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ODD VALUES OF THE RAMANUJAN TAU FUNCTION

MICHAEL A. BENNETT, ADELA GHERGA, VANDITA PATEL, AND SAMIR SIKSEK

ABSTRACT. We prove a number of results regarding odd values of the Ramanujan 7-function.
For example, we prove the existence of an effectively computable positive constant s such that
if 7(n) is odd and n > 25 then either

Pr(n) > x- logloglogn

logloglog log n

or there exists a prime p | n with 7(p) = 0. Here P(m) denotes the largest prime factor of
m. We also solve the equation 7(n) = £315%270311%4 and the equations 7(n) = £¢° where
3 < g < 100 is prime and the exponents are arbitrary nonnegative integers. We make use of
a variety of methods, including the Primitive Divisor Theorem of Bilu, Hanrot and Voutier,
bounds for solutions to Thue-Mahler equations due to Bugeaud and Gydry, and the modular
approach via Galois representations of Frey-Hellegouarch elliptic curves.

1. INTRODUCTION

The Ramanujan T-function 7(n) is defined via the expansion

(1) A(Z) =q H(l — qn)24 = Z T(n)q"’ qg= e27rz'z.
n=1 n=1

It was conjectured by Ramanujan [33] and proved by Mordell [29] that 7(n) is a multiplicative
function, i.e. that

T(ning) = 7(n1)7(ng),

for all coprime pairs of positive integers ny and no. Further, we have

Srm)gt =g [T+ =q [T -1 +¢*)? =3 ¢ " (mod 2),
n=1 n=1 n=1 n=0

via Jacobi’s triple product formula, whence 7(n) is odd precisely when n is an odd square and, in
particular, 7(p) is even for every prime p.

Amongst the many open questions about the possible values of 7(n), the most notorious is a
conjecture of Lehmer [20] to the effect that 7(n) never vanishes. In terms of the size of values of
7, one has the upper bound of Deligne [14] (originally conjectured by Ramanujan) :

(2) Ir(p)| < 2-p*72,
valid for prime p. In the other direction, Atkin and Serre [34] conjectured (as a strengthening of
Lehmer’s conjecture) that, for e > 0,

IT(p)| > P77,
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2 MICHAEL BENNETT, ADELA GHERGA, VANDITA PATEL, AND SAMIR SIKSEK

so that, in particular, given a fixed integer a, there are at most finitely many primes p for which
7(p) = a. While this problem remains open, in the special case where the integer a is odd, Murty,
Murty and Shorey [31] proved that the equation

(3) 7(n) = a,
has at most finitely many solutions in integers n (note that, in this case, n is necessarily an odd

square). More precisely, they demonstrated the existence of an effectively computable positive
constant ¢ such that if 7(n) is odd, then

|7(n)| > (log(n))*.

A number of recent papers have treated the problem of explicitly demonstrating that equation
has, in fact, no solutions, for various odd values of a, including a = +1 (Lygeros and Rozier [27]),
|a| < 100 an odd prime (Balakrishnan, Craig and Ono [I], Balakrishnan, Craig, Ono and Tsai [2],
Dembner and Jain [I5]), and |a| < 100 an odd integer (Hanada and Madhukara [I§]).

In this paper, we derive what might be considered a non-Archimedean analogue of the work
of Murty, Murty and Shorey. Let us define P(m) to be the greatest prime factor of an integer
|m| > 1. We prove the following.

Theorem 1. There exists an effectively computable constant k > 0 such that if T(n) is odd, with
n > 25, then either

(4) P(r(n)) > &

or there exists a prime p | n for which 7(p) = 0.

logloglogn
loglogloglogn’

Recall that a powerful number (also known as squarefull or 2-full) is defined to be an integer n
with the property that if a prime p | n, then necessarily p? | n. Equivalently, we can write such an
integer as n = a?b®, where a and b are integers. Our techniques actually show the following (from
which Theorem [Ifis an immediate consequence).

Theorem 2. We have
lim P(7(n)) = oo,
n—oo

where the limit is taken over powerful numbers n for which 7(p) # 0 for each p | n. More precisely,
there exists an effectively computable constant k > 0 such that if n > 25 is powerful, either

() P(r(n)) > &

or there exists a prime p | n for which 7(p) = 0.

logloglogn
loglogloglogn

The restriction that n has no prime divisors p for which 7(p) = 0 is, in fact, necessary if one
wishes to obtain a lower bound upon P(7(n)) that tends to oo with n. Indeed, one may observe
that, if 7(p) = 0, then (see below)

P(r(p*")) = P ((-1)p"*) =p

is bounded independently of k. While Lehmer’s conjecture remains unproven, we do know that if
there is a prime p for which 7(p) = 0, then

(6) p > 816212624008487344127999,
by work of Derickx, van Hoeij and Zeng [16].

Theorem 3. There is a computable positive constant n such that for any prime p with 7(p) # 0
and any m > 2,

m _ log log(p™)
@ PrGm) > - BB
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We note that Theorem [3]implies Theorem [2] Indeed, let n be a powerful number and p™ be the
largest prime power divisor of n. Then m > 2, and p™ > logn, whence follows immediately
from . Our arguments show the following.

Theorem 4. Let m > 2. There is a computable positive constant 6(m), depending only on m,
such that for any prime p with 7(p) # 0,

(8) P(r(p™)) > d(m) - loglog(p).

We note that our bounds neither imply nor are implied by work of Luca and Shparlinski [25]
who proved that

, log log(p) log log log(p)
P (r)r)r(0") > =0 ogTog ()

To demonstrate that these results and the techniques underlying them are somewhat practical,
we prove the following computational “coda”, solving equation where the prime divisors of a,
rather than a itself, are fixed.

Theorem 5. Ifn is a powerful positive integer, then either n = 8, where we have
7(8)=27-3-5-11,

. P(r(n)) > 13.

Corollary 1.1. Ifn is a positive integer for which T(n) is odd, then

9) P(7(n)) > 13.
In other words, the equation
(10) 7(n) = £3°5°7711°

has no solutions in integers n > 2 and «, 3,7,6 > 0.

Tt is conjectured that |7(n)| takes on infinitely many prime values, the smallest of which corre-
sponds to
7(2512) = —80561663527802406257321747.

Our arguments enable us to eliminate the possibility of powers of small primes arising as values
of 7. By way of example, we have the following.

Theorem 6. The equation
7(n) = £¢"
has no solutions in prime q with 3 < g < 100, and o > 0, n > 2 integers.

