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Chapter 1

Introduction

Classical theory of social choice is at a large extent concerned with the way pref-

erences or values of individuals are aggregated into the choice of a collective group

or society. One of the most effective methods of eliciting one’s own preferences

is through the act of voting. As a result, the theory of voting itself is the theory

of social choice. Along with the evolution of democracy and state institutions in

the later half of the twentieth century, the application of social choice theory in

political science has become more and more prevalent. Social choice theory pro-

vides the sophisticated foundation for the analysis of electoral competition and

bargaining processes while political science has become a continual inspiration for

many theoretical problems. After all, political economy provides a rich environ-

ment for economists to apply their theories to the analysis of human behaviors

and political institutions.

The seminal works of Arrow (1950), Black (1958), and Downs (1957) had

started a long line of research connecting the field of social choice with the theory

of voting and democracy. However, there remains some distance between the

theoretical nature of social choice theory and evidence-based practice of political

science. Standard game theoretic models suggest that interpersonal comparisons

are irrelevant in strategic choice. Although it is a convenient assumption for

tractability purposes, political actors are not always an ideal decision-maker, a

perfection of rationality or in short, a homo economicus. A politician’s objective

is not only to maximize his own political influence, but also to represent a certain

ideal of justice. Voters do not evaluate policy in term of one’s own material

interest, but on how it affects the society as a whole. By accepting the “theoretical

flaws” of political agents, one can make a more precise prediction of political
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outcome and, more importantly, bring economics closer to a science of human

natures and their interaction.

In this book, we contribute to the literature by analyzing and extending some

classical models of collective decision-making, relaxing certain standard assump-

tions in microeconomic theory such as completeness and self-concerned nature.

The aim of our research is to show that such irregularities in human behaviors do

not only change our prediction of the political outcomes but also open up useful

discussions of many well-known results in social choice theory.

In Chapter 2, we extend upon the results of Lindbeck and Weibull (1987)

to study distributive politics when voters have not only self-interested prefer-

ences, but also other-regarding concerns. We consider a broad family of other-

regarding behavior (including fairness preferences, income-dependent altruism,

and inequality aversion), for which results on equilibrium existence and optimal-

ity have not been yet established. We provide a sufficient condition for smooth

and non-smooth payoffs that generalizes Lindbeck and Weibull’s condition, and

guarantees the existence of a unique Nash equilibrium in pure strategies. In ad-

dition, we determine conditions under which the equilibrium results in an income

distribution that can be rationalised as the outcome of maximizing a mixture of

a “self-regarding utilitarian” social welfare function and society’s other-regarding

preferences.

In Chapter 3, we relax the differentaiblity assumption and explore the

nonemptiness of the core with nonsmooth preferences in classical spatial voting

model. Previous analyses on the nonemptyness of the core rely on the assumption

that voters’ utility functions are pseudo-concave and differentiable to derive the

gradient restriction for the core of a voting rule parameterized by an arbitrary

quota. To deal with the difficulty caused by the absence of differentiable utility

functions, we regard each voter’s preference at each kinked point as “unanimous”

social preferences of a collective of finite “self”, each endowed with a smooth

preference over the set of alternatives. By applying the “smooth” analysis to the

auxiliary society of selves, we generalize the known gradient restriction for the

core of an arbitrary quota rule with any utility profile that satifies the general

Lipschitz continuity. We also consider two example of nonsmooth utility repre-

sentation (inequity aversion and city-block preferences) in the context of simple

allocation problem to illustrate the application of our results.

In Chapter 4, we depart from the spatial voting theory and reexamine the
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social choice problem of Barberà, Sonnenschein and Zhou (1991), where soci-

ety chooses a subset from a finite set of alternatives (indivisible objects). Each

member of society is endowed with an asymmetric and not necessarily complete

preference relation over the set of social outcomes (subsets of alternatives). We

characterize the family of voting rules satisfying justifable strategy-proofness, a

notion of incentive compatibility adapted conveniently to accommodate the in-

completeness of individual preferences. Under separability, a voting rule is jus-

tifiable strategy-proof if and only if it is a voting-by-committees rule. Given

the richness of this family, we use Ok’s (2002) multi-utility representation for

incomplete preferences to further refine our previous characterization, demand-

ing in addition optimality of the social outcome. Our analysis suggests that the

structure of the optimal voting-by-committees rules largely depends on how the

loss of information due to the presence of preference incompleteness affects the

aggregate social welfare.

9



Chapter 2

Distributive Politics with

Other-Regarding Preferences

2.1 Introduction

Models of political economy, particularly of income redistribution, typically as-

sume that individuals are selfish and care only about their material interests. In

the literature on behavioral economics, however, there is mounting evidence that

says otherwise, suggesting that people also express concern with the well-being

of other individuals in society.1 The implications of these behavioral studies on

individual preferences over payoffs have just started to be examined in political

economy. The aim of this paper is to contribute to this new literature by ex-

tending the canonical model of distributive politics due to Lindbeck and Weibull

(1987) to accommodate a broad family of other-regarding behavior, which in-

cludes among others inequality aversion (Fehr and Schmidt 1999), fairness con-

cern (Alesina and Angeletos 2005a), and income-dependent altruism (Dimick,

Rueda and Stegmueller 2017).

The model laid out in Section 2.2 shares the usual features of probabilis-

tic electoral competition. There are two political parties competing in a single

election for the main office. Voters are grouped into different socio-economic

groups and have stochastic and policy-independent preferences (ideology) over

the parties. The political candidates offer to the electorate a balanced budget

1This evidence has been documented in a large number of experimental and neuro-imaging
studies, including among many others the work of Fehr and Schmidt (1999), Engelmann and
Strobel (2004), Dawes et at. (2007) and (2012), Tabibnia et al. (2008), Fehr (2009), Alm̊as et
al. (2010), Tricomi et al. (2010), Zaki and Mitchell (2011), and Rilling and Sanfey (2011).
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redistributive policy from a multidimensional policy space. Voters evaluate these

policies taking into account their selfish utility and their ideological bias. In a

clear departure from earlier work, in this chapter voters also concern with how

these policies affect the well-being of other members of society. To be precise, vot-

ers are endowed with an other-regarding utility which is continuous, concave, but

not necessarily smooth.2 Section 2.3 offers a few important examples that match

this description. During the campaign, parties choose simultaneously their dis-

tributive policies to maximize their expected vote shares, but they care also about

voters’ other-regarding preferences. The latter implies that the payoff functions

of the parties are not necessarily smooth on the strategy space.

The main results of the paper are displayed in Section 2.4 and can be summa-

rized as follows. First, the paper generalizes the Lindbeck and Weibull’s (1987)

sufficient condition for equilibrium existence, adapting it conveniently to accom-

modate the other-regarding preferences of the electorate and the resulting non-

smooth framework described above. This condition, together with the assump-

tions on the utility functions, namely, continuity and concavity, shape the ex-

pected vote share and the parties’ payoffs. To start, the gradient of the expected

vote share is shown to be monotone decreasing on the differentiable subset of

distributive policies (Lemma 2.1).

Since the set of differentiable policy alternatives does not always constitute a

convex set, the previous result is not sufficient to prove concavity of the parties’

payoff functions. Thus, as a preliminary step it is shown that the expected vote

share of each party has a support almost everywhere (Lemma 2.2). Finally,

using the fundamental theorem on the support of a concave function, Lemma 2.3

states that the expected vote share is concave on the whole strategy space. This

together with the concavity of the other-regarding utilities guarantee that the

party payoff functions are concave as well. The existence of Nash equilibrium in

pure strategies follows then immediately from the classical Debreu-Glicksberg-

Fan’s result for games with continuous and quasi-concave payoffs (Theorem 2.1).

Second, the paper studies the properties of the Nash equilibria when the par-

ties hold symmetric electoral goals, meaning that they care equally about winning

the election. Using the necessary conditions for the existence of a maximum, The-

orem 2.2 characterizes the equilibrium policies of each party, which are shown to

2For instance, Fehr and Schmidt’s (1999) inequality aversion preferences are not differen-
tiable at the individual’s reference point (see equation 2.4).
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be unique and the same for both. In addition, the theorem also proves that

these policies are “optimal”, in the sense that they can be rationalised as the

outcome of maximizing a mixture of a “self-regarding utilitarian” social welfare

function and society’s other-regarding preferences. The optimality result in Lind-

beck and Weibull (1987) is derived as a special case under the assumption that

society is purely selfish (Corollary 2.1). Finally, third, by strengthening a bit

the assumption on the shape of the other-regarding utility, namely, by assum-

ing strict concavity, the paper shows in Theorem 2.3 that the uniqueness result

stated in Theorem 2.2 holds more generally, and not just under symmetric party

motivations, provided that the condition for equilibrium existence is in place.

With regard to the literature most closely related to this article, preferences

for redistribution that goes beyond those motivated by the agents’ own economic

benefits have been studied in Galasso (2003), Alesina and Angeletos (2005a,b),

Tyran and Sausgruber (2006), Dhami and al-Nowaihi (2010a,b), Luttens and

Valfort (2012), and Flamand (2012). These papers differ from the current work

primarily because they focus on the Meltzer and Richard’s (1981) median voter

framework of redistributive politics, instead of the probabilistic voting (swing

voter) model. One of the main limitations of median voter framework is that

it cannot capture the multidimensional property of distributive politics. More

specifically, in the standard median voter framework, the policy space usually con-

sists of a proportional tax rate and a lump sum transfer as a political equilibrium

is unlikely to exist when policy space is defined in more than two dimensions . By

using the probabilistic voting model, we allow for policy space in any dimensions

which better capture the redistribution problem across different socio-economic

groups. Overall, a robust result coming out from this body of research is that

the presence of other-regarding preferences leads not only to different predictions

concerning the extent of redistribution, but also the link between inequality and

redistribution.3

In the context of probabilistic electoral competition, to our knowledge the

only two articles that incorporates other-regarding preferences into the analysis

are Alesina, Cozzi, and Mantovan (2012) and Debowicz, Saporiti, and Wang

(2017). The first paper analyzes a dynamic extension of the Lindbeck-Weibull

model to explain how different perceptions of fairness of the market outcomes

3For example, in the Meltzer-Richard model with social preferences, redistribution depends
not only on the mean to median income ratio, but also on the variance of the income distribution.
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can lead to different steady states of redistribution and growth. Meanwhile,

the second paper, that is, Debowicz et al. (2017), studies the consequences of

different distributions of policymaking power over distributive policies and income

inequality in the presence of fairness concern. In contrast with the current work,

these two papers only focus on fairness, and they do not provide equilibrium

existence and optimality results for a broad family of other-regarding preferences,

which is the precisely the main objectives of the coming sections.

2.2 The Model

There is a society with a continuum of voters divided into n disjoint groups,

denoted N = {1, 2, . . . , n}, where ni ∈ (0, 1) indicates the size of group i ∈ N , and∑
i∈N ni = 1. The initial (finite) gross income of each voter of group i ∈ N is given

by wi > 0. Let w =
∑

i∈N niwi be the total income of the economy, and denote

the set of all possible distributions of w by Y = {y ∈ RN
+ |
∑

i∈N ni yi = w}.
The preferences of each voter i ∈ N over Y are additively separable. To be

precise, voter i’s utility associated with each income distribution y ∈ Y is defined

as

Uh
i (y) = ui(yi) + αi σ

h(y), (2.1)

where ui : R+ → R is a self-regarding utility over disposable income yi, and the

function σh : RN
+ → R represents voter i’s other-regarding utility, parameterized

by αi ∈ R+, with the index h denoting the specific other-regarding hypothesis

under consideration, to be discussed in Section 2.3. These utility functions are

assumed to satisfy the following assumptions:

A1. ui(·) is twice continuously differentiable on R+, with u′i(·) > 0 and u′′i (·) < 0.

As the examples in Section 2.3 point out, full differentiability of σh(·) is not

always guaranteed under the different models of other-regarding preferences that

this paper aims to accommodate. A case in point is inequality aversion, where

the utility has a kink and it is not differentiable at the individual’s reference point

(own payoff). To deal with these cases, assume that the other-regarding utility

verifies the following assumption:

A2. σh(·) is continuous and concave on Y .

A3. σh(·) is twice continuously differentiable almost everywhere except possibly

on a subset of Lebesgue measure zero.
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Assumption A2 and A3 provide certain implications over the functional form

of σh(.). First of all, the concavity of σh(.) implies that generally, voters enjoy an

equitable distribution over the extreme alternative. Secondly, as we only require

Lipschitz continuity of the utility function, it allows us to extend our analysis to

a wide range of reference dependent preferences with inequity aversion being a

special case.

Moving to the political setup, there are two political parties, indexed by

C = A,B, that compete in a single election proposing simultaneously a tax-

and-transfer distributive policy xC ∈ X = {x′C ∈ RN |
∑

i∈N ni x
′
iC = 0 and ∀i ∈

N, x′iC ≥ −wi}. Given that the initial income of each group is held fixed during

the analysis, define accordingly from A3 a subset of policies Xd ⊂ X where the

party payoff functions (yet to be defined) are smooth, with Xd = X\Xd denoting

the subset where they are not. This notation will be used in Section 2.4 along

the proofs of the main results.

A voter in group i ∈ N votes for party A if Uh
i (xA) ≥ Uh

i (xB)+θi,
4 where θi ∈

R denotes voter i’s policy-independent preference bias towards party B, drawn

from a twice continuously differentiable distribution function Fi, with density fi

positive everywhere over the interval that includes all possible values of the utility

differences thi (xA, xB) = Uh
i (xA)− Uh

i (xB).5 The (expected) vote share of party

A is given by vhA(xA,xB) =
∑

i∈N ni Fi(U
h
i (xA) − Uh

i (xB)). Assuming no voter

abstention, party B’s vote share is vhB = 1− vhA.

The payoff functions of the parties, viz. Πh
C , express the interests of the

politicians, who campaign to maximize their vote share (expected plurality). In

addition, the payoffs reflect the views of regular party members, who see the

party as a vehicle to promote not just their own interest, but also the well-

being of others in society. Formally, the payoff function of party C is defined as

Πh
C(xA,xB) = vhC(xA,xB) + αC σ

h(xC), where αC ∈ [0,∞) is the relative value

that party C assigns to other-regarding concerns.6

4To save on notation and given that the initial income wi is fixed, the utility Uhi is written
simply as a function of xC , instead of the disposable incomes yC = (yiC)i∈N ∈ Y , where
yiC = wi + xiC . When there is no risk of confusion, the same notation is adopted for other
functions that also depend on yC .

5Instead of being additive, the preference bias can be a multiplicative factor on the utility
of policy, implying that party A is preferred by i if Uhi (xA) ≥ θi U

h
i (xB). Given that the

logarithm of Uhi (·) is also a utility, the results obtained for the additive case extend directly to
the multiplicative model.

6Alternatively, αC can be seen in some cases as the reputation cost for the party of cam-
paigning on distributive policies perceived by the electorate as “socially insensible” (i.e., the
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Let Gh = (X, Πh
C)C=A,B denote the distributive election game determined

by the model sketched above. The timing of Gh is as follows. First, parties A

and B choose simultaneously and non-cooperatively xA and xB, respectively. At

this stage, parties know the initial income of the groups, voters’ preferences over

the income distributions, and the group-specific cumulative distributions of the

preference bias. Second, the actual values of θi are realized. Third, voters cast

their vote for one of the parties. Fourth, plurality rule determines the winning

party (with ties broken by a fair lottery) and its policy platform is implemented.

Finally, fifth, parties and voters receive their payoffs.

A pure-strategy Nash equilibrium of Gh = (X, Πh
C)C=A,B is a policy profile

(x̂A, x̂B) ∈ X × X such that Πh
C(x̂C , x̂−C) ≥ Πh

C(x′, x̂−C) for all x′ ∈ X and

C = A, B, where the index −C denotes B if C = A and A if C = B.

