrid simulation in which it was calculated 819 

using Equation (8). 820 

   Small values of 𝑅𝑒𝑦 are also featured near the horizontal walls because these regions feature low turbulence 821 

levels. By looking at Fig. C.2 which shows time averaged values of 𝜎 𝐿, it can be seen that even with the time 822 

averaging, the behaviour of 𝜎 𝐿 remains unsmooth. 823 

 824 

Fig. C.2. Mean values of the LES zone weight (𝜎 𝐿) from a hybrid simulation in which it was calculated using 825 

Equation (8). This figure shows 𝜎 𝐿 profiles at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 826 

0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻.  The horizontal axis is in log scale. 827 

   One important thing to note is that when using the dual-mesh approach, what happens when 𝜎 𝐿 is 0 in regions 828 

where the unstable plumes are forming in the LES simulation is that the velocity and temperature fluctuations 829 

associated with these plumes are altered since the LES fluctuations are forced towards the RANS fluctuations. 830 

This weakens the plume fluctuations, which in turn causes the turbulence levels along the vertical walls to be low. 831 

This can be seen from Fig. C.3 in which the velocity profiles returned by the hybrid method show an 832 

underestimation of the hot wall boundary layer thickness (due to less mixing taking place). This means one should 833 



 

 

try and reduce the forcing of the LES towards the RANS near the regions where the LES unstable plumes are 834 

ejected by limiting the forcing as much as possible to the immediate near-wall region.  835 

 836 

Fig. C.3. A plot showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the mean 837 

vertical velocity profiles near the hot wall at horizontal lines that correspond to cavity heights equal to 0.1𝐻, 838 

0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻. In the hybrid simulations 𝜎 𝐿 was calculated using Equation (8). 839 

   The weakening of the hybrid LES instability can be confirmed by looking at the temperature snapshot shown in   840 

Fig. C.4 and comparing the instability near the bottom left or top right corners with that of the pure coarse LES 841 

which can be visualized in Fig. 7. The drop in the turbulence levels along the hot wall in the hybrid LES simulation 842 

can also be confirmed by comparing the snapshots of the velocity magnitude taken from the hybrid LES and the 843 

pure coarse LES simulations (Fig. C.5 and Fig. 6, respectively). Indeed, the turbulent kinetic energy profiles plotted 844 

in Fig. C.7 clearly show that the turbulent mixing along the hot wall in the hybrid LES simulation is less than the 845 

one in the pure coarse LES. Fig. C.6 shows an instantaneous hybrid RANS temperature field in which the 846 

instability can be seen although it appears to be weaker than the pure RANS instability shown previously in Fig. 847 

8. 848 

 849 
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 853 



 

 

                           854 

Fig. C.4. An instantaneous snapshot of the LES temperature from a hybrid simulation in which the LES zone 855 

weight was calculated using Equation (8). A zoomed-in view of the contours near the bottom left corner is 856 

provided as well. 857 

                       858 

Fig. C.5. An instantaneous snapshot of the LES velocity magnitude from a hybrid simulation in which the LES 859 

zone weight was calculated using Equation (8). 860 

                                    861 

Fig. C.6. An instantaneous snapshot of the RANS temperature from a hybrid simulation in which the LES zone 862 

weight was calculated using Equation (8). A zoomed-in view of the contours near the bottom left corner is 863 

provided as well. 864 



 

 

 865 

Fig. C.7. A plot showing the pure RANS, pure LES, hybrid RANS and hybrid LES predictions of the total 866 

turbulent kinetic energy profiles near the hot wall at horizontal lines that correspond to cavity heights equal to 867 

0.1𝐻, 0.3𝐻, 0.5𝐻, 0.7𝐻 and 0.9𝐻. In the hybrid simulations 𝜎 𝐿 was calculated using Equation (8). 868 

 869 