It is worth observing that the techniques we employ here are readily extended to treat more
generally coefficients As(n) of cuspidal newforms of (even) weight k > 4 for I'g(N), with trivial
character and Af(p) even for suitably large prime p; our results correspond to the case of A(z)
in , where k = 12 and N = 1. For simplicity, we will restrict our attention to 7(n) and A(z);
readers interested in the more general situation should consult the paper of Murty and Murty [30]
(see also [2]).

We should also comment on the particular choice of the constant “13” on the right hand side
of inequality @D in Corollary (and analogously in Theore. As we shall observe, the
weaker result with 13 replaced by 11 (corresponding to equation (|10) with § = 0) reduces via local
arguments to the resolution of a single Thue equation; this is the content of Proposition 6 of Luca,
Maboso, Stanica [24]. Corollary as stated requires (apparently at least) the full use of our
various techniques, including the Primitive Divisor Theorem, solution of a variety of Thue-Mahler
equations, and resolution of hyperelliptic equations through appeal to the modularity of Galois
representations attached to Frey-Hellegouarch elliptic curves. A stronger version of Corollary
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with 13 replaced by 17 in @ is possibly within range of this approach, though computationally
significantly more involved. An analogous result with 13 replaced by 19 would likely require
fundamentally new ideas.

This paper is organized as follows. In Section [2] we recall some standard congruences for the
Ramanujan-tau function that we use later in the paper. In Section [3] we connect the sequence
m + 7(pm~1), for a fixed prime p, to a Lucas sequence {u,,}, allowing us to appeal to the
Primitive Divisor Theorem of Bilu, Hanrot and Voutier. In Section [ we introduce a sequence
of homogenous polynomials ¥,,,(X,Y) € Z[X,Y] that are intimately connected to the {u,,}. We
will use these polynomials in Section |5 together with a theorem of Bugeaud on prime divisors of
ax®™ + by”, to prove Theorem In Section @, we relate the equation 7(p™) = £p{* -+ p2* to a
Thue-Mahler equation, whence a theorem of Bugeaud and Gyéry enables us to deduce Theorem [3]
In Sections and El, we solve the equations 7(p*) = +¢® where k € {2,4}, p and ¢ are prime,
and 3 < b < 100, and also the equations 7(p*) = £3%15%27% 1154 where 2 < k < 4 and p is prime.
Our method in Section [7] [§] and [J] is to associate to a hypothetical solution a Frey-Hellegouarch
curve and relate this to a weight 2 modular form of small level, using recipes of the first author
and Skinner which in turn builds on the modularity of elliptic curves due to Wiles, Breuil, Conrad
Diamond and Taylor, and on Ribet’s Level-Lowering Theorem. In Section[I0} we prove Theorem 5]
by combining the results of Sections[7] [§|and [0} and using the Primitive Divisor Theorem. Finally,
in Section[II] we prove Theorem [6} the results of previous sections allow us to reduce the equation
T(n) = +¢* with 3 < ¢ < 100 prime to Thue-Mahler equations of high degree, which are then
solved using an algorithm of the second and fourth author, von Kénel and Matschke.

2. CONGRUENCES FOR THE T FUNCTION

For future use, it will be of value for us to record some basic arithmetic facts about 7(n); these
are taken from Swinnerton-Dyer’s article [38]. Here o,(n) denotes the sum of the v-th powers of
the divisors of n.

7(n) = o11(n) (mod 21) if n =1 (mod 8)
(1) 7(n) = 1217 - 011(n) (mod 213) if n =3 (mod 8)
7(n) = 1537 - 511(n) (mod 2'2) if n =5 (mod 8)
7(n) =705 - 011(n) (mod 2'4)  if n =7 (mod 8)

(mod 35) if n =1 (mod 3)

(12) m(n) =00 o1 (n) { (mod 37) if n =2 (mod 3)

(13) 7(n) = n 071 (n) (mod 5%) if5¢n
d ifn=0,1,2 4 d
(14) (1) = n- 0o(n) (mo 72 1 n=0,1,2or4 (mod 7)
(mod 7%) ifn=3,50r 6 (mod 7)
7(p) =0 (mod 23) if p is a quadratic non-residue mod 23
(15) 7(p) = 2 (mod 23) if p=u?+230% with u #0
7(p) = —1 (mod 23) for other p # 23
(16) 7(n) = o11(n) (mod 691).

Lemma 2.1. Let p # 7 be a prime. Then 74 7(p?).
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Proof. Suppose 7 | 7(p?). Then by

p® +p” +1=0 (mod 7).
But p'8 = (p%)3 = 1 and p° = p® = +1 (mod 7) giving a contradiction. O
Lemma 2.2. Let p # 5 be a prime. Then 51 7(p?).

Proof. Suppose 5 | 7(p?). Then by
(P +p™ +1=0 (mod 5).
However, this contradicts the fact that the congruence 22 +x+1 = 0 (mod 5) has no solutions. [J

Lemma 2.3. Let p # 3 be a prime. Then 91 7(p?).

Proof. Suppose 9 | 7(p?). Then by
(p'231)2 4 p!231 4+ 1 =0 (mod 9).

Since the congruence 22 +z+1 = 0 (mod 9) has no solutions, we obtain the desired contradiction.
O

3. LucAs SEQUENCES

In this section, for a fixed prime p with 7(p) # 0, we show that the sequence m + 7(p™~!) can

be appropriately scaled to yield a Lucas sequence. We begin by introducing Lucas sequences and
recalling some of their properties, mostly following the article of Bilu, Hanrot and Voutier [7].

A Lucas pair is a pair («, ) of algebraic numbers such that a«+ 8 and a8 are non-zero coprime
rational integers, and «/f is not a root of unity. In particular, associated to the Lucas pair («a, 3)
is a characteristic polynomial

X2~ (a+pB)X +aB € Z[X].
This polynomial has discriminant D = (o — 8)? € Z \ {0}. Given a Lucas pair (a, ), the
corresponding Lucas sequence is given by
a” — ﬂn
e
Let (a, 8) be a Lucas pair. A prime £ is a primitive divisor of the n-th term of the corresponding

Lucas sequence if £ divides u,, but ¢ fails to divide (o — 3)?-ujus ... u,_1. We shall make essential
use of the celebrated Primitive Divisor Theorem of Bilu, Hanrot and Voutier [7].

n=0,1,2,....

Theorem 7 (Bilu, Hanrot and Voutier). Let (o, 8) be a Lucas pair. If n > 5 and n # 6 then uy,
has a primitive divisor.

Let ¢ be a prime. The smallest positive integer m such that ¢ | w,, is called the rank of
apparition of /; we denote this by m,. We shall also have need of the following classical theorem
of Carmichael [12].