2.3 Other-Regarding Preferences

This section offers a few important examples of other-regarding behavior that fit

well into the model of Section 2.2. Consider first Alesina and Angeletos’ (2005a)

fairness preferences (FP) hypothesis. The distinctive feature of this hypothesis is

that individuals distinguish between fair and unfair income inequality, and they

express dislike and concern only for the second. To be more precise, suppose

the initial income of voter i ∈ N is given by wi = ei + ηi, where ei denotes his

fair (earned) income, received in compensation for talent and effort, and ηi indi-

cates his unfair (unearned) income, obtained through lucky or illicit transactions.

Assume ηi is distributed independently from ei with zero mean.

In the presence of fairness concerns, the other-regarding utility corresponding

to any income distribution y ∈ Y takes the form

σFP (y) = −
∑
i∈N

ni (yi − ei)2, (2.2)

which captures that only unfair income comes at a utility cost to the individuals.

A second hypothesis of other-regarding behavior corresponds to the model

proposed by Dimick, Rueda and Stegmueller (2017), named income-dependent

cost of building the image of being a “nasty party” that only cares about the privileged few
and not the many, as the British Conservative Prime Minister, Theresa May, put it in her 2002
party conference speech).
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altruism (IDA). The main assumption is that individuals are concerned with ag-

gregate social welfare. To be concrete, under this hypothesis the other-regarding

utility of any income distribution y ∈ Y takes the form of the standard utilitarian

social welfare function,

σIDA(y) =
∑
i∈N

ni ui(yi), (2.3)

which is the sum of individuals’ self-regarding utilities, each weighted by the

group size.

Finally, the third hypothesis discussed here is the (reference-dependent) in-

equality aversion (IA) model of Fehr and Schmidt (1999). The key feature of it is

that individuals evaluate inequality differently depending on the position of their

own payoff relative to the others. For any y ∈ Y , the other-regarding utility of

voter i is

σIA(y) = −γ
∑
j 6=i

nj max{yj − yi, 0} − β
∑
j 6=i

nj max{yi − yj, 0}, (2.4)

where β ≤ γ and β ∈ [0, 1).7 The first (resp., second) term in the right-hand

side of equation (2.4) represents group i’s disadvantageous (resp., advantageous)

inequality, weighted by γ (resp., β). The assumption is that individuals are

more selfish than altruistic, and consequently that they are more concerned with

disadvantageous inequality.8

Notice that the examples of other-regarding preferences given above are as-

sociated with continuous and concave utility functions, which are differentiable

everywhere except possibly on a set of points of Lebesgue measure zero. There

are other examples of other-regarding behavior relevant for distributive politics

which also share the properties of assumptions A2 and A3, including maximin

and quasi-maximin preferences, efficiency concerns, Bolton and Ockenfels’ (2000)

inequality aversion model, etc.9 The next section explores equilibrium existence

7Dhami and al-Nowaihi (2010a) and (2010b) consider a generalization of Fehr and Schmidt’s
(1999) model where payoff comparisons are not made in terms of monetary payoffs, but in utility
terms. A drawback of that model is that the other-regarding utility is not necessarily concave.

8Inequality aversion preferences are self-centered, because individuals use their payoff as a
reference point with which everyone else is compared to. However, people are not concerned
with inequality per se. This stands in opposition with experimental evidence, which shows
that in simple distribution games people also consider differences among others in their utility
functions (Engelmann and Strobel 2004).

9See Engelmann and Strobel (2007), Alesina and Giuliano (2010), Clark and D’Ambrosio
(2015), Dhami (2016) and the references for alternative theories of redistribution preferences.
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and optimality within the class of social preferences that satisfy these restrictions

and guarantee the concavity of the parties’ conditional payoff functions.

2.4 Results

To start the analysis, define below a condition, denoted Ch, that generalizes

Lindbeck and Weibull’s (1987) sufficient condition (see the discussion at the end

of the paper), conveniently adapted for the framework laid out in Section 2.2.

Fix any x−C ∈ X, we can write thi (xC) instead of thi (xC , x−C).

Condition Ch: For all i ∈ N ,

inf
x, x̂∈Xd

fi(thi (x))− fi(thi (x̂))

fi(thi (x))
·

∑
j∈N

∂Uh
i (x̂)

∂xj
· (xj − x̂j)∑

j∈N

(
∂Uh

i (x)

∂xj
− ∂Uh

i (x̂)

∂xj

)
· (xj − x̂j)

 ≥ −1.

The next three propositions illustrate how Ch together with A1, A2 and

A3 shape the conditional payoffs of the parties. Beginning with the gradient

of the expected vote shares, these are shown to be monotone decreasing on the

differentiable subset of distributive policies, a result that follows immediately

from condition Ch. A function f : X → RN is said to be monotone decreasing

on X if for all x1, x2 ∈ X, we have [f(x1)− f(x2)](x1 − x2) ≤ 0.

Lemma 2.1 Suppose assumptions A1–A2 hold. Under condition Ch, for each

C = A,B and all x−C ∈ X, the gradient ∇vhC( ·, x−C) is monotone decreasing on

Xd.

Proof. Fix any x−C ∈ X. The gradient of party C’s expected vote share

∇vhC( ·, x−C) is monotone decreasing on Xd if for all x1,x2 ∈ Xd,[
∇vhC(x1,x−C)−∇vhC(x2,x−C)

]
· (x1 − x2) ≤ 0. (2.5)

Recall that the conditional vote share vhC(xC ,x−C) =
∑

i∈N ni v
h
iC(xC ,x−C),

where vhiC(xC ,x−C) = Fi(U
h
i (xC)− Uh

i (x−C)). Thus, inequality (2.5) holds if for
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all i ∈ N ,

∑
j∈N

[
fi(t

h
i (x

1))
∂Ui(x

1)

∂xj
− fi(thi (x2))

∂Ui(x
2)

∂xj

]
(x1j − x2j) ≤ 0

⇐⇒ fi(t
h
i (x

1))− fi(thi (x2))

fi(thi (x
1))

·
∑

j∈N
∂Uh

i (x
2)

∂xj
(x1j − x2j)∑

j∈N

[
∂Uh

i (x
1)

∂xj
− ∂Uh

i (x
2)

∂xj

]
(x1j − x2j)

≥ −1,

which is implied by condition Ch.

Due to the presence of non-differentiable points, the policy subset Xd is not

necessarily convex. Hence, Lemma 2.1 is not enough to prove the concavity of

vhC( ·, x−C). To do so, we need another preliminary result, which ensures that the

expected vote share of each party has a support on Xd. A function f : X → R
has a support at an alternative x1 ∈ X if there exists a vector a ∈ RN such that

for any x2 ∈ X, we have f(x2) ≤ f(x1) + a · (x2 − x1).

Lemma 2.2 Suppose assumptions A1–A3 hold. Under condition Ch, for each

C = A,B and all x−C ∈ X, the expected vote share vhC( ·, x−C) has a support at

each x ∈ Xd.

Proof. Fix any x−C ∈ X. The expected vote share vhC( ·, x−C) has a support at

x1 ∈ Xd if there exists a vector a(x1) ∈ RN such that for any x2 ∈ Xd,

vhC(x2,x−C) ≤ vhC(x1,x−C) + a(x1) · (x2 − x1). (2.6)

Consider any x′, x′′ ∈ X, and let S(x′,x′′) = {δx′ + (1− δ)x′′ ∈ X, with δ ∈
(0, 1)}. Fix any x2 ∈ Xd. There are three cases to study.

Case 1. Suppose S(x1,x2) ∩ Xd = ∅. Then, the function vhC( · ,x−C) is differ-

entiable on S(x1,x2). Taking the gradient ∇vhC(x1,x−C) as the support vector

a(x1), inequality (2.6) holds because S(x1,x2) is open and convex, and conse-

quently Lemma 2.1 implies that vhC( · ,x−C) is concave on it.

Case 2. Assume S(x1,x2)∩Xd = {zk, k = 1, . . . , K}, whereK is a finite positive

integer. For each k, let zk = λk x1 + (1 − λk) x2 for some λk ∈ (0, 1). Without

loss of generality, assume λ1 < . . . < λK . Consider the open and convex subsets

S(x1, z1), S(z1, z2), . . . , S(zK ,x2). The expected vote share vhC( · ,x−C) is smooth
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on each of these subsets. Using the argument of Case 1 on the first subset

S(x1, z1), it follows from (2.6) that

vhC(z1,x−C) ≤ vhC(x1,x−C) +∇vhC(x1,x−C) · (z1 − x1). (2.7)

Applying the same reasoning on the second subset, i.e., S(z1, z2), and invoking

the continuity of the expected vote share vhC( · ,x−C), we have that

vhC(z2,x−C) ≤ vhC(z1,x−C) + lim
δ→0
∇vhC(δz2 + (1− δ)z1,x−C) · (z2 − z1). (2.8)

Notice in the above inequality that since z1 ∈ Xd, limδ→0∇vhC(δz2 + (1 −
δ)z1,x−C) represents the superdifferential ∂Sv

h
C(z1,x−C) of vhC( · ,x−C) at z1, and

that (2.8) holds for each supergradient vector in ∂Sv
h
C(z1,x−C).10 Adding up (2.7)

and (2.8) and using the fact that by Lemma 2.1,[
∇vhC(x1,x−C)− lim

δ→0
∇vhC(δz2 + (1− δ)z1,x−C)

]
· (z2 − z1) ≥ 0,

it follows that

vhC(z2,x−C) ≤ vhC(x1,x−C) +∇vhC(x1,x−C) · (z2 − x1). (2.9)

Finally, the desired result is obtained by repeating the previous argument

over all the remaining subsets, which proves that inequality (2.6) holds strictly

on S(x1,x2) with support vector a(x1) = ∇vhC(x1,x−C).

Case 3. Suppose S(x1,x2)∩Xd = ∪Kk=1A
k, where each Ak is a closed and convex

subset, and K is a finite positive integer. If Ak is a singleton for every k, then this

case coincides with Case 2. Otherwise, there must exist some k and δ, δ ∈ (0, 1)

such that the subset Ak = {δx1 + (1 − δ)x2 ∈ Xd, with δ ∈ [δ, δ]}. By A3, for

all ε > 0 there exists x̂2 ∈ Bε(x
2) such that S(x1, x̂2) ∩Xd is a finite set. Using

the argument of Case 2, note that equation (2.6) holds strictly on S(x1, x̂2), with

support vector a(x1) = ∇vhC(x1,x−C). Applying the continuity of the function

vhC( · ,x−C) gives

vhC(x2,x−C) ≤ vhC(x1,x−C) +∇vhC(x1,x−C) · (x2 − x1), (2.10)

10Recall that the superdifferential of a function f : X ⊂ RN → R at x ∈ X is the set of
vectors ∂Sf(x) =

{
a ∈ RN | f(x̂) ≤ f(x) + a · (x̂− x), for all x̂ ∈ X

}
.
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which concludes the argument for Ak and completes the proof that vhC( ·, x−C)

has a support at x.

We are finally ready to show the concavity of the expected vote share.

Lemma 2.3 Suppose assumptions A1–A3 hold. Under condition Ch, for each

C = A,B and all x−C ∈ X, the expected vote share vhC(·,x−C) is concave on X.

Proof. Fix any x−C ∈ X. By the fundamental theorem on the support of a

concave function, vhC(·,x−C) is concave on X if and only if it has support at each

interior point of X. By Lemma 2.2, vhC(· ,x−C) has support on Xd. The rest of

the proof is based on the following two claims.

Claim 1 For each x ∈ Xd, the support vector of vhC(·,x−C) at x holds for all

x0 ∈ Xd.

Fix x ∈ Xd and consider any x0 ∈ Xd. By A3, for all ε > 0 there exists

x′ ∈ Bε(x
0) ∩Xd. By Lemma 2.2, the function vhC(· ,x−C) has support over Xd,

meaning that vhC(x′,x−C) ≤ vhC(x,x−C)+∇vhC(x,x−C) ·(x′−x). Since vhC(· ,x−C)

is continuous on X, taking the limit of the previous inequality as x′ → x0 gives

vhC(x0,x−C) ≤ vhC(x,x−C) +∇vhC(x,x−C) · (x0 − x),

which provides the desired result.

Claim 2 vhC(· ,x−C) has support at each x0 ∈ Xd.

Fix x0 ∈ Xd. By A3, for sufficient small ε > 0, there exists x′ ∈ Bε(x
0) ∩Xd

such that {δx′ + (1− δ)x0 : δ ∈ (0, 1)} ⊂ Xd. Using the support of vhC(· ,x−C) at

x′ and taking the limit as x′ → x0, for all x ∈ X,

vhC(x,x−C) ≤ vhC(x0,x−C) + lim
δ→0
∇vhC(δx′ + (1− δ)x0,x−C) · (x− x0).

Hence, vhC(· ,x−C) has support at x0.

The next theorem generalizes Lindbeck and Weibull’s (1987) existence result

for probabilistic electoral competition, establishing the existence of a Nash equi-

librium in pure strategies when voters’ other-regarding concerns permit a large
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degree of preference interdependence, which may imply that the payoff functions

of the parties are not smooth on the strategy space. The proof follows immedi-

ately from Debreu-Glicksberg-Fan’s existence result. Indeed, note first that the

strategy space X is non-empty, compact, and convex.11 Second, each payoff func-

tion Πh
C(xA,xB) is continuous on (xA,xB) ∈ X ×X. Finally, third, Lemma 2.3

together with assumption A2 guarantee that the conditional payoff functions

Πh
C( · ,x−C) are concave in the party’s own strategy xC .

Theorem 2.1 (Existence) Suppose assumptions A1–A3 hold. Under condition

Ch, the election game Gh = (X, Πh
C)C=A,B has a pure strategy Nash equilibrium.

The result stated above guarantees the existence of Nash equilibrium in pure

strategies in a broad family of income redistribution games. This includes games

with and without social preferences, with voters and parties displaying several

patterns of other-regarding behavior, and also with symmetric (i.e., αA = αB)

and asymmetric (i.e., αA 6= αB) other-regarding concerns in the parties’ payoff

functions.

While the theorem constitutes an essential part of the equilibrium analysis,

existence per se is only the first step. To use the model for predictive purposes

requires being able to spell the properties of the policies played in equilibrium.

The rest of this section deals with this matter. In particular, it focuses on the

conditions under which the equilibrium is unique and it results in an “optimal”

after-tax income distribution, in the sense that it can be rationalised as the out-

come of maximizing a “sound” social welfare function.

Define the weighted (self-regarding) utilitarian social welfare function as

W (x) =
∑

i∈N ni fi(0)ui(wi+xi). Let X0 = {x ∈ X : wi+xi > 0 for all i ∈ N}.12

The next result yields the following equilibrium characterization.

Theorem 2.2 (Characterization) Suppose assumptions A1–A3 hold. Let

(x̂A, x̂B) ∈ X0 × X0 be the Nash equilibrium of Gh. If αA = αB ≡ ᾱ, then

x̂A = x̂B ≡ x̂, and

x̂ = arg max
x∈X0

W (x) + Σh(x), (2.11)

11In this paper, the policy space X is determined by the resource constraint and the groups’
nonnegative income constraints. However, the proof of Theorem 2.1 applies more generally,
provided that non-emptiness, compactness, and convexity are preserved. That includes other
typical restrictions on X, such as non-income sorting among different socio-economic groups
(cf. Debowicz et al. 2017).

12Lindbeck and Weibull (1987) also assume that each voter’s disposable income is strictly
positive.
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where Σh(x̂) =
∑

i∈N ψi σ
h(x̂), with ψi ≡ ni fi(0)αi + ᾱ.

The proof is similar to that of Lindbeck and Weibull (1987), taking into

account the nonsmoothness of voters’ utility functions.

Proof. Fix the equilibrium strategy x̂−C and consider the constrained optimiza-

tion problem of party C, which consists in maximizing with respect to xC ∈ RN

the function Πh
C(xC , x̂−C) = vhC(xC , x̂−C)+αC σ

h(xC), subject to
∑

i∈N nixiC = 0

and wi + xiC > 0, all i ∈ N . By assumption A3, Πh
C( · , x̂−C) is is twice continu-

ously differentiable almost everywhere on X. Using the Karush-Kuhn-Tucker op-

timality conditions, it follows that a necessary condition for a maximum requires

that for each group i ∈ N , there exists supergradient vector p(x̂C) ∈ ∂Sσh(x̂C)

such that

nifi(t
h
i (x̂C , x̂−C))

(
∂ui(wi + x̂iC)

∂xiC
+ αip(x̂C) · i

)
+αCp(x̂C)·i+niλC = 0, (2.12)

where λC ≥ 0 is the Lagrange multiplier on the party’s resource constraint and

i ∈ RN is the unit vector in the direction of group i’s income.