Theorem 8 (Carmichael). Let («, 8) be a Lucas pair and £ be a prime.
(i) If | aB then £ { u,, for all positive integers m.
(i) Suppose Lt af. Write D = (a — B)? € Z.
(a) If £ £ 2 and £ | D, then my = £.
(b) If#2 and (£) =1, then m, | (£ —1).
(c) If £ #2 and (£) = =1, then my | (€ +1).
(d) If £ =2, then my =2 or 3.
(iii) If L4 af then
U Uy <= my | m.



6 MICHAEL BENNETT, ADELA GHERGA, VANDITA PATEL, AND SAMIR SIKSEK

Proof. Note that the sequence {u,} satisfies the recurrence
Unt2 — (a0 + Bunt1 + aBu, =0, u =0, w =1
If £ | af then u, = (a+B)"~! (mod ¢) for all n > 1. Since o+ 3 and af3 are coprime, £ { (a + 3)
and so £ 1 u, for all n > 1.
Suppose now that £t af. Let K = Q(a) = Q(8) = Q(v/D) and \ be a prime of O above £.
We first consider (a). Here « = 8 + v where A | v. Thus

T — (B)" =6 =nB""t (mod \).
a—p gl
Thus £ | uy, if and only if £ | n.
Next we consider cases (b) and (c) together. Note that

L u, <= (a/8)"=1 (mod \).

Thus my is equal to the multiplicative order of the image of «/f in (Ox /A)*. If D is a quadratic
residue modulo ¢, then ¢ splits as a product of two degree 1 primes A, X of Og. Thus (Ox /\)* = F}
and so my | (¢ — 1). Finally we suppose D is a quadratic non-residue modulo ¢. Then A = (O,
and so the natural map Gal(K/Q) — Gal(F,/F,) is an isomorphism. Note that o and § are
conjugates, and so (a/B)" = B/a (mod A). Thus (a/B)*T' = 1 (mod \), whence m, | (£ + 1).
The final part of the theorem is now also clear. O

Let us fix a prime p and consider the sequence

(17) {1.7(), 7>, 7(®*),...}.

We will associate to this a Lucas pair and a corresponding Lucas sequence. Our starting point is
the identity

(18) T(p™) = T(p)T (™) (™),
valid for all integer m > 2. Once again, this was conjectured by Ramanujan [33] and proved by
Mordell [29].
Let « and ¢ be the roots of the quadratic equation
X —r(p)X +p" =0,

so that

v+ 6 =r7(p) and Y0 =p
Then

(v=0)% = (v +0)* =490 = 7%(p) — 4p"".

It follows from Deligne’s bounds that v and § are non-real Galois conjugates. From , we
have

m—41 m+1
m Y d
1
(19) (p™) S

Lemma 3.1. Suppose 7(p) # 0. Then ord,(r(p)) < 5.
Proof. From , if p% | 7(p) and 7(p) # 0, then necessarily p < 3. However,
7(2) = -2 x3 and 7(3)=2%x3%x7,
providing a contradiction and completing the proof. O

Lemma 3.2. Suppose 7(p) # 0. Then /0 is not a root of unity.
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Proof. Observe that

v, 9 7(p)?
—+—42 =
o v p'!
By the previous lemma, the rational number 7(p)?/p'! is not an integer and therefore not an

algebraic integer. It follows that «/J is not a root of unity. O
The following is an immediate consequence of and Lemma
Lemma 3.3. If 7(p) = 0 then
m 0 if m is odd,
") = {(—pll)m/2 if m is even.
If 7(p) # 0 then T7(p™) # 0 for allm > 1.

Note that ged(y + 6,v8) = ged(7(p),p*!) = 1 if and only if p { 7(p). Thus the sequence
m + 7(p™~1) is a Lucas sequence precisely when p{ 7(p). We note that p | 7(p) for

p=2,3,5,7,2411, 7758337633, ...

We expect that p | 7(p) for infinitely many primes p; see Lygeros and Rozier [20] for a discussion
of this problem and related computations. We will scale the pair (7,d) to obtain a Lucas pair,
provided 7(p) # 0.

Lemma 3.4. Suppose 7(p) # 0. Write r = ord,(7(p)) and let

5 1)
p p
Then (a, B) is a Lucas pair. Denoting the corresponding Lucas sequence by u,, we have
_ T
(20) Up = prICE n>1.

Moreover, p{uy, for alln > 1.

Proof. Note that a + 8 = 7(p)/p” and o = p''~2" are coprime rational integers thanks to
Lemma The identity follows immediately from . The last part is a consequence of
part (i) of Theorem |8 since p | af3.

For future reference, we note that, for {u,}, we have

(21) D=(a-B)?=p 2 (r*(p) - 4p").

4. ON THREE SEQUENCES OF POLYNOMIALS
We begin by defining, for m > 0, a sequence of polynomials H,,(Z, W) € Z[Z, W]
Zm—-WmN(Z-W if m is odd
(22) Hm(Zv W) = ( >/( 9 >2 ' i'nls.o
(Zzm —wm)/(Z? - W?#) if m is even.

Let G be the group generated the involutions x1 and k2 on Z[Z, W] given by

Z v —7, Z— W,
K1 Ko
Wi— —W, W — Z.

We compute the subring of invariants Z[Z, W]©.
Lemma 4.1. Z[Z,W|¢ = Z[ZW,(Z + W)?].
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Proof. Tt is clear that Z[ZW, (Z +W)?] belongs to the ring of invariants. Let F' € Z[Z, W] belong
to the ring of invariants. We would like to show that F' € Z[ZW, (Z + W)?]. Observe that x; and
ko send monomials to monomials and preserve the degree. Thus every homogenous component of
F belongs to the ring of invariants, and we may suppose that F is homogeneous. As F' is invariant
under k1 it has even degree, 2n say, and we may write

2n
F = § ak22nw2n7k
k=0
As F is invariant under ko we have ap = ag,_ for k =0,...,n. Thus

F =ag(Z%" + W)+ a (ZW)Z?" 2+ W) 4 ag(ZW)2(ZP 4+ W) oo a, (ZW)™.

To complete the proof all we need to show is that Z?" + W?2" € Z[ZW,(Z + W)?] for all n. This
follows from an easy induction using the identity

Z2n 4 WQn — ((Z + W)2 _ 2ZW) A (Z2n—2 4 W2n—2) _ (ZW)2 . (Z2n—4 + W2n—4)'
O

Note that the H,,(Z,W) are invariant under k1, k2 and so belongs to the invariant ring
Z[ZW,(Z + W)?]. Tt follows that there is a sequence of polynomials F,,,(X,Y) € Z[X,Y] such
that

(23) Fn(ZW,(Z +W)?) = Hp (Z,W).
The following lemma aids in the computation of the F,,.
Lemma 4.2. The sequence F,,,(X,Y) € Z[X,Y] satisfies
Fob=0, Fi=Fk=1 F3=-X+Y,
and the recurrence
(24) Fro(X,Y) = (=2X +Y) - F,(X,Y) - X?- F,_»(X,Y), form > 2.