Using the above expression for both parties and after some algebraic manip-

ulation the following condition characterizes the equilibrium policies:

λA
λB

=
nifi(t

h
i (x̂A, x̂B))

(
∂ui(wi+x̂iA)

∂xiA
+ αip(x̂A) · i

)
+ αAp(x̂A) · i

nifi(thi (x̂B, x̂A))
(
∂ui(wi+x̂iB)

∂xiB
+ αip(x̂B) · i

)
+ αBp(x̂B) · i

. (2.13)

It is easy to see that if αA = αB, then a solution to (2.13) is given by x̂A = x̂B

and λA = λB. In fact, there is no other solution with x̂A = x̂B and λA 6= λB.

Therefore, any other critical point must be such that x̂A 6= x̂B. Without loss of

generality, let x̂iA < x̂iB for some i ∈ N . By the resource constraint, there exists

a j ∈ N such that x̂jA > x̂jB. By the strict concavity of the self-regarding utility,
∂ui(wi+x̂iA)

∂xiA
> ∂ui(wi+x̂iB)

∂xiB
. By the definition of supergradient vector for non-smooth

concave functions, p(x̂A) · i ≥ σh(x̂B)−σh(x̂A)
x̂iB−x̂iA

≥ p(x̂B) · i. Since fi(t
h
i (x̂A, x̂B)) are

positive and the same for both parties, equation (2.13) implies that λA > λB.

Repeating the argument for group j ∈ N , with
∂uj(wj+x̂jA)

∂xjA
<

∂uj(wj+x̂jB)

∂xjB
and

p(x̂A) · j ≤ p(x̂B) · j, it follows that λA < λB, a contradiction. Hence, x̂A = x̂B is

the only solution to (2.13), and consequently fi(t
h
i (x̂A, x̂A)) = fi(0).

Finally, equation (2.11) follows by applying the Karush-Kuhn-Tucker opti-

mality conditions to the object function W (x) + Σh(x), and realizing that the
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resulting necessary conditions for a maximum coincide with the expression in

(2.12).

The previous theorem shows that when parties are symmetric, in the sense

that they value power similarly, their equilibrium distributive policies coincide.

This result is driven by the fact that parties’ constraint optimization problems

share the same necessary conditions. The theorem points out that these con-

ditions also characterize the solution of the social planner’s wealth allocation

problem, provided that its objective consists in maximizing some weighted (self-

regarding) utilitarian social welfare function plus an “aggregate” of individuals’

and parties’ other-regarding preferences.

In the special case of a purely selfish society, Theorem 2.2 offers as a corollary

the following well-known result due to Lindbeck and Weibull (1987).

Corollary 2.1 (Lindbeck-Weibull) Under the hypotheses of Theorem 2.2, if

αi = ᾱ = 0, then x̂ maximizes the weighted (self-regarding) utilitarian social

welfare function, i.e.,

x̂ = arg max
x∈X0

W (x).

Notice that the result in Theorem 2.2 offers a unique equilibrium prediction

for the distributive election game. This is actually preserved in a more general

family of distribution games which are not necessarily symmetric. To elabo-

rate, let us assume that the other-regarding utility satisfies the following stronger

version of assumption A2, as is the case with Alesina and Angeletos’ (2005a) fair-

ness preferences and Dimick, Rueda and Stegmueller’s (2017) income-dependent

altruism.

A2∗. σh(·) is continuous and strictly concave on Y .

The assumption above in conjunction with the other conditions already em-

ployed allow to state the last result of the paper.

Theorem 2.3 (Uniqueness) If condition Ch and assumptions A1, A2∗, and

A3 hold, then the equilibrium of Gh = (X, Πh
C)C=A,B is unique.

Proof. Suppose, by contradiction, that (x′A,x
′
B) and (x′′A,x

′′
B) are two Nash equi-

libria of Gh = (X, Πh
C)C=A,B. Without loss of generality, let x′A 6= x′′A. If (x′′A,x

′
B)

is a Nash equilibrium, then Πh
A(x′A,x

′
B) = Πh

A(x′′A,x
′
B). By assumption A2∗
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and Lemma 2.3, for each C = A,B and all x−C ∈ X, Πh
C( · ,x−C) is strictly

concave on X. Thus, for all δ ∈ (0, 1), Πh
A(xδA,x

′
B) > Πh

A(x′A,x
′
B), with xδA =

δx′A + (1 − δ)x′′A, contradicting that (x′A,x
′
B) is a Nash equilibrium. Therefore,

Πh
A(x′A,x

′
B) > Πh

A(x′′A,x
′
B); and by the same token, Πh

A(x′′A,x
′′
B) > Πh

A(x′A,x
′′
B).

Adding up the above inequalities, it follows that

Πh
A(x′A,x

′
B) + Πh

A(x′′A,x
′′
B) > Πh

A(x′′A,x
′
B) + Πh

A(x′A,x
′′
B). (2.14)

Repeating the argument for party B,

Πh
B(x′A,x

′
B) + Πh

B(x′′A,x
′′
B) > Πh

B(x′A,x
′′
B) + Πh

B(x′′A,x
′
B). (2.15)

It is easy to show from (2.14) that

vhA(x′A,x
′
B) + vhA(x′′A,x

′′
B) > vhA(x′′A,x

′
B) + vhA(x′A,x

′′
B). (2.16)

Multiplying (2.16) by -1, and adding 2 on both sides,

(1−vhA(x′A,x
′
B))+(1−vhA(x′′A,x

′′
B)) < (1−vhA(x′′A,x

′
B))+(1−vhA(x′A,x

′′
B)). (2.17)

Finally, adding αBσ(x′B) and αBσ(x′′B) to both sides of (2.17),

Πh
B(x′A,x

′
B) + Πh

B(x′′A,x
′′
B) < Πh

B(x′′A,x
′
B) + Πh

B(x′A,x
′′
B), (2.18)

which stands in contradiction with (2.15). Hence, the equilibrium is unique.

Motivated once again by Alesina and Angeletos (2005a) and Dimick, Rueda

and Stegmueller (2017), suppose that the other-regarding utility is smooth and

the welfare effect for voter i of a marginal change in his disposable income is

invariant to the income of the others.13 Then, under assumption A2∗, condition

Ch takes a much simpler form, which relates easily to the Lindbeck–Weibull

condition.

To elaborate, define for each group i ∈ N , the index
(∑

j∈N ξ
h
ij(x)

)−1
, which

measures the overall concavity of the utility function Uh
i (·) at x ∈ X, where

ξhij(x) = − [∂Uh
i (x)/∂xj ]

2

∂2Uh
i (x)/∂xj∂xj

. Likewise, given a strategy profile (xA, xB) ∈ X × X,

define the logarithmic rate of change of the probability density fi as the ratio

13Technically, ∂
2σh(y)
∂yi∂yj

= 0 for all i 6= j, i, j ∈ N , and all y ∈ Y .
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ri(t
h
i ) =

f ′i(t
h
i )

fi(thi )
.14 It is easy to see that condition Ch requires that for all i ∈ N ,

sup
thi

ri(t
h
i ) ≤ inf

x∈X

(∑
j∈N

ξhij(x)

)−1
. (2.19)

Notice from (2.19) that if voters are purely selfish, that is, if αi = 0 for all i ∈
N , then condition Ch reduces simply to Lindbeck and Weibull’s (1987) sufficient

condition, namely, sup ri(t
h
i ) ≤ inf

(
ξhii(xC)

)−1
. The reason is the second-order

cross derivatives of the vote shares are all null without other-regarding utility,

which simplifies greatly the Hessian matrix of the function vC . By contrast, in

the presence of other-regarding concern, the marginal increase in the percentage

of votes that one party obtains by changing group i’s transfers varies with the

transfers allocated to group j 6= i, making the cross derivatives nonzero.

2.5 Conclusion

We prove that, under fairly general conditions, the modified probabilistic voting

model with other-regarding preferences has a unique pure-strategy equilibrium.

The proof rests on standard existence results for simultaneous games with a

continuum of pure strategies.To guarantee the strict quasi-concavity of the con-

ditional payoff functions, which are continuous in the strategy space, we impose

a sufficient condition that bears similarities with Lindbeck and Weibull’s (1987).

The condition we establish to ensure equilibrium existence demands that the

rate at which the percentage of votes of each party varies as result of changes in

the relative welfare (utility differential) of the groups be limited by the overall

concavity of voters’ utility function, imposing ipso facto an upper bound on the

rate of change of the second term of the party’s conditional payoff function. The

difficulty of the proof lies in the fact that for inequality aversion preferences, dif-

ferentiability is not guaranteed and as a result, the negative definiteness of the

Hessian matrix only implies the local concavity of parties’ payoff functions. To

overcome this challenge, we first show that under the proposed condition, the

gradients of parties’ payoff functions are monotone decreasing in a subset of the

14In the uniform case, for instance, this ratio is equal to zero, meaning that changes in the
utility differential affect the marginal vote-returns of each party at a constant rate.
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domain where differentiability is assumed. However, as such subset is not guar-

anteed to be convex, we need to show that such condition is sufficient to ensure

that the payoff function has a support at each alternative in the policy space.

This restriction is stronger than Lindbeck and Weibull’s (1987) condition due

to the nonsmoothness of voters’ utility functions, which relates in a non-trivial

way the margin vote share of each income group with the transfers received by

the other groups. However, it is satisfied in a number of meaningful cases, among

which we find the uniform distribution case of ideological preferences studied by

Lindbeck and Weibull (1987). Also note that although in the model above, we

focus our attention on other-regarding preferences, all the results in this paper can

be easily extended to other utility representations satisfying Lipschitz continuity.
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Chapter 3

Core Existence with Nonsmooth

Preferences

3.1 Introduction

In the spatial theory of voting, alternative policies are seeing as elements in a con-

vex multidimensional space over which a collection of voters have continuous and

convex preferences. In this setting, an alternative is preferred over another under

a voting rule if there exists a winning coalition supporting such alternative. The

set of alternatives that are stable under pairwise voting, that is, it is not strictly

preferred by any other alternatives, is said to constitute the core of the voting

rule. Since majority rule plays an important role in our decision-making appa-

ratus, the core of the majority rule, so-called majority core, has been received

much attention from political scientists and economists alike. Given the obser-

vation that the majority-rule decision-making does not always produce a stable

outcome, for many years, there has been a huge body of research focusing the con-

ditions under which the majority core is nonempty. Plott’s (1967) necessary and

sufficient conditions for majority core nonemptiness under the standard differen-

tiability assumption, states that given an odd number of agents, at any majority

core alternative, there must be one agent whose gradient equals to zero (median

voter in all directions), and suppose that such agent is unique, the gradients of

other voters must satisfy radial symmetry, that is, for each agent, there exists

a partner whose gradient vector points exactly in the opposite direction. Under

such severe symmetric condition, the existence of Condorcet winner is generically

unlikely and given a rich enough policy domain, a cycle of pairwise voting can be
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constructed that winds it way through the entire set of alternatives (McKelvey,

1976; Schofield, 1978).

The current literature on core nonemptiness has focused on the continuous

and convex preference domain where each individual’s utility function is continu-

ously differentiable everywhere over the policy space. In this paper, we contribute

to the literature on spatial voting theory by relaxing the differentiability assump-

tion and considering a broad class of nonsmooth utility functions, under which a

stable well-defined majority-rule equilibrium might exist, even in a multidimen-

sional policy space. The nonsmoothness might arise because of the introduction

of social preferences which are not guaranteed to be continuously differentiable

such as Fehr and Schmidt’s (1999) model of inequity aversion; or because voters’

preferences over the policy space are represented by Minkowski distance of order

1 or ∞. The nonsmooth utility representation does not necessarily violate the

convexity of preferences or the pseudo-concavity of utility function. However,

as the set of profitable deviations for each agent is now a convex cone instead

of a half space, a decisive coalition forms less frequently, which in turn leads to

a less restrictive condition for core nonemptiness. More specifically, we assume

that each voter in our model has convex preferences, which can be represented

by a Lipschitz continuous function. As a result, the derivative of the individual’s

utility function is not represented by a gradient vector but by a set of supergra-

dient vectors, called superdifferential. Using the concept of superdifferential, we

generalize all the previous characterization results which are based on smooth

analysis, adapting it conveniently to accommodate for the nonsmoothness of the

utility function. The aim of this paper is not only to show that the core can be

nonempty in high-dimensional spaces, but to also characterize the core alternative

whenever it exists.

The relaxation of the differentiability assumption in spatial voting model has

been also studied by Sloss (1973). She identifies the fact that as the set of prof-

itable deviations forms an open convex cone when the utility function is not

differentiable, the likelihood that a stable outcome exists increases. To character-

ize the sufficient and the necessary conditions for core nonemptiness, she imposes

a condition which basically “approximates” the nondifferentiable utility function

by a differentiable function and derives a condition similar to that of Plott (1967).

In this paper, we argue that such approximation technique excludes situations in

which stable outcomes are more likely to exist. To support our claim, we rely
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on a class of nondifferentiable utility functions that has been extensively stud-

ied, called the `1 metric or the city block preferences. Agents with city block

preferences evaluate each alternative by the weighted sum of the distance on

each policy dimension to their ideal point. The problem was intitally studied by

Rae and Taylor (1971), Wendell and Thorson (1974) and McKelvey and Wendell

(1976). Humphreys and Laver (2010) extends the result by identifying necessary

and sufficient conditions for the existence of equilibrium in a more general set-

tings. Their result does not only suggest that the majority core is not generically

empty, but it also shows that the set of equilibrium social outcomes is in fact

equivalent to the dimension-by-dimension median of the agents’ ideal points.

The rest of the paper is organized as follows. In Section 3.2, we describe

the spatial framework and provide a simple characterization result for q-rules,

similar to the case with differentiability assumption. Section 3.3 presents the

main result of the paper. In Section 3.4, we provide two examples of nonsmooth

utility functions (inequity aversion and city-block preferences) to illustrate the

application of our result. Section 3.5 concludes the paper with a summary and

remarks.

3.2 Preliminaries

Let N = {1, . . . , n} be the set of voters, and let X ⊆ Rd be a non-empty set

of alternatives, which can be modeled as a convex subset of d-dimensional Eu-

clidean space. Assume that the preferences of voter i is represented by a Lipschitz

continuous utility function ui : X → R. The preference of voter i is said to be

strictly convex if for each x ∈ X, the set of (strictly) profitable deviations

Di(x) = {y ∈ X : ui(y) > ui(x)} (3.1)

is convex. One of the major assumptions in the classical literature on the spatial

voting model is that individual preferences are assumed to have continuously dif-

ferentiable utility representations in which the gradient vectors are well defined

over the entire set of alternatives X. However, among the models of social pref-

erences, utility differentiability is not always guaranteed. For instance, in the

case of inequity aversion model of Fehr and Schmidt (1999), the utility function

has a kink and is not differentiable at each individual’s reference point. There
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are other prominent examples of other-regarding behavior relevant for distribu-

tive politics that share this nondifferentiability property, including maximin and

quasi-maximin preferences, Bolton and Ockenfels’ (2000) inequality aversion, etc.

Note that nondifferentiability does not contradict the results that is based on or-

dinal analysis and hence, a more general theorem is needed to characterize the

core point in a cardinal environment.