Proof. Since Hy = 0 and H; = Hy = 1 we have Fy = 0 and F} = F, = 1. Moreover, Hy =
Z2 4+ ZW +W? = —ZW +(Z+W)? so F3 = —X +Y. The map

ZIX,Y] = ZZW,(Z+W)?], X=2ZW, Y (Z4+W)?
is an isomorphism of rings that sends F,,,(X,Y) to H,,(Z, W). Applying this isomorphism to

gives
Hpio(Z,W) = (Z2 + WHH,(Z,W) — (ZW)? H,_o(Z, W)
and so it is enough to prove this identity. However this identity easily follows from the definition
of H,, in . O
Lemma 4.3. If m and n are positive integers, then
(i) Fy, is homogeneous of degree |(m —1)/2].
(i) F, | F,, whenever n | m.

Proof. These follow immediately from the corresponding properties for the H,,. O

Lemma 4.4. Let m > 3. Then

Lim=1)/2]
(25) Fu(X,V)= ][] (¥ -4cos’(rj/m)X)

Jj=1
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Proof. Fix m > 3 and write ¢ = exp(2mi/m). Note that

L(m—1)/2]
Ho(zW)= 1] (Z-¢wW)(Zz-¢'w)
j=1
L(m—1)/2] ‘ }
= ] @+w>—(J+¢h)zw)
j=1
L(m=1)/2] 4 .
= (Z+W) = (I + (7 +2)ZW)
j=1
L(m=1)/2]
= (Z +W)? — (24 2cos2mj/m)ZW)
j=1
L(m—1)/2]
= (Z +W)? — 4dcos®(mj/m)ZW).
j=1
The lemma follows. O
Next we define
L(m=1)/2]
(26) U (X, V)= [] (V—4cos®(mj/m)X).
Gim)=1
Note that ¥,,(X,Y) € Z[X,Y]. Indeed,
Fn(X,Y)

U, (X,Y) = .
( ) LCM{F,(X,Y) : n|m, n<m}

Tt follows that ¥,,,(X,Y) | ¥,,(X,Y) (with the divisibility being valid in Z[X,Y]) whenever m | n.
From and (26]), we see that

Fr(X,Y) =[] wa(x,Y).
d

We deduce that

(27) Wi (X,Y) = [] Fa(X,y)rem/®
dlm

where ;1 denotes the Mobius function.

Lemma 4.5. Let m > 3 and write (,, = exp(2wi/m). The polynomial V,,,(1,Y) is monic and
irreducible of degree ¢p(m)/2. It is a defining polynomial for the abelian extension Q((n)T/Q.

Proof. Recall that Q(¢n)t = Q(Cm + ¢,1). The elements of the Galois group for Q(¢,,)/Q are
the automorphisms o : ¢, — ¢J, with ged(j, m) = 1. Therefore Galois conjugates of ¢, + (' +2
are precisely (7, + (.9 + 2 with ged(j,m) = 1, and these are the roots of ¥,,(1,Y). The lemma

follows. O

We shall need the following weak bound for the coefficients of ¥,,,.

Lemma 4.6. The coefficients of ¥, are bounded in absolute value by 5¢(")/2,
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Proof. The roots of the monic polynomial ¥,,(1,Y") are bounded in absolute value by 4. Writing
U, (1L,Y) =Y a;Y" and (4 + Y)?(™/2 = 3" b,V we have |a;| < b;. Thus

Z|ai| < Zbi — 5o(m)/2

O

Lemma 4.7. Let m > 3 and write ¢, = exp(2wi/m). Write hy, and R, for the class number
and regulator of K., = Q((). Then as m — oo,

log(hm,) = O(mlogm), log(hum Ry) = O(mlogm)
where the implicit constants are absolute and effective.

Proof. Write d = ¢(m)/2 for the degree of K,,. By [39, Propostion 2.7] and [39, Lemma 4.19],

tog([Disc(K,n)]) < 3 log(Disc(Q(Gn)) < 5o(m) log(m).

A theorem of Lenstra [2I], Theorem 6.5] asserts that for a number field K of degree d > 2, signature
(r, s), absolute discriminant D, class number h and regulator R,

1
< A (d—1+logA)* A= (2/m)* - DY2.
b A L oed)” (2/r)
and )
< ——— A (d—1+1logA)* - (log A)* 1%
hR < @—1 (d—1+1ogA)° - (logA)
We take K = K,,,, s0 d = $(m)/2, s = 0, and A = |Disc(K,,)|'/2. The lemma follows. O

We can also deduce the bound log(h,,Ry) = O(mlogm) from the Brauer—Siegel theorem, at
the cost of introducing ineffectivity.

Lemma 4.8. Let p be a prime. Then, for m > 1,
0 ifm is odd

") = T Fn 7)), ez{l -
if m is even.

In particular, V,,(p*t, 7(p)?) | 7(p™~1).
Proof. From

(1) A — ™ H,.(v,9) if m is odd

T = - =

P y—9 (v +0)Hpm(y,0) if m is even,

where v + 0 = 7(p) and v0 = p''. The lemma follows from (23). O

Lemma 4.9. Let m =5 or m > 7. Then precisely the same primes ramify in L., = Q((,,) as in

Proof. Note that for m € {2,3,4,6}, we have K,,, = Q so the conclusion of the lemma is false in
those cases.

By the proof of Proposition 2.15 of [39], we know that L,,/K,, is unramified if m is divisible by
at least two distinct odd primes, or divisible by 4 and an odd prime. We may therefore suppose
that m € {2%,p®, 2p®} where p is an odd prime and a is a positive integer. If m = 2% with a > 3,
then K,, has degree 2=2 > 1, and the set of ramified primes for both L,, and K,, is {2}. Let p
be an odd prime and a > 1. Then Lope = Ly and Kype = Ko, Now the set of ramified primes
for Lye and Kpe is just {p} as long as the degree ¢(p®)/2 of Kp is > 1. The lemma follows. O
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Lemma 4.10. Let m =5 orm > 7. Let x and y be coprime integers, and q be a prime. Suppose
q || U (z,y) with a > 1 an integer. Then either ¢ = £1 (mod m) or ¢* | m.

Proof. Write L,,, = Q((,,). Recall the isomorphism

(Z/mZ)" = Gal(Ln/Q),  j = (05 Gn = ().

The subfield K,,, = Q((, +¢;,;0) is the fixed field for (0_1) = {o1,0_1}. Let ¢ be a rational prime
that does not ramify in K,, (and hence in L,, by Lemma . The Frobenius automorphism for
q is simply o,. The prime ¢ splits completely in K, if and only if the restriction of o4 to K, is
trivial. This is equivalent to o, € {o1,0_1} and therefore equivalent to ¢ = +1 (mod m).

Let A = (o + ¢t +2. This is a root for ¥,,(1,Y) and also a generator for K,,. Note [39]
Proposition 2.16] that Ok, = Z[A\]. We are given that ¢ | U, (z,y). Since ¥,,(1,Y) is monic,
if ¢ | = then ¢ | y giving a contradiction. Hence ¢ 1 x and so ¥,,(1,y/z) = 0 (mod ¢q). By the
Dedekind-Kummer Theorem, there is a degree 1 prime ideal q above ¢q. As K,,,/Q is Galois, all
primes above ¢ must therefore have degree 1. Thus ¢ is either totally split or ramified in K,,. If
q is totally split, then ¢ = +1 (mod m) and we are finished.

We shall therefore suppose that ¢ is ramified in K,,. Let q1,...,q, be the prime ideals of O,
above g. Write G for the Galois group of Gal(K,,/Q), and let I be the inertia subgroup for q;. As
G is abelian, I is also the inertia subgroup for all q;. Thus qf =¢q; forallo € I andfori=1,...,r.
Since ¢ is ramified, I # 1. Fix 0; € Gal(L,,/Q) whose restriction to K,, is a non-trivial element
of I. Thus ged(j,m) =1 and j # £1 (mod m). Write \; = ¢, + (.7 + 2 = 0;()\).

We factor the ideal (y — A\z)Ok,, as

(28) (y — Ax)Ok,, = ab

where a, b are ideals with a supported on qq,...,q,, and b not divisible by q1, ..., q,. By assump-
tion ¢ || W, (z,y). However ¥, (x,y) = Normg,  ,o(y — Az) and thus Normg, /g(a) = ¢*. Note
that any ideal dividing both x and a must also divide y by . As z, y are coprime, we deduce
that « and a are coprime.

Since q% = q for all q | a, we have a°s = a. Hence a divides

(y = A7) — (y — Az) = (A — A7)z
Thus a divides
A= AT = (Gn F Ga) = (G + Gl = GG = DG - 1)
and it follows that ¢** = Normg, /x(a)? divides
(Normy,, jo(A — A%7))* = Normp, jq(A — A7)
= Normy,, /o (¢ = 1) - Normy,, jq(¢o7 ™ = 1).

This divides H:i_ll(g“}n —1)2 = m?2. Hence ¢* | m as required. O

Lemma 4.11. Let p be a prime and suppose 7(p) = 0. Let r = ord,(7(p)) and write

2
r=p"? and y= T(];) .
p T
Let {up,} be the Lucas sequence defined in Lemma|3.4} Then, for m > 3,
m/d
(29) U, (z,y) = Hug( /4,
d|

Moreover, if m =5 orm > 7, then V,,(x,y) is divisible by some prime £t m.



12 MICHAEL BENNETT, ADELA GHERGA, VANDITA PATEL, AND SAMIR STKSEK
Proof. Note that x and y are in fact integers by Lemma and are coprime by the definition of
r. Let {u,,} be the Lucas sequence defined in Lemma Thus

7_<pm—1) B a™ — ﬁm
pr(mfl) - 0176 ’

0 if mis odd
g(m) = ] ]
1 if m is even.

af=p"7*, a+p=1(p)/p"

Um =

Write

Then

1
Fo(z,y) = 2 dea(Fr) - Fo(p',7(p)%)

(™)
p2r deg(Fn) . T(p)s(m)
U

(by Lemma

pr(mfl) m

p2r deg(Fn,) . T(p)s(m) :

However, since deg(Fy,) = |(m — 1)/2], it follows that

Fro(e.y) = (zf)y(“”

(p
By [7),
r Zdlm E(d)l‘(m/d)
_ (P (m/d)
\I]m(‘rvy) - ( ) ! ul .
7(p) i
It is easy to see that
0 ifm#2
d_eduim/d)=q
i if m=2.

This completes the proof of (29).

Now let m = 5 or m > 7. By Theorem [7] the term u,, has a prime divisor ¢ that does not
divide (& — 8)? nor wyus - - - Uy, 1. By Theorem [8] we know that ¢ # p, that m = my, and that
m | (€ —1) or m| (¢ +1). In particular, £{ m. From (29)), we have ¢ | ¥,,(z,y) as required. ~ O

5. PROOF OF THEOREM []

We shall need the following theorem [9, Theorem 1].

Theorem 9 (Bugeaud). Let K be a number field. Let u > 2 and v > 3 be integers, and let a,
b e Ok \ {0}. There exist effectively computable positive constants €1, €2 depending only on a, b,
u, v and K such that every pair of coprime z, y € Ok with

max{|Normg q(z)|, [Normg,q(y)|} > &1

satisfy
P(az" +by") > e2-loglog max{|Normg q(z)|, |[Normg q(y)|}-

In the above theorem, P(J) for § € Ok denotes the largest rational prime that is below a prime
ideal dividing 9.

We now prove Theorem 4l Let p be a prime and suppose 7(p) # 0. Let m > 3. We want to
show that
P(r(p™")) >m loglogp.
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Let r = ord,(7(p)) and recall that ord,(r(p™1)) = r(m — 1) by Lemma If » > 1 then

P(r(p™™h)) = p,
whereby we may suppose that r = 0. Recall that W¥,,(p't,7(p)?) | 7(p™ 1) by Lemma Let
K =K, = Q((n)" and let A = ¢, + ¢, + 2 which is a root of the monic polynomial ¥,,(1,Y).
Then
U (p", 7(p)*) = Normpeg(r(p)® = A-p')
and therefore
P(r(p™ 1)) = P(Tn(p',7(p)*) = P(r(p)* = A-p').
We now apply Bugeaud’s theorem with u =2, v =11, a =1, b= =\, © = 7(p), y = p to deduce
that P(7(p)? — X - p'') >, loglogp. This completes the proof.

6. PROOF OF THEOREM [

In this section, we prove Theorem [3| For this we appeal to a result of Bugeaud and Gyéry [10]
which provides bounds for solutions to Thue-Mahler equations. Let F'(X,Y) € Z[X,Y] be an
irreducible binary form of degree n > 3, and let b a non-zero rational integer with absolute value
at most B > e. Let H > 3 be an upper bound for the absolute values of the coefficients of F'.