For nonsmooth utility functions, instead of using the gradient vector, we define

the notion of supergradient and superdifferential. For each voter i ∈ N , a vector

pi(x) ∈ Rd is a supergradient of voter i evaluated at alternative x ∈ X if for every

alternative y ∈ X, it satisfies the supergradient inequality:

ui(x) + pi(x) · (y − x) ≥ ui(y). (3.2)

For strictly concave function ui, the set of all supergradient of ui at x is called

the superdifferential of ui at x, and is denoted ∂ui(x). Note that the gradient

of a concave function at a point of differentiability is also a supergradient. In

fact, the converse is also true, if ∂ui(x) is a singleton, then ui is differentiable

at x. Following Rockafellar (1970),the one-sided directional derivative of ui(.)

in the direction of r ∈ Rd defined at x, denoted u′i(x, r) can be related to the

superdifferential in the following manner:

u′i(x, r) = lim
δ→0

ui(x+ δr)− ui(x)

δ
= inf

pi(x)
pi(x) · r. (3.3)

The utility function of voter i is assumed to be pseudo-concave at x if and

only if for every x, y ∈ X.

ui(y) > ui(x) =⇒ pi(x) · (y − x) > 0 for all pi(x) ∈ ∂ui(x). (3.4)

In words, if individual i weakly prefers y to x, then arbitrarily small deviations

from x in the direction of y should not make agent i worst off. Suppose ui

represents a strictly convex preference order of agent i. Given the convexity

of X, the pseudo-concavity of ui insures that there exists an alternative, say

x̂i ∈ Rd at which 0 ∈ ∂ui(x̂i), which is voter i’s most preferred alternative.1 Let

1Note that for a conic restriction, the necessary conditions at the core only consider marginal
changes in any direction from a given alternative x, and as a consequence, global assumptions
such as pseudo concavity of utilities are not used. Then the supergradient inequality (3.2) can
be defined by considering a small deviation in the direction of y in the open ball centered at
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u = (u1, . . . , un) : X → Rn denote a utility profile, and define U(X)n to be the

space of all Lipschitz continuous utility profiles on X.

A (strict) collective preference relation �L over the set X is characterized by

a collection L of decisive coalitions of voters: for all x, y ∈ X, x �L y if and

only if there exists L ∈ L such that ui(x) > ui(y) for all i ∈ L. The collection

L is required to be monotonic: L ∈ L and L ⊆ L′ imply L′ ∈ L, and proper:

L ∈ L implies N \L 6∈ L. A particular class of aggregation rules that attracts our

attention are the weighted q-rules, that is, the collections of decisive coalitions

are of the form

L = {L ⊆ N : |L| ≥ q} ≡ Lq. (3.5)

where the quota q satisfies n
2
< q ≤ n. Then the core of a q-rules, so called q-core,

is the set of maximal elements in X under the binary relation �q defined by Lq,
i.e. it is

C(Lq) = {x ∈ X : there does not exist y ∈ X and L ∈ L

such that ui(y) > ui(x) for all i ∈ L}.
(3.6)

Alternatively, the set of core alternatives can be characterized as the Pareto set of

all decisive coalitions, that is: x ∈ C(Lq) if and only if, for any decisive coalition

L ∈ Lq, we have
⋂
i∈LDi(x) = ∅.

Define for any agent i ∈ N the following derived cone at the alternative x ∈ X:

C+
i (x) = {r ∈ Rd : r · pi(x) > 0 for all pi(x) ∈ ∂ui(x)},

C−i (x) = {r ∈ Rd : r · pi(x) < 0 for some pi(x) ∈ ∂ui(x)},

C0
i (x) = {r ∈ Rd : inf

pi(x)∈∂ui(x)
r · pi(x) = 0}.

It is trivial that if 0 ∈ ∂ui(x), then C+
i (x) = ∅. Observe that for any alter-

native x ∈ X and utility profile u ∈ U(X)N , if 0 6∈ ∂ui(x) then the preference

cone C+
i (x) is an open convex cone in Rd bounded by the indifference hyperplane

C0
i (x). When the utility function is continuously differentiable, for any i ∈ N

such that ∇ui(x) 6= 0, the preference cone C+
i (x) is the half space character-

ized by {r ∈ Rd : r · ∇ui(x) > 0} and C0
i (x) is the orthogonal hyperplane of

∇ui(x). Following McKelvey and Schofield (1987), given the pseudo-concavity of

the alternative x.
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the utility profile, we have:

Lemma 3.1 Let the utility profile u ∈ U(X)n and alternative x ∈ X. Then

x ∈ C(Lq) if and only if
⋂
i∈LC

+
i (x) = ∅ for all L ∈ Lq.

Given voters’ superdifferential profile {∂ui(x)}i∈N , define for any L ⊆ N , the

semi-positive cone generated by {∂ui(x)}i∈L,

PL(x) =
{
v ∈ Rd : v =

∑
i∈L

αipi(x),

for all pi(x) ∈ ∂ui(x), αi ≥ 0 ∀i ∈ L and ∃i ∈ L, αi 6= 0
}
. (3.7)

We use the convention that P∅(x) = ∅. Similar to the result of Smale (1973),

the next result trivially extends the characterization theorem of the core to the

domain of Lipschitz continuous utility functions.

Lemma 3.2 Let the utility profile u ∈ U(X)n and the alternative x ∈ X. Then

x ∈ C(Lq) if and only if 0 ∈
⋂
L∈Lq PL(x).

Proof. (Necessity) Fix a profile u ∈ U(X)n and alternative x ∈ X. Let x ∈
C(Lq) and suppose, for contradiction, that there exists L ⊆ Lq such that 0 6∈
PL(x). Then the Separating Hyperplane Theorem implies that there exists r ∈ Rd

such that, for all v ∈ PL(x), r · v > 0. As ∂ui(x) ⊆ PL(x) for all i ∈ L, it implies

that r · pi(x) > 0 for all i ∈ L and pi(x) ∈ ∂ui(x). But since r ∈ C+
i (x) for all

i ∈ L, this contradicts x ∈ C(Lq).

(Sufficiency) Suppose that 0 ∈ PL(x) for some x ∈ X, that is, 0 =∑
i∈L αipi(x) for some (αi)i∈N that satisfy (3.7) and pi(x) ∈ ∂ui(x). Assume,

to the contrary, that there exists some y ∈ X and L ∈ Lq such that ui(y) > ui(x)

for all i ∈ L. Then by the pseudo-concavity of ui, we have pi(x)·(y−x) > 0 for all

pi(x) ∈ ∂ui(x) and i ∈ L. Then
∑

i∈N αipi(x) · (y − x) > 0 for all pi(x) ∈ ∂ui(x),

contradiction.

3.3 Main Result

Before stating the result of this section, we gather some notation and definitions.
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• Given two non-zero vectors p, q ∈ Rd, a vector r ∈ Rd is a semi-positive

combination of p and q there exist scalar α, β ≥ 0 (not both zero) such that

r = αp+ βq.

• A subset C ⊆ Rd is a convex cone if for all x, y ∈ C, every semi-positive

combination of x and y is contained in C, and for an arbitrary set Y ⊆ Rd,

we can define the conic hull of Y , denoted coneY , as the intersection of all

convex cones C such that Y ⊆ C. The convex hull of Y , denoted convY , is

the intersection of all convex sets containing Y .

• A convex cone is pointed if 0 6∈ C; it is finitely generated if there exist

z1, . . . , zs ∈ Rd such that C = cone{z1, . . . , zs}; and in this case, the set

{z1, . . . , zs} is a generator of C, and the ranks of all generators are equal

to the dimension of C.

• A set {z1, . . . , zs} of vectors is semi-positively independent if 0 6∈
cone{z1, . . . , zs}, and otherwise it is semi-positively dependent.

• For any set M ⊆ N and any positive integer κ, the power set of M with

cardinality κ, denoted Pκ(M), is the set of all subsets of M of cardinality

equal to κ, that is, Pκ(M) = {M ′ ⊆M such that |M ′| = κ}.

Given these notations, the formal statement of the main result in Duggan

(2018) which will be used latter in the proof of our Theorem 3.2 is as follows:

Theorem 3.1 (Duggan, 2018) Let x ∈ intX, let K = {i ∈ N : pi(x) = 0}
consist of the voters with zero gradient at x, let X ⊆ Rd be a pointed, finitely

generated, convex cone with dimension s, let

G+ = {i ∈ N : pi(x) ∈ C} and G− = {i ∈ N : −pi(x) ∈ C} (3.8)

consist of the voters in N with gradients in C and −C, respectively, and let

I = {i ∈ N \ (G+ ∪G− ∪K) : pi(x) ∈ spanC} (3.9)

consist of the remaining voters in N with non-zero gradients contained in the

linear subspace spanned by C. If x belongs to the q-core, then⌈
n− |G+| − |G−|+ |I|+ |K|

2

⌉
+

⌈
|I|
s

⌉
+ |G+| ≤ q − 1. (3.10)
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One of the main difficulties when applying the above result to an environment

without differentiability assumption is that the set of beneficial deviations for each

individual voter is no longer an open half space, thus imposing a lack of structure

on the problem. As the superdifferential ∂ui(x) is a closed convex set, we assume

further that for any i ∈ N and alternative x ∈ X \ {x̂i}, there exists a finite

set of ki semi-positively independent vectors Vi = {v1i , . . . , v
ki
i } ⊆ ∂ui(x) such

that each supergradient vector pi(x) ∈ ∂ui(x) can be written as a semi-positive

combination of v1i , . . . , v
ki
i . That is, for every pi(x) ∈ ∂ui(x), we have

pi(x) = α1
i v

1
i + · · ·+ αkii v

ki
i , (3.11)

for some αi = (α1
i , . . . , α

ki
i ) ∈ Rki

+ . Note that when ui is continuously differentiable

at x, then ki = 1. This assumption holds true for the case of inequity aversion

and city-block spatial preferences but fails to accommodate for Sloss’s (1973)

notion of epsilon-core. Given the pseudo-concavity of ui, it results directly from

supergradient inequality that for any alternative y ∈ X,

ui(y) > ui(x) =⇒ vki · (y − x) > 0 for all vki ∈ Vi. (3.12)

As Duggan’s (2018) result applies for an arbitrary number of voters, we can

characterize the necessary restriction at the core without differentiability by con-

sidering the following auxiliary spatial voting model: a society Ñ of
∑

i∈N\K ki

singular voters (or ‘self’);2 each self ik is endowed with a smooth utility function

the gradient vector at x of which is given by vki ∈ Zi; and assign a positive weight

αki to each self ik such that αi = (α1
i , . . . , α

ki
i ) ∈ Rki

+ and
∑ki

k=1 α
k
i = 1. With a

slight abuse of notation, denote α(M) =
∑

ik∈M αki for any M ⊆ Ñ . Note that we

only consider selves of agents who do not have their ideal alternatives at x, that

is, vki 6= 0 for all ik ∈ Ñ . Under these assumptions, the number of agents who

consider a deviation in the direction r ∈ Rd beneficial can be written as follows:

|{i ∈ N : u′i(x, r) > 0}| = min
{αi}i∈N

α({ik ∈ Ñ : vki · r > 0}). (3.13)

Notice that an alternative in the q-core of the auxiliary spatial voting model for

2There are literature on the theory of multiple self, proposing the idea that the individual
person may be seen as a set of sub-inidividuals, each with different interest, moral principle
and belief. See Elster (1987) for some applications of the multiple self theory in philosophy,
psychology and economics.

34



any α = {αi}i∈N will also be in the q-core for the spatial voting model. However,

the converse does not hold as a deviation from the alternative in consideration is

beneficial for an agent i if and only if all of his selves ik agree on such deviation.

Given the foregoing observation, if x belongs to the q-core, then it must be that

(i) no coalition of selves has its sum of weights larger than the quota; and (ii) the

weight of a self is counted toward the coalition only if all other selves of him is

also included in the coalition, as implied by the following theorem.

Theorem 3.2 Let x ∈ intX, let C ⊂ Rd be a pointed, finitely generated, convex

cone with dimension s, let

G̃+ = {ik ∈ Ñ : vki ∈ C} and G̃− = {ik ∈ Ñ : −vki ∈ C} (3.14)

consist of the selves in Ñ with gradients in C and −C, respectively; let

Ĩ = {ik ∈ Ñ \ (G̃+ ∪ G̃−) : vki ∈ spanC} (3.15)

consist of the selves in Ñ with gradients contained in the linear subspace spanned

by C; and let T̃ = Ñ \ (G̃+ ∪ G̃− ∪ Ĩ) be the remaining selves. If x belongs to the

q-core then

min
{αi}i∈N

min
T̃ ′∈P

d |T̃ |2 e
(T̃ )

min
Ĩ′∈P

d |Ĩ|s e
(Ĩ)
α(G̃+) + α(Ĩ ′) + α(T̃ ′) < q (3.16)

Proof of Theorem 3.2 Assume that x is an interior q-core aternative and C

is a pointed, finitely generated, convex cone with dimension s. Suppose, for

contradiction that

min
{αi}i∈N

min
T ′∈P

d |T |2 e
(T )

min
I′∈P

d |I|s e
(I)
α(G+) + α(I ′) + α(T ′) ≥ q. (3.17)

Let {z` ∈ Rd : ` ∈ L} be a finite, linear independent set, indexed by L =

{1, . . . , s} that generates C. Similar to Duggan (2018), we apply the duality

theorem to the cone C. Given any vector p ∈ Rd, let H−p = {v ∈ Rd : p · v ≤ 0}
be the closed halfspace in Rd generated by p. Then the dual of C is

C∗ = {v ∈ Rd : for all ` ∈ L, z` · v ≤ 0} =
⋂
`∈L

H−
z`
, (3.18)
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and given C is of dimension s, the dual cone C∗ is also generated by a set of

s extreme vectors. In particular, denote the set of s extreme vectors of C∗ by

{w` ∈ Rd : ` ∈ L} such that for all ` ∈ L and k ∈ L \ {`}, we have w` · zk = 0.

By duality, the dual of C∗ is C, so that

C = {v ∈ Rd : for all ` ∈ L, w` · v ≤ 0} =
⋂
`∈L

H−
w` . (3.19)

For each ` ∈ L, let G̃` = {ik ∈ Ñ : vki ·w` < 0} consist of the selves of Ĩ whose

gradients have negative dot product with w`. Note that for each self ik ∈ Ĩ, we

have vki 6∈ −C = −
⋂
`∈LH

−
w` , thus, there exists `ki ∈ L such that vki · w`

k
i < 0,

which implies ik ∈ G̃`ki . Therefore, Ĩ =
⋃
`∈L G̃

` and it follows that there is at

least one `∗ ∈ L, such that

|G̃`∗| ≥

⌈
|Ĩ|
s

⌉
. (3.20)

Note that for all ik ∈ G̃+, we have vki ∈ C ⊆ H−
w`∗ , which implies vki ·w`

∗ ≤ 0.

Indeed, since C is pointed, it follows that 0 6∈ C and by the separating hyperplane

theorem, there exists a vector y ∈ Rd such that for all ik ∈ G̃+, we have vki ·y > 0.

Let ε > 0 and wε = w`
∗ − εy, we then have

vki · wε = vki · w`
∗ − εzki · y < 0 (3.21)

for all ik ∈ G̃+, and we can choose ε > 0 sufficiently small that vki ·wε < 0 for all

ik ∈ Ĩ.

If d = s, then we define r = −wε. Otherwise, if d > s, there exists a vector r∗

that is orthogonal to spanC and such that for all ik ∈ T̃ , vki ·rt 6= 0. Furthermore,

reversing the direction of rm if needed, we can assume without loss of generality

that

|{ik ∈ T̃ : vki · rm > 0}| ≥ |T̃ |
2
. (3.22)

Finally, we define r = r∗ − δwε, where δ > 0 is chosen sufficiently small so

that for all ik ∈ T̃ , vki · r 6= 0 and has the same sign as vki · r∗. By construction,

for all ik ∈ G̃+ ∪ G̃`∗ , r∗ is orthogonal to all the self gradients, which implies

vki · r = vki · r∗ − vki · (δwε) = −δvki · wε > 0. (3.23)
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Combining (3.22) and (3.23), we have

|{i ∈ N :u′i(x, r) > 0}|

= min
{αi}i∈N

α(ik ∈ Ñ : vki · r > 0)

= min
{αi}i∈N

α(G̃+) + α({ik ∈ Ĩ : vki · rm > 0}) + α({ik ∈ T̃ : vki · rm > 0})

≥ min
{αi}i∈N

min
T̃ ′∈P

d |T̃ |2 e
(T̃ )

min
Ĩ′∈P

d |Ĩ|s e
(Ĩ)
α(G̃+) + α(Ĩ ′) + α(T̃ ′)

≥ q,

where the last inequality follows trivially from (3.17). However, since x belongs

to the interior of X, we can choose γ > 0 sufficiently small such that x+ γr ∈ X,

and for each voter i, u′i(x, r) > 0, then ui(x + γr) > ui(x). But then the latter

inequality holds for at least q voters, contradicting the assumption that x belongs

to the q-core.

3.4 Examples

This section provides two simple applications of Theorem 3.2 for the case of

majority core with agents exhibiting inequity aversion and city-block preferences.

3.4.1 Inequity Aversion

We consider the canonical distribution problem where voters admit social prefer-

ences modeled after (reference-dependent) inequity aversion of Fehr and Schmidt

(1999). Consider the case with three agents N = {1, 2, 3}. Denote the in-

come of each agent i ∈ N by xi > 0. Let
∑

i∈N xi = 1 be the budget con-

straint of the economy and denote the set of all possible distribution of wealth

by X = {x = (x1, x2, x3) :
∑

i∈N xi = 1} ⊂ R3.

The utility function of each voter i ∈ N associated with each income distri-

bution x ∈ X is given by

ui(x) = xi −

[∑
j 6=i

γij max(xj − xi; 0) +
∑
j 6=i

βij max(xi − xj; 0)

]
, (3.24)

where the first expression xi is the linear self-regarding utility function and the
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second expression represents voter i’s inequity aversion term. The parameters

βij, γij is the agent i’s altruism and envy weight, respectively, towards agent j,

where βij ≤ γij for all i, j ∈ N . The intuition is that individuals are more selfish

than altruistic, and consequently that they are more concerned with disadvan-

tageous inequity. It is trivial to check that the above utility function satisfies

Lipschitz continuity but it is not continuously differentiable.

In a distribution problem where agents are purely selfish, majority induced

social preference is intransitive and the majority core is generically empty. How-

ever, as agents admit inequity averse preferences, the nonsmooth of the utility

function can result in the nonemptiness of the majority core. Consider the egal-

itarian distribution x∗ = (1
3
, 1
3
, 1
3
). Suppose that the agent are partially selfish,

that is, for each i ∈ N , agent i strictly prefer the alternative that distribute i

with everything to any other alternatives: for any j, k ∈ N \ {i},31− 2βij − βik > 0;

1− 2βik − βij > 0.
(3.25)

By definition, x∗ is in the majority core if and only if there is no other alter-

native in X that can beat x∗ in pairwise majority voting. Consider an alternative

x′ ∈ X and x′ 6= x∗. Then there exists i ∈ N such that x′i 6= x∗i . Without loss of

generality, let i = 1 and x′i > x∗i . Since x′ ∈ X, then there must exists j ∈ N \{i}
such that x′j < x∗j . Without loss of generality, let j = 3. Then, x∗ is in the

majority core only if

either
β13 − β12

1− β12 − 2β13
≥ 1 + γ21 − 2β23

γ21 + β23
;

or β23 ≥
1

3
,

(3.26)

and also,

either
β23 − β21

1− β21 − 2β23
≥ 1 + γ12 − 2β13

β13 + γ12
;

or β13 ≥
1

3
.

(3.27)

3This restriction basically guarantees that the marginal utility of one’s own income is strictly
positive and the egalitarian distribution is not ideal for any agents, that is, x̂i 6= x∗ for all i ∈ N .
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As a result, under conditions (3.26) and (3.27), agent 1 does not have incen-

tives to form a coalition with agent 2 and deviate from x∗. Repeating the same

argument for the other coalition between agent 1 and 3 and agent 2 and 3, we can

construct a set of constraints on {βij, γij}i∈N
j 6=i

which guarantee the nonemptiness

of the majority core. The intuition is that agent 1 wants to form a coalition with

agent 2 to deviate from x∗ by hurting agent 3. However, as agent 2 exhibits sig-

nificant altruism toward agent 3, no proposals suggested by agent 1 can strictly

benefit agent 2. Similarly, agent 2 finds it beneficial to collude with agent 3 but

no coalition is formed as agent 3 is highly altruistic toward agent 1. Finally, agent

1’s altruism toward agent 2 will also block the coalition between agent 1 and agent

3. Consider the following set of parameters which guarantees x∗ belongs to the

majority core: 

β13 = β21 = β32 = 0.4;

β12 = β23 = β31 = 0.1;

γ13 = γ21 = γ32 = 0.5;

γ12 = γ23 = γ31 = 0.2.

(3.28)

Given the values of {βij, γij}i∈N
j 6=i

, the population of selves Ñ is given by

{ik} i∈N
k=1,2

and we can write the explicit coordinates of the self gradient vectors

zki for each agent i ∈ N , as follows,

v11 = (0.1,−0.3) ; v21 = (1.9, 0.6);

v12 = (0.3, 0.4) ; v22 = (−0.6, 1.3);

v13 = (−0.4,−0.1) ; v23 = (−1.3,−1.9).

(3.29)

Now consider C = cone{v21, v22} a pointed (closed) convex cone generated by the

gradient vectors of self v21 and v22. Clearly, we have G+ = {12, 21, 22}, and the

negative cone −C contains the gradient vectors of exactly two selves v23 and v11,

giving us G− = {32, 11}. Given the dimension of C is 2, equal to the dimension

of X, we have T = ∅ and I = {31}. Applying Theorem 3.2 for the necessary

restriction at a majority core, we have

min
{αi}i∈N

min
I′∈P

d |I|s e
(I)
α(G+) + α(I ′)

= min
{αi}i∈N∈[0,1]6

(α1
2 + 1− α1

2 + α2
1) + α1

3 = 1 < q = 2.
(3.30)
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Figure 3.1: The self vectors at egalitarian outcome of agents with inequity aver-
sion.

For the purpose of demonstration, we consider a pointed convex cone C of

dimension 1, for example, C = cone{v11}. Then we have G+ = {11}, G− = I = ∅,
and T = Ñ \ {11}. Again, applying Theorem 3.2, we have

min
{αi}i∈N

min
T ′∈P3(T )

α(G+) + α(T ′)

= min
{αi}i∈N∈[0,1]6

α1
1 + (α1

3 + α1
2 + 1− α1

1) = 1 < q = 2.
(3.31)

3.4.2 City-block Preferences

An alternative assumption to (smooth) Euclidean preferences is city-block pref-

erences, which are representable by utility functions that are decreasing in the

`1-metric distance.4 Generally, an agent i ∈ N with ideal point x̂i ∈ Rd admits a

`1-norm utility representation if there exists a vector of positive scalar (βm)m=1,...,d

4See Eguia (2011, 2013) among others for axiomatic foundation and empirical justification
of Minkowski’s metric utility function in general and city-block preferences in particular.
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Figure 3.2: The self vectors of agents i with city-block preferences.

such that for any alternative x ∈ X, the utility of agent i is given by

ui(x) = −
d∑
l=1

βm|xl − x̂im|, (3.32)

where xm and x̂im is the projected position of x and x̂i on issue m, respec-

tively. In words, agents with city-block preferences calculate the distance between

between two alternatives in Rd by adding up the distance weighted dimension by

dimension and they prefer alternatives closer to their ideal alternative according

to this notion of distance. The weighting parameters (βm)m=1,...,d reflect the rel-

ative view of voters on different political issues. It is common in the literature to

assume that all agents attach the same relative weights to the different issues.

Under these assumptions, Humphreys and Laver (2010) derive the the neces-

sary and sufficient restrictions at the core in the following manner: denote O the

collection of 2d open orthant of Rd, each orthant O ∈ O can be characterized by

a unique vector w(O) ∈ W ≡ {−1, 1}d such that for any vector v ∈ O, we have

w(O) · v > 0. Then a “rugged half space” is defined as the closure of a collection,

C, of 2d−1 (open) orthants having the property that there exists a vector x ∈ Rd
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such that for every orthant O ∈ C, we have w(O) · x > 0.

Proposition 3.1 (Humphreys and Laver, 2010) Assume a city block pref-

erence profile where voters put the same (relative) weight on each issue. Then

x ∈ C(Lq) if and only if every rugged half space contains at least (n− q+ 1) ideal

points.

Now we show that the necessary result of Humphreys and Laver (2010) can

be obtained as a straightforward application of Theorem 3.2. It is trivial to

check that the `1-metric utility function satisfies Lipschitz continuity, that is, it

is continuously differentiable almost everywhere in Rd but a set of alternatives x

such that xm = x̂im for some issue m = 1, . . . , d. Denote em the vector forming

the mth row of the d× d identity matrix. Then the superdifferentials of an agent

endowed with city-block preferences at an alternative x 6= x̂i is given by

∂ui(x) = conv
{
{[sign (x̂im − xm)]βmem}m 6∈Mi(x), {±βmem}m∈Mi(x)

}
. (3.33)

with

Mi(x) = {l | x̂im = xm}. (3.34)

Figure 3.2 depicts an agent i with city-block preferences who has his ideal

alternative at x̂i and an alternative x ∈ X such that x̂i2 = x2 and x̂i3 =

x3. Then the superdifferential of agent i at x can be written by ∂ui(x) =

conv{β1e1,±β2e2,±β3e3}. Consider any pointed, finitely generated convex cone

C̄ that belongs to the complement of a rugged halfspace C as defined above.

Given the superdifferentials of `1-metric utility function and the dimension of C̄,

we have T = I = ∅. Applying Theorem 3.2, we have

min
{αi}i∈N

α(G+) = #{i ∈ N : x̂i ∈ C̄} < q, (3.35)

which basically requires that the rugged half space C must contains at least

(n− q+ 1) ideal points. Another form of Minkowski distance that admits a non-

smooth utility representation is the `∞-metric or Tchebycheff distance. Tcheby-

cheff distance utility function is mostly used to describe the preferences of agents

in a minimax facility allocation problem. Formally, under `∞-norm, the utility

function of an agent with ideal point x̂i is given by

ui(x) = − max
m=1,...,d

|xm − x̂im|. (3.36)
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Again, the differentials of Tchebycheff distance utility function at an alterna-

tive x 6= x̂i can be written as

∂ui(x) = conv
{

[sign(x̂im − xm)]em |m ∈Mi(x)
}
, (3.37)

with

Mi(x) = {m | |x̂im − xm| = ui(x)}. (3.38)

Applying similar arguments as above, we can obtain the characterization re-

sults for the core under `∞-norm metric.

Proposition 3.2 Assume a Tchebycheff distance preference profile. Then x ∈
C(Lq) if and only if every closed half space through x with normal w(O) ∈ W

contains at least (n− q + 1) ideal points.

3.5 Conclusion

Spatial models of simple majority voting suggest that stable decisions are not

likely to exist under general environment. This negative result comes from the

fact that for a majority core to exist, it must be some individuals’ most preferred

alternatives and all other agents’ gradient vectors must satisfy the restrictive con-

dition of radial symmetry. In this paper, we briefly show that such difficulties

can be overcomed if we allow individuals’ utility functions to be Lipschitz contin-

uous instead of continuously differentiable. To deal with the difficulty caused by

the absence of differentiable utility functions, we regard each voter’s preference at

each kinked point as “unanimous” social preferences of a collective of finite “self”,

each endowed with a smooth preference over the set of alternatives. By applying

the “smooth” analysis to the auxiliary society of selves, we generalize the known

gradient restriction for the core of an arbitrary quota rule with any utility profile

that satifies the general Lipschitz continuity. We also consider two example of

nonsmooth utility representation (inequity aversion and city-block preferences)

in the context of simple allocation problem to illustrate the application of our

results.

However, the paper is incomplete as we also need to identify the critical di-

mension of the policy space above which the core is generically empty. The

previous results by Schofield (1978), McKelvey and Schofield (1987) and Banks

(1995) on the critical dimensions for core emptiness are derived by showing the
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linear dependency on certain subsets of gradient vectorsand then revoking known

results from differential topology pertaining to singularities of smooth mappings.

As we have obtain similar result on the linear dependency of supergradient vec-

tors (Lemma 3.1), a critical dimension for core emptiness with nonsmooth utility

function can be obtained.
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Chapter 4

Optimal Voting-by-Committees

Rules

4.1 Introduction

The standard framework of social choice theory assumes that individual prefer-

ences over the set of alternatives are binary relations that satisfy completeness,

reflexivity, and transitivity. Although completeness is a convenient axiom, it im-

poses a considerable computational and informational burden to the agents and

to the social planner. One main challenge in relaxing preference completeness

is that, as the notion of incentive compatibility becomes weaker, the existing

results on strategy-proof social choice rules are not necessarily valid. The main

purpose of this paper is to elicit the structure of the voting rules that are robust

to strategic behavior and “optimal” on the domain of incomplete and separable

preferences.

To be more precise, we consider the social choice problem of Barberà, Son-

nenschein and Zhou (1991), where society choose a subset from a finite set of

indivisible objects (or alternatives). Each member of society is endowed with an

asymmetric preference relation over the subsets of alternatives. Like in Barberà

et al. (1991), individual preferences are separable, meaning that the consumption

of every object affects each agent’s welfare separately from the consumption of

any other object. However, in a clear departure from previous work, we study

separable preference domains where incompleteness (partial orderings) is permit-

ted. This forces us to redefine the notion of incentive compatibility, for which we

introduce the concept of justifiable strategy-proofness.
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Formally, a voting rule (mapping each preference profile to an alternative) is

justifiable strategy-proof if and only if for each profile of individual preferences

and every agent, each possible individual deviation from truth-telling results in

a social choice that is strictly worse for the agent in question (bear in mind that

preferences are asymmetric). Equipped with this notion of incentive compati-

bility, in Section 4.3 we show that over the incomplete and separable preference

domain, a voting rule is justifiable strategy-proof if and only if it satisfies mono-

tonicity and independence.1 This result is used in Theorem 4.1 to show that the

set of voting rules that satisfy justifiable strategy-proofness over our preference

domain coincides with the family introduced by Barberà et al. (1991), namely,

the voting-by-committees rules.

Given that the family of voting-by-committees rules is very large, ranging

from the dictatorial to the unanimous voting rule, one might pose the following

question. Within the family of voting rules that satisfy our notion of incentive

compatibility, which rules are most likely to yield an “optimal” social choice? To

answer this question, we first study the implications of Pareto efficiency in an

incomplete preference domain. As is shown in Proposition 4.3, efficiency turns

out to be a weak property. To be precise, it is equivalent to unanimity. The

result is encouraging in the sense that, different from Barberà et al. (1991), the

set of efficient voting-by-committees rules expands and contains more than just

dictatorial rules.2 However, it also means that the notion of Pareto efficiency is

too weak to narrow our search in a meaningful manner.

Since ordinal preferences do not provide any measure of desirability of the

different social choices, we turn to a cardinal approach and we study the optimal-

ity problem from a utilitarian viewpoint. In our model, individual preferences

are not necessarily complete. Therefore, we follow Ok (2002) and adopt a multi-

utility representation of preferences, where each partial ordering is represented by

a vector-valued utility function. Danan, Gajdos, and Tallon (2015) show that un-

der a multi-utility representation, Harsanyi’s aggregation theorem remains valid,

and the social welfare function can be written as a set of utilitarian aggregations

of individual utility functions. Finally, we compare among the different sets of

social welfare functions by invoking several optimal criteria, including Hurwicz

1For brevity, the reader is referred to Section 4.2.2 for a formal definition of these properties,
which were first proposed by Kasher and Rubinstein (1997).

2Barberà et al. (1991) show that in a complete and separable preference domain, there exists
no efficient, strategy-proof, and nondictatorial voting rule.
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optimism-pessimism, minimax regret, and distortion minimization. Our results

suggest that the optimal voting-by-committees rules can be characterized as a

subfamily of weighted majority rules, with the individual weights representing

the level of “caution” or “justice” that the social planner is willing to achieved.

With regard to the literature most closely related to this article, the social

choice problem considered here has been studied before by Barberà et al. (1991),

Ju (2005), and Nehring and Puppe (2007), among others. These papers have

attempted to overcome the Gibbard-Satterthwaite Theorem by characterizing a

great variety of strategy-proof social choice rules on restricted preference domains.