Let a1, as and a3 be three distinct roots of F'(1,Y). Define

M= Q(a1), Mz = Q(a1,az,a3) and N = [Mya3: Q).

Write hy for the class number of M and Ry for its regulator. Let p1,pa,...,ps (s > 0) be distinct
primes not exceeding P. Consider the Thue—Mahler equation

(3()) F(Iay) =0 pilpgz o 'p:zsv T, Y, z; S Zv ng(z7y7p1p2 o ps‘) =1

For a positive real number a, we write log” a = max{1,loga}.

Theorem 10 (Bugeaud and Gy6ry). All solutions to satisfy

logmax{|z|, |y|, pi*--pif} <
c(n,s) - PN - (log P)"*2 . Rythyt - (log™ (Ruthan))? - (R + shar + log(H B)),

where

— 371(25—&-1)-&-27 o 2n(7s+13)+13 | (5 + 1)5n(s+1)+15.

c(n, s) n

The theorem as stated is the first part of Theorem 4 in [10], with only one minor difference. In
[10] the authors take N = n(n —1)(n — 2). However, in their proof N is simply taken as an upper
bound for the degree [Mja3 : Q], and so we can take N = [Mja3 : Q).

We now embark on the proof of Theorem In what follows 79,73, ... will denote absolute
effectively computable positive constants. Let us fix a prime p and suppose 7(p) # 0. We will in
fact show that

_ log log(p™)
31 P(r(p™™h) > np- — L
(31) (T(@™ 7)) = m2 og log log (™)
for m > 3 which implies @ In view of Theorem [4| (which was proved in Section , we shall
suppose that m =7, 9, 11 or m > 13. In particular, ¥,,(X,Y) is irreducible of degree ¢(m)/2 >
3. Write r = ord,y(7(p)). By Lemma we have ord,(r(p™~!)) = r(m — 1). Recall that
r = ord,(7(p)) < 5 by Lemma Let

z=p7Y, y=10)?/p",

and observe that ged(z,y) = 1. By Lemma we know that W,,(z,y) is a divisor of 7(p™~1)
and therefore

P(r(p™ 1) = P(Un(z,y)).
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To prove , we shall show that

log log(p™)

(32) PO @) > 15 100 og log ()

By Lemma [£.10] we can write
(33) U (z,y) = b-pi'py® - p3°,
where the p; are primes, and
blm, pi=+1 (modm) and p; <py<--- < ps.

From Lemma |4.11] we have s > 1. It is clear that

Ps

s < My- E

In what follows we make use of the following inequalities
n <m and ns < ms < 14 Ps.

Moreover, since ps = 1 (mod m), we have

ps = m—1.
We will apply Theorem 10| to . We take

F=V,, B=m, P=p,, n=N=¢(m)/2 and H =52
where the choice of H is justified by Lemma By Lemma [£.7] we have
log(hp) < 15 -mlogm and log(hyRy) < ng - mlogm.

Since x = p''=2" with r < 5, we have loglog p < loglog x. Taking logarithms in Theorem and

making repeated use of the above inequalities and bounds, yields
loglogp < 77 - ps - logps.
But
loglog(p™) = loglogp+logm < 17 -ps-logps +log(ps +1) < ns - ps-logps.
The desired inequality follows, completing the proof of Theorem
7. THE EQUATION 7(p?) = £ - ¢°
In this section we establish the following two propositions.
Proposition 7.1. Let 3 < g < 100 be a prime. The equation
(34) (p*) = +¢°, p prime, b>0
has no solutions.
Proposition 7.2. The equation
(35) 7(p?) = £3527% 115 p prime, by, bo, b3, by >0
has no solutions.
We consider first the following general equation.
(36) (p*) = k-, p 1 2kq prime, b>0.

Here & is an odd integer, ¢ is an odd prime, and we assume for convenience that ¢ { k. Recall that
7(p?) = 7(p)? — p''. Equation can be written as

P+ (k") 1 = 7(p)?
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and so is an equation of signature (11,11,2). Following the first author and Skinner [4], we
associate to a solution of the Frey-Hellegouarch curve

E, : Y?=X(X?>+27(p)X +7(p)> —p') ifp=1 (mod 4),
E, : Y?=X(X?+27(p)X +p') if p=3 (mod 4).
Let

(37) N:{

25 -Rad(k)-q-p ifb>0 , J2°-Rad(k)-q if 1140
2° . Rad(k) -p  ifb=0, ~|2°-Rad(k)  if 11]b.

Here Rad(x) denotes the product of the prime divisors of k. The Frey-Hellegouarch curve E, has
conductor N. Moreover, it follows from the recipes of the first author and Skinner [4] (based on
the modularity theorem and Ribet’s level lowering theorem) that there is a normalized newform

(38) f=a+) cad"
n=1

of weight 2 and level N’ and a prime w | 11 in the integers of K = Q(cy, ¢a,...) so that

(39) PE,11 ™ Pf o

The restrictions on s and ¢ being coprime odd integers merely reduce the number of possibilities
for N, N', yet cover all the cases we are interested in solving. The restriction p { 2rq is needed so
that the minimal discriminant A of the Frey-Hellegouarch curve E,, satisfies ord,(A) =0 (mod 11)
which is necessary for application of Ribet’s level lowering theorem in order to obtain a weight 2
newform f of level N’ not divisible by p.

Throughout what follows, ¢ will be a prime satisfying

(40) 01211 Kkgp.
Then, taking traces of the images of the Frobenius element at ¢ in we obtain a¢(E,) =
¢¢ (mod w) and so
(41) Normp q(ae(Ep) — c¢) =0 (mod 11).
We shall use both the congruences for the 7-function f and also to derive congru-

ences for b.

Lemma 7.3. Let (p,b) be a solution to and suppose p # 3, 23. Let { be a prime satisfying

. Let
Ar={(s,t) : s, teFy, s#0 (mod¥), t*—s"#0 (mod¥)},

and
A 0#3, 5,7, 23;
{(s,t) € A3 : t=s+1 (mod 3)} {=3;

(42) Bi=q{(s,t) € A5 : t=35%*(s>+1) (mod 5)} {=25;
{(s,t) € A7 : t=15(s+1) (mod 7)} (=T

{(s,0) = s €F33\ (F35)*}U{(s,1) : s € (F33)°% t=2, —1} (=23
For (s,t) € By let
Eoi1/Fp 0 Y2 = X(X? 420X + 1% — s'), Eo13/Fp @ Y2 = X(X? 4+ 2tX +s').