A recent paper by Hatsumi et al. (2014) suggests that separability constitutes the

maximal domain of complete preferences over which a nontrivial rule satisfying

strategy-proofness and no-vetoer can exist. One common assumption in this

body of research is that the preference relations are represented by complete

linear orderings. In this paper, we explore the possibility of extending some of

these results to the domain of incomplete and separable preferences.

The literature on the optimality of the social choice rules has been built around

Rae’s (1969) idea of comparing different voting rules in terms of ex-ante expected

utility. Notably, Azrieli and Kim (2014) identify qualified majority rules as in-

terim Pareto efficient within the class of Bayesian incentive compatible social

choice rules. Gershkov, Moldovanu and Shi (2017) extend the analysis to the

setting with an arbitrary number of agents and alternatives where the privately

informed agents have single-crossing and single-peaked preferences. They show

that the ex-ante welfare maximizing mechanism in such context falls into the

class of sequential voting schemes with flexible majority thresholds. On the other

hand, research has been done in the field of computational social choice to relax

the information requirement of eliciting full preferences. More specifically, when

the communication between the social planner and voters is limited, Boutilier

et al. (2015) and Caragiannis and Procaccia (2011) suggest the use of distortion

and minimax regret as alternative measurements of a voting rule’s performance.

However, as strategic voting is not considered in their framework, the family of

scoring rules that emerges as optimal in their analysis are subject to strategic

manipulation.

The rest of the paper is organized as follows. In Section 4.2, we describe

the social choice model and define some important strategic and non-strategic

axioms for our analysis. In Section 4.3, we state our characterization results in
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relation with the axioms defined in Subsection 4.2.2. Section 4.4 focus on the

notion of Pareto efficiency in the context of incomplete preferences and it studies

its implications. Finally, in Section 4.5, we assume a multi-utility representation

for the incomplete preferences and proceed to identify the optimal voting-by-

committees rules under different optimal criteria. Section 4.6 concludes the paper

with a summary and some remarks.

4.2 The Model

4.2.1 Basic concepts

We consider a society of n agents who choose collectively a subset from a finite set

of k indivisible objects. Let N be the set of agents and K be the set of objects.

We assume that n, k ≥ 2. Any subset of K is an (social) alternative and the

power set of K, 2K , describes the set of all possible alternatives. Each agent

i ∈ N is characterized by a preference relation Pi , an asymmetric and transitive

partial ordering over the set of all social alternatives.

We focus on the preference domain with the following restriction. A preference

relation Pi is separable if for all x ∈ K and all X ⊆ K \ {x},

[X ∪ {x}]PiX ⇐⇒ {x}Pi ∅. (4.1)

Let S be the domain of all admissible separable preferences. Intuitively, for

separable preferences, objects can be partitioned into two categories depending on

its ranking compared to the empty set. An object x ∈ K is considered desirable

according to Pi ∈ S if for all X ⊆ K \ {x}, [X ∪ {x}] Pi X. Similarly, object x

is undesirable for Pi if for all X ⊆ K \ {x}, X Pi [X ∪ {x}]. Let D(Pi) be the

set of desirable objects according to Pi, then the complement of D(Pi) in K is

the set of undesirable objects. When there is no confusion, we write Di, D
′
i for

D(Pi), D(P ′i ).

A social choice problem is then represented by a preference profile P ≡
(Pi)i∈N ∈ SN . A social choice rule is a function f : S → 2K mapping each

preference profile P ∈ SN into a single alternative X ∈ 2K . We focus on the

rules that depend only on the simple information of preferences in terms of de-

sirable and undesirable objects. Formally, a social choice rule is a voting rule

if for all P, P ′ ∈ SN , D(Pi) = D(P ′i ) for all i ∈ N implies that f(P ) = f(P ′).
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Henceforth, we use the following notation. For each P ∈ SN and x ∈ K, let

Nx(P ) ≡ {i ∈ N : x ∈ D(Pi)} the set of agents who prefer objects x to be

included in the social alternative. For each P ∈ SN , each i ∈ N and P ′i ∈ S, let

(P ′i , P−i) be the preference profile where agent i has preference relation P ′i and

for each agent j ∈ N \ {i}, agent j’s preference is presented by Pj.

Suppose that agents’ preferences over the set of alternatives 2K are separable

but not necessarily complete, in the sense that some pairs of desirable objects

are incomparable and some pairs of undesirable objects are incomparable. To

be more precise, endow each agent i ∈ N with a set S(Pi) ⊂ S of complete

and separable preference relations (also termed rationales or “justification” by

Heller (2012)) that share the same set of desirable and undesirable objects. We

denote P̃i a generic elements of S(Pi), then D(P̃i) = Di for all P̃i ∈ S(Pi). Let

S(P ) =
∏
i∈N
S(Pi) ⊂ SN . Agent i’s (partial) ordering Pi ∈ S over the set of

alternative 2K is then defined by “unanimity or consensus” among the rationales

in S(Pi), in the sense that,

∀X, Y ∈ 2K , X Pi Y ⇐⇒ X P̃i Y ∀ P̃i ∈ S(Pi). (4.2)

In particular, when S(Pi) is a singleton for each agent i ∈ N , condition (4.2)

reduces the analysis to the standard model with complete individual preferences

over 2K as in Barberà et al. (1991). In general, however, if there exists P̃i, P̃
′
i ∈

S(Pi) such that X P̃i Y and Y P̃ ′i X for some X, Y ∈ 2K and i ∈ N , then X

and Y are incomparable to agent i under Pi. The reason why this might happen

in a social choice context includes cases where (i) each individual represents a

collective of several agents with different rankings over the set of alternatives,

or (ii) agents’ complete preferences are not completely elicited due to limited

communication. A case in point for the former would be a coalition of political

parties ranking groups of legislators for a parliamentary committee. Although

the coalition might agree upon the list of legislators suitable for the committee,

party members might still have different views about the possible combinations of

these candidates due to their party affiliation, which render control to the party

over the committee (e.g., see Levy (2004)’s model of political parties). Similar

problem is studied in computational social choice as accurately conveying an

agent’s complete preference relation over the set of alternative is proved to be

very costly in terms of information and communication.
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4.2.2 Axioms

In this section, we define several important strategic and non-strategic proper-

ties, or axioms, of rules. The first of these properties concerns with incentive

compatibility. In domains with complete individual preferences, to guarantee

truthful revelation, the planner usually demands from the voting rule an incen-

tive compatibility property known as strategy-proofness. Roughly speaking, a

voting rule is strategy-proof if, and only if, for each preference profile and every

agent, truthfully reporting one’s opinion leads to a social outcome that is weakly

preferred to the outcome generated by any other untruthful declaration, regard-

less of what other agents report. In extending this property to the incomplete

preference environment laid out above, one main challenge consists of determin-

ing how much consensus among the agents’ rationales is demanded to justify an

untruthful report. In this context, strategy-proofness admits at least two possible

formulations, depending on whether an agent’s lie is sustained by either one or

all of its rationales. Borrowing the terminology from Heller (2012), we use the

term “justifiable” for the former interpretation of strategy-proofness and define

it as usual in negation to the concept of manipulability.

Justifiable Manipulability: There exists a preference profile P ∈ SN , i ∈ N
and P ′i ∈ S such that f(Pi, P−i) P̃i f(P ′i , P−i) for some P̃i ∈ S(Pi).

If the rule f is not justifiable manipulable, then it is justifiable strategy-proof.3

Alternatively, we can write: the rule f is justifiable strategy-proof if and only if

for all P ∈ SN , i ∈ N and P ′i ∈ S,

f(Pi, P−i) Pi f(P ′i , P−i) or f(Pi, P−i) = f(P ′i , P−i).

The above definition is a very cautious property of incentive compatibility,

that demands no profitable deviation from truth telling even if not all rationales

compatible with one’s opinion agree upon the desirability of a lie. Roughly speak-

ing, the idea behind this axiom is to ensure that no agents has any justifications

for lying about his true opinion. If the agents represent party coalitions, for

3Duggan and Schwartz (2000) uses similar concept termed possible manipulation based on
the notion of first-order stochastic dominance to define nonmanipulability. Generally speaking,
it requires that the agent find it unprofitable to deviate from truth telling for all possible lottery
realizations over the set of assigned objects. Here, instead of using lottery realizations, we use
the concept of justifications or rationales to determine the dominance of an alternative over
another.
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instance, then from the planner’s viewpoint, justifiable strategy-proofness may

be appropriate if he is not fully aware of how the agents resolve internally the

conflict among the different rationales (party members’ preferences), so that ma-

nipulation when a single party benefits from lying cannot be completely ruled

out.

Obviously, in some settings it may be more appropriate to work with a more

lax incentive requirement, that regards a voting rule as manipulable if a lie is

justified or sustained not just by the profitability of the social outcome under

one rationale, but under all of them. This demand for “(internal) consensus

about the benefits of lying” brings about the second concept of manipulability

and strategy-proofness.

Manipulability: There exists a preference profile P ∈ SN , i ∈ N and P ′i ∈ S
such that f(Pi, P−i) P̃i f(P ′i , P−i) for all P̃i ∈ S(Pi).

If the rule f is not manipulable, then it is strategy-proof. Clearly, if the

preference domain of each agent consists only of complete binary relations, then

both above definitions converge to the concept of strategy-proofness over sepa-

rable preferences employed in Barberà et al. (1991) and Ju (2003). In general,

however, strategy-proofness is a weaker condition, in the sense that it is implied

by the absent of justifiable manipulability. For the purpose of mechanism de-

sign, this is important as strategy-proofness offers the chance of exploiting the

conflict among different selves or preferences of the agents to dismiss cases of ma-

nipulation that bring on disagreement and division instead of unity of purpose,

enlarging the family of incentive compatible voting rules.

To see this in more details, we relate these two notions of strategy-proofness

with the following two axioms, called monotonicity and independence, studied by

Kasher and Rubinstein (1997) and Samet and Schmeidler (2003). First, mono-

tonicity requires that when the set of desirable objects expand for all agents, then

the set of socially chosen objects should also expand.

Monotonicity: For each pair of profiles P, P ′ ∈ SN such that Di ⊆ D′i for all

i ∈ N , f(P ) ⊆ f(P ′).

The second axiom requires independence of decisions across objects. That is,

the decision to include each object in the social outcome should depend only on

agents’ evaluations on the desirability of the object only.

Independence: For each object x ∈ K and each pair of profiles P, P ′ ∈ SN
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such that Nx(P ) = Nx(P
′), x ∈ f(P ) if and only if x ∈ f(P ′).

4.3 Incentives

We first establish the relationship between the two notions of incentive compati-

bility with the axioms of monotonicity and independence.

Proposition 4.1 A voting rule is justifiable strategy-proof on the domain of in-

complete and separable preferences if and only if it is monotonic and independent.

Proof. (Sufficiency) Let f be a monotonic and independent rule. Fix any P ∈
SN , i ∈ N, and P ′i ∈ S. Consider the two following cases:

Case 4. If Di∩D′i 6= ∅, then denote Di∩D′i = D̂i and X = Di\D′i. Consider P̂i ∈
S such that D(P̂i) = D̂i. As D̂i ⊆ Di, applying the monotonicity axiom to the

pair of preference profiles (Pi, P−i) and (P̂i, P−i), we have f(P̂i, P−i) ⊆ f(Pi, P−i).

On one hand, for all x ∈ K such that x ∈ Di and x ∈ D̂i, independence axiom

implies that x ∈ f(P̂i, P−i) ⇐⇒ x ∈ f(Pi, P−i). On the other hand, for

all y ∈ K such that y 6∈ Di and y 6∈ D̂i, independence axiom implies that

y 6∈ f(P̂i, P−i) ⇐⇒ y 6∈ f(Pi, P−i). Thus, f(Pi, P−i) \ f(P̂i, P−i) ⊆ X ⊆ Di.

Then separability implies that

f(Pi, P−i) Pi f(P̂i, P−i), or f(Pi, P−i) = f(P̂i, P−i). (4.3)

Denote Y = D′i \ D̂i. As D̂i ⊆ D′i, applying monotonicity to the preference

profiles (P ′i , P−i) and (P̂i, P−i), we have that f(P̂i, P−i) ⊆ f(P ′i , P−i). On one

hand, for all x ∈ K such that x ∈ D′i and x ∈ D̂i, independence property

implies that x ∈ f(P̂i, P−i) ⇐⇒ x ∈ f(P ′i , P−i). On the other hand, for

all y ∈ K such that y 6∈ D′i and y 6∈ D̂i, independence property implies that

y 6∈ f(P̂i, P−i) ⇐⇒ y 6∈ f(P ′i , P−i). Thus, f(P ′i , P−i) \ f(P̂i, P−i) ⊆ Y . Then, as

Y ∩Di = ∅, separability implies that

f(P̂i, P−i) Pi f(P ′i , P−i), or f(P̂i, P−i) = f(P ′i , P−i). (4.4)

Combining (4.3) and (4.4) and using the transitivity of the preference relation

Pi, we have that either f(Pi, P−i) Pi f(P ′i , P−i), or f(Pi, P−i) = f(P ′i , P−i).
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Case 5. If Di ∩D′i = ∅, then denote Di ∪D′i = Ďi. Consider P̌i ∈ S such that

D(P̌i) = Ďi. Repeat the same argument in Case 1 for the preference profiles

(Pi, P−i) and (P̌i, P−i), we have that either f(Pi, P−i) Pi f(P̌i, P−i) or f(Pi, P−i) =

f(P̌i, P−i). Similarly, repeat the argument for the profiles (P ′i , P−i) and (P̌i, P−i),

it follows that either f(P̌i, P−i) Pi f(P ′i , P−i) or f(P̌i, P−i) = f(P ′i , P−i). Thus,

by the transitivity property of the preference relation Pi, we have that either

f(Pi, P−i) Pi f(P ′i , P−i), or f(Pi, P−i) = f(P ′i , P−i).

To wrap up, since agent i ∈ N and the preference profiles (Pi, P−i), (P
′
i , P−i) ∈

SN are arbitrarily chosen, Case 1 and Case 2 show that the voting rule f (which

by hypothesis satisfies monotonicity and independence) is justifiably strategy-

proof.

(Necessity) We show first that justifiable strategy-proofness implies montonicity;

and afterwards that strategy-proofness implies independence.

Appealing to the inductive arguments, considering any pair of preference

profiles, (Pi, P−i), (P
′
i , P−i) ∈ SN such that D′i ⊆ Di, we need to show that

f(P ′i , P−i) ⊆ f(Pi, P−i). Suppose, for contradiction, that there exists x ∈ K

such that x ∈ f(P ′i , P−i) but x 6∈ f(Pi, P−i). By definition of justifiable strategy-

proofness, we have f(P ′i , P−i)P
′
i f(Pi, P−i) which implies x ∈ D′i. By supposition,

x ∈ D′i implies x ∈ Di. Then we can construct a complete preference relation

P̃i ∈ S(Pi) such that for all A,A′ ⊆ K \ {x}, [A ∪ {x}] P̃i A′. By construction,

f(Pi, P−i) P̃i f(P ′i , P−i), which violates the justifiable strategy-proofness property.

Repeat the induction step for all i ∈ N , we have justifiable strategy-proofness

implies monotonicity.

Again, using the inductive argument, consider any object x ∈ K and any pair

of preference profiles (Pi, P−i), (P
′
i , P−i) ∈ SN such that x ∈ Di ⇐⇒ x ∈ D′i,

we need to show that x ∈ f(Pi, P−i) ⇐⇒ x ∈ f(P ′i , P−i). Suppose, for contra-

diction, that x ∈ f(P ′i , P−i) but x 6∈ f(Pi, P−i). By the property of justifiable

strategy-proofness, we have f(P ′i , P−i) P
′
i f(Pi, P−i) which implies x ∈ D′i. By

supposition, x ∈ D′i if and only if x ∈ Di. Then we can construct a complete

preference relation P̃i ∈ S(Pi) such that for all A,A′ ⊆ K \ {x}, [A ∪ {x}] P̃i A′.
By construction, f(Pi, P−i) P̃i f(P ′i , P−i), which violates the justifiable strategy-

proofness property. Repeat the induction step for all i ∈ N , we have justifiable

strategy-proofness implies independence.

The characterization given in Proposition 4.1 is tight, in the sense that a
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rule satisfying either monotonicity or independence alone does not necessarily

satisfy justifiable strategy-proofness.4 This relationship appears quite often in

the strategy-proof analysis with complete preferences, as is the case of Nehring

and Puppe (2007) for generalized single-peaked preferences, and of Ju (2003)

for separable domain with nonlinear preferences. Similar to these cases, in our

framework with incomplete preferences, Proposition 4.1 plays a pivotal role in

unveiling the family of incentive compatible voting rules.

The next proposition establishes the relationship between justifiable strategy-

proofness and standard notion of nonmanipulability.

Proposition 4.2 A voting rule is justifiable strategy-proof on the domain of in-

complete and separable preferences if and only if it satisfies strategy-proofness and

independence.

Proof. (Sufficiency) By Proposition 4.1, justifiable strategy-proofness is equiv-

alent to the axioms of monotonicity and independence. Thus, to show that

strategy-proofness and independence implies justifiable strategy-proofness, it is

sufficent to show that strategy-proofness and independence implies monotonicity.

Consider any pair of preference profiles, (Pi, P−i), (P
′
i , P−i) ∈ SN such that

Di = D′i∪{x} for some x ∈ K \D′i, we need to show that f(P ′i , P−i) ⊆ f(Pi, P−i).

As Ny(P
′
i , P−i) = Ny(Pi, P−i) for all y ∈ K \ {x}, by independence axiom, y ∈

f(P ′i , P−i) if and only if y ∈ f(Pi, P−i). Suppose, for contradiction, that x ∈
f(P ′i , P−i) but x 6∈ f(Pi, P−i). Then f(P ′i , P−i) = f(Pi, P−i)∪{x}. As x ∈ Di, we

have f(P ′i , P−i) P̃i f(Pi, P−i) for all P̃i ∈ S(Pi), contradiction. Thus, f(P ′i , P−i) ⊆
f(Pi, P−i).

Repeate the induction step for all i ∈ N , we have for every pair of preference

profiles (Pi)i∈N , (P
′
i )i∈N ∈ SN , if Di ⊆ D′i for all i ∈ N , then f(Pi, P−i) ⊆

f(P ′i , P
′
−i).

(Necessity) By Proposition 4.1, justifiable strategy-proofness implies indepen-

dence. By definition, manipulability implies justifiable manipulability. Thus,

justifiable strategy-proofness implies strategy-proofness and independence.

4For example, fix an agent i ∈ N and consider a rule f such that for all (Pi, P−i) ∈ SN and
each x ∈ K, x ∈ f(Pi, P−i) ⇐⇒ x 6∈ Di. This rule is independent, but it violates monotonicity
and justifiable strategy-proofness. Alternatively, redefine f in such a way that for some i ∈ N
and x ∈ K, f(Pi, P−i) = K if x ∈ Di; and f(Pi, P−i) = ∅ otherwise. Clearly, f is monotonic
but does not satisfy independence. Moreover, for any rationale P̃i ∈ S(Pi) such that Di = {x}
and ∅ P̃i K, f is justifiable manipulable.
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Proposition 4.2 provides an insight on the environment where justifiable

strategy-proofness can replace the standard notion of incentive compatibility.

In the context where there is little correlation among the consumption of each

object, the decision to include an object is not compromised by the social deci-

sion on another and independence axioms is trivially satisfied. This assumption

usually appears in the literature of group identification or committee selection.

In such cases, the two notions of strategy-proofness converge and the character-

ization of strategy-proof voting rule coincides. On the other hand, when there

is an exogenous and common knowledge relationship among objects, the set of

strategy-proof voting rules expands and it is no longer characterized by the axioms

of monotonicity and independence. The arguments for such cases include objects

with positive/negative externalities, complementary and substitute goods or re-

stricted domain of social alternatives. Here is an example where a strategy-proof

voting rule can be justifiable manipulable.

Example Let fU be the unanimity rule that chooses an object if and only if

all agents consider it desirable. Let fL be a rule that choose a single object

x ∈ ∪i∈NDi according to a predetermined lexicographical order of K. Consider

the following voting rule f ∗:

f ∗ =

fU if there exists x ∈ K such that Nx(P ) = N ;

fL if Nx(P ) 6= N for all x ∈ K.
(4.5)

By Proposition 4.1, f ∗ does not satisfy either monotonicity or independence ax-

ioms, thus, it is justifiable manipulable. However, it is trivial that the rule satisfies

strategy-proofness.

To characterize the set of justifiable strategy-proof rules, first define the fol-

lowing notation and terminology. Define a committee for x ∈ K as a pair

Cx = (N,Wx), where Wx is a set of coalitions of N which satisfies the condi-

tion that for each pair M, M ′ ⊆ N , if M ∈ Wx and M ⊆M ′, then M ′ ∈ Wx. Let

C = (Cx)x∈K be a committee profile. The voting-by-committees rule with respect

to C is defined as follows: for each profile P = (Pi)i∈N ∈ SN and every object

x ∈ K, x ∈ f(P ) if, and only if, Nx(P ) ∈ Wx. In words, a voting-by-committees

rule is one that chooses an object x if, and only if, the set of agents who consider x

a desirable object constitutes a (winning) coalition within x’s decision committee

Wx. Denote FC the set of voting-by-committees rules.
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Theorem 4.1 A voting rule is justifiably strategy-proof on the domain of incom-

plete and separable preferences if and only if it is a voting-by-committees rule.

The proof of Theorem 4.1 is simiar to that of Barberà et al. (1991) for

strategy-proof voting schemes that satisfy “tops only” property.

Proof. (Necessity) Each voting-by-committees rule is monotonic and indepen-

dent. Thus, by Proposition 4.1, the rule is justifiably strategy-proof.

(Sufficiency) Let f be a justifiably strategy-proof rule. By definition, f is a

voting-by-committees rule is and only if for any x ∈ K and any preference profiles

P ∈ SN , there exists a profile of committees Cx = (N,Wx) such that

x ∈ f(P ) ⇐⇒ Nx(P ) ∈ Wx. (4.6)

We will show that for each justifiably strategy-proof voting rule, we can define

a generalized committee that specify all the winning coalition for each object

x ∈ K. Fix any object x ∈ K. Let S(f, x) ⊆ SN be a set of preference profiles

such that for all P ∈ S(f, x), x ∈ f(P ). We defined object x’s generalized

committee Wx for each of the following cases:

If S(f, x) = ∅. That is, for all P ∈ SN , x /∈ f(P ). Set Wi = ∅.
If S(f, x) 6= ∅. That is, there exists P ∈ SN such that x ∈ f(P ).

Consider Wx = {Nx(P ) ⊆ N : P ∈ S(f, x)}. Let M be an element of Wx

and M ′ ⊇ M . By definition, Wx is a committee if and only if M ′ ∈ Wx. That

is, we need to show that there exists a preference profile P ′ ∈ SN such that

M ′ = Nx(P
′) and x ∈ f(P ′). By supposition, M = Nx(P ) for some P ∈ SN then

we can construct P ′ ∈ SN as follows, D′i = K for all i ∈ M ′ \M and D′j = Dj

otherwise. Then by monotonicity, as Di ⊆ D′i for all i ∈ N , f(P ) ⊆ f(P ′). Since

x ∈ f(P ), then x ∈ f(P ′) and M ′ ∈ Wx. Thus, Cx = (N,Wx) constitutes a

committee for each x ∈ K.

Finally, we will show that for any x ∈ K and P ∈ SN , x ∈ f(P ) ⇐⇒
Nx(P ) ∈ Wx. The ”only if” part is trivially satisfied by construction of Wi. On

the other hand, if Nx(P ) ∈ Wx, then there exists P ′ ∈ SN such that Nx(P ) =

Nx(P
′) and x ∈ f(P ′). As x ∈ Di ⇐⇒ x ∈ D′i for all i ∈ N , apply independence

axiom, we have x ∈ f(P ′) implies x ∈ f(P ).

Apply the same argument for all x ∈ K, we obtain the profile of committees

(Cx)x∈K satisfying the condition. Therefore, f is justifiably strategy-proof if and

only if it is voting-by-committee rules.
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Barberà et al. (1991) provides a similar characterization of voting-by-

committees rules but over the domain of complete and separable preferences.

More recently, Hatsumi et al. (2014) shows that on the set of complete indi-

vidual preferences, separability constitutes a maximal domain condition for the

existence of nontrivial rules satisfying strategy-proofness and no-vetoer. Theo-

rem 4.1 contributes to this literature showing that the maximal domain can in

fact be enlarged by including incomplete preference relations that satisfy separa-

bility and for which the set of best objects is well-defined. To be more precise,

it shows that over these preference domains voting-by-committees rules remains

the only family of incentive compatible voting rules.

4.4 Efficiency

To identify the set of optimal voting-by-committees rules, we first use the notion

of efficiency which is defined using ordinal information and study its implications.

As voting-by-committees rules guarantee to satisfy the incentive compatible con-

straint, we can safely evaluate the voting rules in this family based on their ex post

efficiency. Consider a preference profile P ∈ SN and rationale profile P̃ ∈ S(P ).

Recall that for each pair alternatives X, Y ∈ 2K , X Pareto dominates Y for P̃

if for each i ∈ N , X P̃i Y . We say that an alternative X is Pareto efficient for

P̃ if and only if it is not Pareto dominated for P by any other alternatives. In

our context of incomplete and separable preference domain, the notion of Pareto

efficiency means that, if there is no alternative Y that Pareto dominates X, then

there exist a least one justification profile P̃ ∈ S(P ) such that X is Pareto ef-

ficient for P̃ . A voting rule is efficient if for all preference profile P ∈ SN , the

outcome chosen under such rule is Pareto efficient.

Efficiency: For all preference profile P ∈ SN , there does not exist X ∈ 2K such

that X Pi f(P ) for all i ∈ N .5

Notice that as the preference relation Pi contains many possible justifications

P̃i, our notion of Pareto dominance is strong and hence, the efficiency restriction

is weak. In fact, the only restriction that this notion of efficiency imposes on

the structure of the committees is that of unanimity: if all agents agree that an

5This notion of efficiency is similar to “ordinal efficiency” which is defined on (partial)
preferences over lotteries that are obtained from preferences over sure outcomes by applying
first-order stochastic dominance (see Danan et al. 2016, Carroll 2010).
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object is desirable, then such object should be included in the social outcome.

Proposition 4.3 A voting-by-committees rule f ∈ FC is efficient on the domain

of incomplete and separable preferences if and only ifWx 6= {∅, {∅}} for all x ∈ K.

Proposition 4.3 is encouraging in the sense that, different from Barberà et

al. (1991), in our domain of incomplete preferences, the set of efficient voting-by-

committees rules expands and contains more than just dictatorial rules. However,

it also means that the notion of efficiency is too weak to narrow down FC in a

significant way.

4.5 Cardinal Criterion

Once the set of efficient outcomes is identified, one may wish to select among them

the “optimal outcome” using different cardinal criterion. It requires first, a utility

representation that preserves all the information of an incomplete and separable

preference and second, a method to aggregate those utility functions to evaluate

the performance of different voting-by-committees rules. There are two main

notions of utility representation for an incomplete preference relation P on the set

of alternatives 2K . The first approach is to use Richter-Peleg utility representation

which is a real function over 2K constructed using available information of the

relation P . However, one of the main limitations of Richter-Peleg representation

is that it does not characterize the original preference relation but rather extends

it to a complete pre-order that is representable in the usual sense. Alternatively,

Ok (2002) extends upon the standard notion of Debreu’s utility representation

and show that an incomplete and transitive binary relation Pi ∈ S over 2K

admits a multi-utility representation if and only if there exists a convex set Ui of

real mapping on 2K such that for any social alternatives X, Y ∈ 2K ,

X Pi Y ⇐⇒ ui(X) > ui(Y ) for all ui ∈ Ui. (4.7)

The first advantage of multi-utility representation is that it preserves all the

information on the situations in which the agent is actually indecisive. Instead

of a single real function, an incomplete preference relation is represented by a

vector-valued utility function the range of which is contained in some partially

ordered linear space. This multi-utility representation is also consistent with the
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justifiable choice approach of Heller (2012) in the sense that each complete and

separable rationale can be represented by a real utility function in Ui.
More specifically, consider an agent i ∈ N with preference relation Pi ∈ S.

Applying the concept of multi-utility representation to our environment, then any

incomplete and separable preference relation Pi ∈ S can be represented by the

following utility representation: for any subset X ⊆ K, the utility of an agent

endowed with P̃i ∈ S(Pi) get from the social outcome X is given by,

ui(Pi, X) = −
∑
x∈K

[αxi · IX\Di
(x) + βxi · IDi\X(x)]. (4.8)

with αxi , β
x
i ∈ R++, where the first indicator function is to determine if x is an

undesirable object included in the social outcome A, that is,

IX\Di
(x) =

1 if x ∈ X \Di;

0 otherwise,

and the second indicator function is to determine if x belongs to the set of agent

i’s desirable objects excluded from the social outcome A, that is,

IDi\X(x) =

1 if x ∈ Di \X;

0 otherwise.

If we consider each subset X of K as a point in multidimensional space

X ∈ {0, 1}K , then our utility representation basically measure the weighted Eu-

clidean distance between the social decision to each individual’s most preferred

alternative. Let αi = (α1
i , . . . , α

k
i ), βi = (β1

i , . . . , β
k
i ) and define H(Pi) ⊆ R2k

++

agent i’s (convex) set of admissible parameter vectors such that each P̃i ∈ S(Pi)

can be represented by ui under a set of parameters (αi,βi) ∈ H(Pi). Formally,

for any alternatives X,X ′ ⊆ K,

H(Pi) ≡ {(αi,βi) ∈ R2k
++ : for all P̃i ∈ S(Pi) there exists (αi,βi) ∈ H(Pi)

such that ui(Pi, X) > ui(Pi, X
′) ⇐⇒ X P̃i X

′}. (4.9)

Apply this utility function for all preference relation P̃i ∈ S(Pi), we can derive

the multi utility representation for the preference relation Pi as follows: for any

alternatives X,X ′ ⊆ K,
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X Pi X
′ ⇐⇒ ui(Pi, X) > ui(Pi, X

′) ∀(αi,βi) ∈ H(Pi). (4.10)

That is, for any agent i ∈ N , the convex set Ui can be defined as:

Ui ≡ {ui(Pi) : (αi,βi) ∈ H(Pi)}. (4.11)

For simplicity, we assume that αxi , β
x
i ∈ [εxi , ε̄

x
i ] ⊂ R++, then the (convex) set of

admissible parameters H(Pi) =
∏

x∈K [εxi , ε̄
x
i ]×

∏
x∈K [εxi , ε̄

x
i ]. Denote u = (ui)i∈N

a utility profile in
∏

i∈N Ui and H(P ) =
∏

i∈N H(Pi) the set of parameter profile

of the society.

Having defined the multi-utility representation for each individual’s preference

relation, now we need to aggregate individual utilities in a way that is consistent

with Paretian principle. Danan, Gajdos and Tallon (2015) show that Harsanyi’s

aggregation theorem remains possible, even when individuals admit incomplete

preferences over alternatives. Specifically, it says that a social preference satisfies

Pareto preference if and only if it admits a multi-utility representation that is a

set of utilitarian aggregations of individual utility functions. In this paper, we

define the (utilitarian) social welfare function U0 as the sum of each individual’s

multi-utility functions, that is, for any preference profile P ∈ SN and social

alternative X ⊆ K, we write,

U0(P,X) =
{∑
i∈N

ui(Pi, X) : u ∈
∏
i∈N

Ui
}
, (4.12)

with each social welfare function u0 =
∑

i∈N ui(Pi, X) ∈ U0 corresponds to a

profile of parameters (αi,βi)i∈N ∈ H(P ).