Let f be a newform of weight 2 and level N’ so that is satisfied, and cy be its £-th coefficient.
For j =1, 3, let

(43) Cei(f) ={(s,t) € By : Norm(a¢(Es;,;) —ce) =0 (mod 11)},
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and
Dej(f) = {t* ="+ (s,t) € Ce;(f)} CFe.
Ifp=1 (mod 4) then (k-q° (mod ¢)) € Dy1(f). If p=3 (mod 4) then (k-¢° (mod ¥)) € Dy 3(f).

Proof. Since ¢ { 2kgp, and 7(p)? — p'! = 7(p?) = K - ¢® we see that there is some (s,t) € Ay so
that (p,7(p)) = (s,t) (mod ¢). Moreover, from the congruences for 7 in (I2)—(1E) there is some
(s,t) € By so that (p,7(p)) = (s,t) (mod ¥); it is here that we make use of the assumption p # 3,
23. For such a pair (s,t), the reduction modulo ¢ of the Frey-Hellegouarch curve E), is Es; ;/Fe,
where j = 1 or 3 according to whether p = 1 or 3 (mod 4). Thus a;(Es; ;) = ae(E,). Hence,
Norm(a¢(Es,,;) — ¢¢) = 0 (mod 11) by (A1), and so (s,t) € Cr;(f). Since t? — st = 7(p)? —p*' =
k- ¢” (mod ¢) we see that (k- ¢® mod £) € Dy ;(f). O

For any prime ¢ satisfying , the lemma gives congruences for ¢® modulo ¢, and hence leads
to congruences for b modulo Og(q), where Oy(q) will be our notation for the multiplicative order
of ¢ modulo ¢. This idea is formalized in the following lemma.

Lemma 7.4. Let (p,b) be a solution to with p # 3, 23, and let M be a positive integer
satisfying 22 | M. Define & and &3 via

E={0<B<M-1:k-¢"=3mod4)} and E={0<B<M—-1: r-¢°=1 (mod 4)}.
Let f be a newform of weight 2 and level N' so that is satisfied. For j =1, 3, define

{Beé& 1148} if N'=25-Rad(k)-q

}—j(f):{{ﬁegj 11| 8} if N’ = 2° - Rad(k).

Suppose now that L is a set of primes satisfying
(44) 01211 kgp, O(q) | M.
Forte Landj=1, 3, let
Gej(f) = {BEFi(f) : (k-¢" mod £) € Dy(f)}-
Let
Hi(f) = () Ges(h)-
lel

If p=1 (mod 4) then there is some 5 € H1(f) such that b= 5 (mod M). If p =3 (mod 4) then
there is some 5 € Hs(f) such that b= (mod M).

Proof. Let 0 < 8 < M —1 be the unique integer such that 8 = b (mod M). Let j = 1, 3 according
to whether p = 1 or 3 (mod 4) respectively. As 2 | M and ¢ is odd we have k- ¢” = k- ¢* (mod 4).
Note from that

3 (mod 4) if p=1 (mod 4)

5_ b o 2 11 _ 2 _
kq"=k-q¢ =7(p°)=7()" —p prp {1 (mod 4) if p=3 (mod 4).

Thus 3 € &;.

Also 11 | M. Hence 11 | b if and only if 11 | 8. From the definition of N’ in we see that
peFif)

Now let ¢ € £. By Lemma we know that (k- ¢” mod ¢) € Dy ;(f). However Oy(q) | M
and M | (B —1b). Thus k- ¢° = k- ¢® (mod ¢), and so (k- ¢° mod ¢) € Dy ;(f). We deduce that
B € Gp;(f) for all £ € L. Therefore 5 € H;(f) completing the proof. O
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Proof of Proposition[7.1. We checked that has no solutions with p < 200 for primes 3 < g <
100. We shall henceforth suppose that p > 200. In particular, p # ¢q. Moreover, any solution to
is a solution to with k =1 or —1. For a given 3 < ¢ < 100 we shall let

M =396=2%.32.11, L£={3</<200prime, £ #11,q : O(q) | M}.

Observe that since p > 200 that every ¢ € L satisfies (44).

Suppose first that 11 | b and write b = 1le. Then (z,y,2) = (p,£¢% 7(p)) is a solution to
the equation x'! + y'! = 22 satisfying ged(z,y,2) = 1. Darmon and Merel [13] showed that
the equation 2" + y™ = 22 has no solutions (x,y,2) € Z3 with n > 4, ged(z,y,2) = 1. This
contradiction completes the proof for g # 3.

Thus 11 1 b, and so in the level is N’ = 2%¢. We will consider the case ¢ = 3 a little later.
Suppose 5 < g < 100. We wrote a Magma script which for each prime 5 < ¢ < 100, computes the
weight 2 newforms f of level N’ = 2°¢, and the sets H1(f) and H3(f) both for k = 1, Kk = —1.
We found all of these to be empty. By Lemma we conclude that has no solutions with
5 < ¢ < 100.

It remains to consider the case ¢ = 3. By Lemma we see that b = 0 or 1. But 11 1 b,
therefore b = 1. Thus
(45) 7(p)? —p' = £3.

We consider this modulo 23 using . If p is a quadratic non-residue modulo 23, then p'! =
—1 (mod 23) and 7(p) = 0 (mod 23) giving a contradiction. If p is a quadratic residue modulo
23, then p'* =1 (mod 23) and 7(p) = 2, —1 (mod 23). We conclude that 7(p) = 2 (mod 23) and
7(p)? — p't = 3. Thus

(m(p) +V3)(r(p) = V3) = p'".
The two factors on the left-hand side are coprime integers in Z[v/3]. We see that
7(p) + V3 = (24 V3)%y1, v € Z[V3], Norm(y) = p, 0 <a<10.
Let q = (2 + 3v/3)Z[V/3]. Then 23Z[v/3] = qq. Since q has residue field Fo3, we see that v =
+1 (mod q). Moreover, as 7(p) = 2 (mod 23) we have
2+ V3 =+(2+V3)" (mod q).