While the multi-utility representation allows us to map ordinal information

into a real-valued space and take aggregation in a manner that is consistent with

Pareto principle, it does not provide any further implications on how voting rules

can be evaluated. Virtually any consistent utility profile u ∈
∏

i∈N Ui can be

interpreted as evaluating the different voting-by-committees rules with varying

degrees of justice by the social planner. The problem of the social planner is

similar to that of an agent who has to make decisions under the uncertainty

about the state of the world. Assuming that we have information about H(Pi)

but not the value or probabilistic distribution of (αi,βi), one can define the

optimality the following sense:
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Optimality: For any preference profile P ∈ S endowed with multi-utility repre-

sentations
∏

i∈N Ui and any f ′ ∈ FC ,

V (P, f) ≥ V (P, f ′)

where V : SN×FC → R is the social planner’s valuation of different voting rules.

Before characterizing the set of optimal voting-by-committees for different

valuation functions V , we first define a class of rules in FC that will play an

important role in the analysis below. A voting-by-committees rule f ∈ FC is

weighted majority rule if for any object x ∈ K, there are strictly positive numbers

(wx1 , . . . , w
x
n) such that

Wx = {M ⊆ N :
∑
i∈M

wxi ≥
∑
i 6∈M

wxi }. (4.13)

If wx1 = · · · = xxn then it is a simple majority rule which selects an object if and

only if it is considered desirable for the majority of individuals. Note that the

inequality in (4.13) is lax for the purpose of assigning a tie-breaking rule: from

an ordinal viewpoint, as any non-degenerate voting-by-committees rule is (jus-

tifiable) strategy-proof and efficient, the tie-breaking only concerns the cardinal

optimality and can be determined arbitrarily, depending on the nature of the

objects considered.

4.5.1 Optimism-pessimism

One of the most well-known criterion for decision-making under uncertainty is

the Hurwicz’s criterion, which selects an optimal act using the weighted average

of minimum and maximum payoffs. Specifically, in our context, the valuation

function VH takes the form:

V H(P, f) = λ min∏
i∈N Ui

∑
i∈N

ui(Pi, f(P )) + (1− λ) max∏
i∈N Ui

∑
i∈N

ui(Pi, f(P )), (4.14)

where the coefficient λ ∈ [0, 1] can be interpreted as the degree of caution with

which the voting-by-committees rule f is evaluated. Given the convexity of U0,
for any u0 ∈ U0, there exist a unique λ such that u0(P, f(P )) = V H(P, f). The

most cautious rule corresponds to the case λ = 1 where each voting rule is

evaluated under the maximin principle. On the hand, when λ = 0, each voting
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rule is evaluated based on their maximum social welfare, which corresponds to

the maximax principle.

Theorem 4.2 A voting-by-committees rule fH : SN → 2K is optimal under

Hurwicz criterion if it is weighted majority rule with wxi = λε̄xi + (1−λ)εxi for all

i ∈ N .

Proof. Fix any preference profile P ∈ SN . First, consider any x ∈ fH(P ) and

f ′ ∈ FC such that f ′(P ) = fH(P ) \ {x}. As the voting-by-committees rule fH is

optimal under Hurwicz criterion, we have

V H(P, fH)− V H(P, f) ≥ 0 (4.15)

⇐⇒
[
λmin
H(P )

∑
i 6∈Nx(P )

(−αxi ) + (1− λ) max
H(P )

∑
i 6∈Nx(P )

(−αxi )
]

−
[
λmin
H(P )

∑
i∈Nx(P )

(−βxi ) + (1− λ) max
H(P )

∑
i∈Nx(P )

(−βxi )
]
≥ 0 (4.16)

⇐⇒
∑

i∈Nx(P )

[
λε̄xi + (1− λ)εxi

]
−

∑
i 6∈Nx(P )

[
λε̄xi + (1− λ)εxi

]
≥ 0 (4.17)

Similar arguments can be applied for any x 6∈ fH(P ) by considering f ′ ∈ FC

such that f ′(P ) = fH(P ) ∪ {x}. Thus, a voting-by-committees rule is optimal

under Hurwicz’s λ-criterion if it is a weighted quota rule with wxi = λε̄xi +(1−λ)εxi

for all i ∈ N .

The intuition behind the committees defined in Theorem 4.2 is that under

Hurwicz’s criterion, the social planner will apply the same level of caution when

evaluating the social welfare to each individuals’ preferences. Thus, each individ-

ual preference will be evaluated under the same precautionary principle (same

λ) and the optimal rule is simply a weighted majority rule with caution-adjusted

weight assigned to each individual.

4.5.2 Minimax regret

Consider the following valuation function:

V R(P, f) = max∏
i∈N Ui

[∑
i∈N

ui(Pi, f(P ))−max
X⊆K

∑
i∈N

ui(P,X)
]
. (4.18)
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This valuation function reflects the maximum utility loss experienced by se-

lecting the social alternative f(P ) instead of choosing a welfare-maximizing out-

come X ⊆ K over all possible rationale profile (ui)i∈N ∈
∏

i∈N Ui. It can also be

interpreted as the maximum regret of a social planner by implementing voting-

by-committees rule f ∈ FC . Then the optimal voting-by-committees fR induced

by valuation function V R chooses a feasible outcome that minimize the maxi-

mum regret of the social planner with respect to all possible realizations of utility

profile.

Theorem 4.3 A voting-by-committees rule fR : SN → 2K is optimal under

minimax regret criterion if it is weighted majority rule with

wxi = ε̄xi + εxi for all i ∈ N ;

or wxi =

εxi for i ∈ Nx(P ),

ε̄xi otherwise.

That is, the committees for any object x ∈ K can be defined as follows:

WR
x =

{
M ⊆ N :

∑
i∈M

(εxi + ε̄xi ) ≥
∑
i 6∈M

(εxi + ε̄xi )

}
∪
{
M ⊆ N :

∑
i∈M

εxi ≥
∑
i 6∈M

ε̄xi

}
.

(4.19)

Proof. Fix any preference profile P ∈ SN . It is trivial to check that

x ∈ arg max
X⊆K

∑
i∈N

ui(Pi, X) ⇐⇒
∑

i∈Nx(P )

βxi ≥
∑

i 6∈Nx(P )

αxi . (4.20)

First, consider any x ∈ fR(P ) and f ′ ∈ FC such that f ′(P ) = fR(P ) \ {x}. As

the voting-by-committees rule fR is optimal under minimax regret criterion, we

have: for all f ∈ FC

V R(P, fR)− V R(P, f) ≥ 0. (4.21)

Consider the three following cases:

Case 1.
∑

i∈Nx(P ) ε
x
i >

∑
i 6∈Nx(P ) ε̄

x
i . Then x ∈ arg maxX⊆K

∑
i∈N ui(Pi, X) for

all utility profile (ui)i∈N ∈
∏

i∈N Ui. It is trivially followed that V R(P, fR) −
V R(P, f ′) > 0.

Case 2.
∑

i∈Nx(P ) ε
x
i <

∑
i 6∈Nx(P ) ε

x
i . Then x 6∈ arg maxX⊆K

∑
i∈N ui(Pi, X) for

all utility profile (ui)i∈N ∈
∏

i∈N Ui. It is trivially followed that V R(P, fR) −
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V R(P, f ′) < 0.

Case 3.
∑

i 6∈Nx(P ) ε
x
i ≤

∑
i∈Nx(P ) β

x
i ≤

∑
i 6∈Nx(P ) ε̄

x
i for some (αi,βi)i∈N ∈ H(P ).

Then we can rewrite (4.21) as follows:

V R(P, fR)− V R(P, f ′) ≥ 0

⇐⇒
[ ∑
i∈Nx(P )

εxi −
∑

i 6∈Nx(P )

ε̄xi

]
−
[ ∑
i 6∈Nx(P )

εxi −
∑

i∈Nx(P )

ε̄xi

]
≥ 0

⇐⇒
∑

i∈Nx(P )

[
εxi + ε̄xi

]
−

∑
i 6∈Nx(P )

[
εxi + ε̄xi

]
≥ 0

Similar arguments can be applied for any x 6∈ fR(P ) by considering f ′ ∈ FC

such that f ′(P ) = fR(P )∪ {x}. Thus, x is included in the minimax regret social

outcome fR if and only if,

x ∈ fR(P ) ⇐⇒


∑

i∈Nx(P ) ε
x
i ≥

∑
i 6∈Nx(P ) ε̄

x
i ; or∑

i∈Nx(P )

[
εxi + ε̄xi

]
≥
∑

i 6∈Nx(P )

[
εxi + ε̄xi

]
.

(4.22)

Define a committee profile WR
x for each x ∈ K according to equation (4.22).

Then by construction, fR ∈ arg maxf∈FC V R(P, f) for all P ∈ SN .

The intuition behind the committees defined in Theorem 4.3 is that a regret

averse social planner will take into account the incompleteness in individual’s

preference domain and evaluate the society’s marginal utility at the extreme val-

ues (εxi and ε̄xi ). The first committee structure requires that if the maximum

regret generated by having x included in the social outcome is smaller than the

maximum regret from excluding x, then x should be included. The second com-

mittee structure requires that as maximum regret is greater or equal than 0, if the

maximum regret of including x is less than or equal to 0, then having x excluded

will be weakly worse than including it.

4.5.3 Distortion

Caragiannis and Procaccia (2011) propose the notion of distortion to evaluate

the performance of voting rules in an environment where there is limited commu-

nication between voters and the social planner. The distortion of a voting rule is

the worst-case ratio of the social welfare of the alternative selected by f to that

of the utilitarian optimal alternative. In our context, the notion of distortion
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corresponds to the following valuation function:

V D(P, f) = max∏
i∈N Ui

log
[maxX⊆K

∑
i∈N ui(Pi, X)∑

i∈N ui(Pi, f(P ))

]
(4.23)

The distortion minimizing voting-by-committees fD ∈ FC must choose a

feasible outcome that minimize the distortion of the voting rule with respect to

all possible realizations of utility profile.

Theorem 4.4 A voting-by-committees rule fD : SN → 2K minimize the distor-

tion if it is weighted majority rule with

wxi =

ε̄xi
∑

i∈Nx(P ) ε
x
i for i ∈ Nx(P ),

ε̄xi
∑

i 6∈Nx(P ) ε
x
i otherwise.

;

or wxi =

εxi for i ∈ Nx(P ),

ε̄xi otherwise.

That is, the committees for any object x ∈ K can be defined as follows:

WD
x =

{
M ⊆ N :

∑
i∈M

εxi
∑
i∈M

ε̄xi ≥
∑
i 6∈M

εxi
∑
i 6∈M

ε̄xi

}
∪
{
M ⊆ N :

∑
i∈M

εxi ≥
∑
i 6∈M

ε̄xi

}
.

(4.24)

Proof. Fix any preference profile P ∈ SN . By the independence of voting-

by-committees, we can evaluate the decision to include an object in the social

outcome independently. First, consider any fD(P ) = {x} and f ′ ∈ FC such

that f ′(P ) = ∅. The proof is similar to the case with minimax regret criteria.

The voting-by-committees rule fD minimizes the distortion if and only if for all

f ∈ FC ,

V D(P, fD)− V D(P, f) ≥ 0. (4.25)

Consider the three following cases:

Case 1.
∑

i∈Nx(P ) ε
x
i >

∑
i 6∈Nx(P ) ε̄

x
i . Then x ∈ arg maxX⊆K

∑
i∈N ui(Pi, X) for

all utility profile (ui)i∈N ∈
∏

i∈N Ui. It is trivially followed that V D(P, fD) −
V D(P, f ′) > 0.

Case 2.
∑

i∈Nx(P ) ε
x
i <

∑
i 6∈Nx(P ) ε

x
i . Then x 6∈ arg maxX⊆K

∑
i∈N ui(Pi, X) for

all utility profile (ui)i∈N ∈
∏

i∈N Ui. It is trivially followed that V D(P, fD) −
V D(P, f ′) < 0.
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Case 3.
∑

i 6∈Nx(P ) ε
x
i ≤

∑
i∈Nx(P ) β

x
i ≤

∑
i 6∈Nx(P ) ε̄

x
i for some (αi,βi)i∈N ∈ H(P ).

Then we can rewrite (4.25) as follows:

V D(P, fD)− V D(P, f ′) ≥ 0

⇐⇒
∑

i∈Nx(P ) ε
x
i∑

i 6∈Nx(P ) ε̄
x
i

−
∑

i 6∈Nx(P ) ε
x
i∑

i∈Nx(P ) ε̄
x
i

≥ 0

⇐⇒
∑

i∈Nx(P )

εxi
∑

i∈Nx(P )

ε̄xi −
∑

i 6∈Nx(P )

εxi
∑

i 6∈Nx(P )

ε̄xi ≥ 0

Thus, a voting-by-committees rule fD ∈ FC minimizes the distortion if and

only if for any object x ∈ K, we have

x ∈ fD(P ) ⇐⇒


∑

i∈Nx(P ) ε
x
i ≥

∑
i 6∈Nx(P ) ε

x
i ; or∑

i∈Nx(P ) ε
x
i

∑
i∈Nx(P ) ε̄

x
i ≥

∑
i 6∈Nx(P ) ε

x
i

∑
i 6∈Nx(P ) ε̄

x
i .

(4.26)

Define a committee profile WD
x for each x ∈ K according to equation (4.26).

Then by construction, fD ∈ arg maxf∈FC V D(P, f) for all P ∈ SN .

The committee structure of distortion minimizing voting-by-committees rules

is quite similar to that of minimax regret voting rules: the first term guaran-

tees minimum distortion when there is no “clear” decision and the second term

guarantees the selection of an object if such decision is optimal for all possible

realizations of (αi,βi)i∈N ∈ H(P ). Both criterion is based on the worst-case

analysis: they compare the social welfare of a voting rule to that of the social

optimum and then, minimize the differences with respects to all possible realiza-

tions of utility profile. Note that fD ∈ FC is second best, in the sense that it

is distortion minimizing among the family of voting-by-committees rules but not

among the set of all voting rules. As the valuation function V D is nonlinear, the

distortion of a voting rule is not equal to the sum of distortion caused by decision

on each object. In fact, Caragiannis and Procaccia (2011) shows that there is a

lower bound on the distortion of any deterministic voting rules which increases

exponentially with the number of alternatives.

To conclude this section, we present the following corollaries discussing two

special cases of our analysis. The first case is when the social planner faces the

same amount of parameter uncertainty from each voter, that is (εxi , ε̄
x
i )→ (εx, ε̄x)

for all i ∈ N .

Corollary 4.1 As (εxi , ε̄
x
i )→ (εx, ε̄x) for all i ∈ N , fH , fR and fD converges to
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the simple majority rule, that is weighted majority rule with wxi = 1 for all i ∈ N .

The second special case is when the social planner receive more and more

information, to an extend that he can construct a complete preference relation

for each individual voter, that is εxi , ε̄
x
i → εix.

Corollary 4.2 As εxi , ε̄
x
i → εxi for all i ∈ N , fH , fR and fD converges to the

weighted majority rule with wxi = εxi for all i ∈ N .

4.6 Conclusion

We have extended the characterization result of Barberà et al. (1991) to the

domain of incomplete and separable preferences. However, along the way, to ac-

commodate the indecisiveness of agents, we impose a stronger notion of incentive

compatibility, termed justifiable strategy-proofness. We show that the character-

ization of justifiable strategy-proof voting rules is similar to that of strategy-proof

rules in a complete and separable domain. Furthermore, we also study the car-

dinal consequences of ordinal-based voting rules where social planner has strict

uncertainty of agents’ utility function. The optimal choice of voting rules depends

on (i) the criterion on which the social planner evaluates his lack of information

and, (ii) the information he manages to extract from individual agents.

Although justifiable strategy-proofness provides a nice characterization of in-

centive compatible rule, in many cases that independence is not applicable, the

family of rules that satisfy the standard notion of strategy-proofness is not yet

characterized. Furthermore, in this paper, we consider a simple dichotomous

preference over each individual object. As we enlarge the domain to allow for

multinary level of inputs and output, voting-by-committees might not even be

justifiable strategy-proof as monotonicity is no longer necessary for incentive com-

patibility constraint.
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