However, 2 + v/3 has multiplicative order 11 in Z[\/g] /q =Ta3. As 0 < a < 10, we conclude that
a = 1. Thus

T(p) +V3=02+V3)(U+VV3, U VeZ
Comparing coefficients of v/3 we obtain the Thue equation
UM + 22UV +165U°V? + 990U V? + 2970U7V* + 8316U° V5 +
12474U°V° +17820U* V" 4 13365U°V® + 8910U°V? + 2673U V!0 + 486V = 1.
The Magma Thue equation solver (based on algorithms in [30]) gives that the only solution is
(U,V) = (1,0). Thus p=U? — 3V? =1 which is a contradiction. O

Remark. The reader might be wondering if the case 11 | b can also be tackled using Lemma
instead of appealing to Darmon and Merel. In that case, N’ = 32, and there is precisely one
weight 2 newform f of level 32. This has rational eigenvalues and corresponds to the elliptic curve

E:Y?=X’-X.
Let ¢ # 2 be a prime. By inspection of the definition of B, in Lemma|[7.3] we note that (—1,0) € By

and that E_4 o 3 is the reduction modulo ¢ of the elliptic curve E. Thus a¢(E_1,0,3) = a¢(E) = ¢
where ¢ is the ¢-th coefficient of f. Thus (—1,0) € C;3(f), and therefore 1 € D, 3(f). Let x = 1.
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Going through the definitions in Lemma it it easy to verify that 0 € Hs(f) regardless of the
choice of M and £. Hence we cannot use Lemma to rule out the case K = 1 and 11 | b.

There is a similar explanation for why we are unable to use Lemma [7.4] on its own to rule out
the case ¢ =3, k =1 and 111 b. Here N’ = 96. There are two weight 2 newforms of level 96 and
we take f to be the one corresponding to the elliptic curve

E:Y?=X?+4X*+3X.

Let £ 1 6 be a prime. We note that (1,2) € By. Moreover, E; 21 is the reduction modulo ¢ of
E. Hence a¢(E1,21) = ar(E) = ¢, which is as before the ¢-th coefficient of f. We therefore have
(1,2) € Co(f) and so 3 € Dy (f). It follows, for k = 1, that 1 € H1(f) regardless of the choice of
M and L.

Proof of Proposition[7.4 Again we checked that equation has no solutions with p < 200 so
we may suppose that p > 200. Moreover, by Lemmas and we have by = 0 or by = 1,
and by = b3 = 0 in . If by = 0 then equation becomes 7(p)? — plt = +11% which does
not have any solutions by Proposition [7.1] Hence b; = 1. For convenience we write b for by, so
equation becomes

(46) 7(p)? — p"' = £3-11°

We apply Lemmawith g=11 and Kk = £3. Here N’ =96 if 11 | b and N’ = 96 x 11 = 1056
if 114 b. For the newforms f at both these levels and for kK = 3 and k = —3, we computed H;(f)
and Hs(f). We found that all these are empty with precisely one exception. For that exception
k =3, and f is the newform of level 96 corresponding to the elliptic curve E with Cremona label
96al :

https://www.lmfdb.org/EllipticCurve/Q/96al/

where we find
H1(f) = {0, 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374},

and so Lemma does not provide a contradiction. However, we know that if (p,b) is a solution
to then pp 11 ~ Py ~ Pp11- Suppose b # 0. Then the Frey-Hellegouarch curve E,
has conductor 96 - 11 and so multiplicative reduction at 11. The curve E has conductor 96 and
hence good reduction at 11. Comparing the traces of Frobenius at 11 in the two representations
PE,11 ~ Peai (see [19]) we obtain £(11 + 1) = a11(£) (mod 11). However, a11(E) = 4 giving a
contradiction. Thus b = 0. Equation now becomes equation , which we showed, in the
proof of Proposition to have no solutions. This completes the proof. O

8. THE EQUATION 7(p*) = K - ¢°
In this section, we establish the following two propositions.
Proposition 8.1. Let 3 < g < 100 be a prime. The equation
(47) T(p4) = +¢°, p prime, b>0
has no solutions.
Proposition 8.2. The equation
(48) 7(p*) = £3015027bs11be, p prime, by, by, b3, by >0

has no solutions.
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We consider first the following general equation.

(49) (pY) = k- ¢, p 1 2Kkq prime, b>0.
Here k is an odd integer, ¢ is an odd prime, and we assume for convenience that
q15k, ords(k) =0 or 1.
Using the recursion we find that
m(p*) = 7(p)* = 3p"'7(p)* + ™.

which can be written as
(50) 4r(p*) = (2r(p)* - 3p")* -
We may therefore rewrite as

5P+ (4 k-¢") -1 = (27(p) - 3p*h)?,

which is an equation of signature (11,11,2). As before we follow the first author and Skinner [4],
and associate to a solution of the Frey-Hellegouarch curve

5p22.

E, : Y?=X(X%+ (3p" —27(p)>)X + 7(p)* — 3p*'7(p)2 +p**) ifp=1 (mod 4),
E, : Y2=X(X%+(27(p)? = 3p'H) X + 7(p)* — 3p'7(p)? + p*?) if p=3 (mod 4).
Let
23.5.Rad(k)-q-p if b> 0, ords(k) =0
(51) N 23.5-Rad(k) - p if b=0, ords(k) =0
) 2%-52-Rad(k/5)-q-p ifb>0,ords(k) =1
23 .52 . Rad(k/5) - p if b=0, ords(k) =1,
and
23.5-Rad(k) - q if 1110, ords(k) =0
, 23 .5 Rad(k) if 11 b, ords(k) =0
(52) N = 3,52, P _
29.5%.Rad(k/5)-q if 1115, ords(k) =1
23 . 5% . Rad(k/5) if 11| b, ords(k) =1

The Frey curve E, has conductor N, and again it follows from the recipes of the first author and
Skinner [4] that there is a normalized newform f as in of weight 2 and level N’ and a prime
@ | 11 in the integers of K = Q(cy, ¢a,...) so that holds.

Throughout what follows, £ will be a prime satisfying

(53) 0t2-5-11-K-q-p.
As before holds.

Lemma 8.3. Let (p,b) be a solution to and suppose p # 3, 23. Let £ be a prime satisfying
. Let

A ={(s,1t) : s Z£ 0 (mod ¢),
and let By be as in [42)). For (s,t) € By let
Eoin/Fr Y2 = X(X? 4 (3s™ — 21X +t* — 35t 4 572)

s, t €Ty, tt — 3512 + 5?2 £ 0 (mod £)},

and

Eo13/Fp 0 Y2 = X(X% 4 (262 = 35" X +t* — 35!t + 572),
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again corresponding to p = 1 (mod 4) and p = 3 (mod 4), respectively. Let f be a newform of
weight 2 and level N' so that is satisfied, and cy be its £-th coefficient. For j = 1, 3, let
Ce;(f) be as in (43), and let

D&j(f) = {t4 — 3stit? + s22 . (S,t) S Cg,j(f)} C Fy.
Ifp=1 (mod 4) then (k-q® (mod ¢)) € Dy1(f). If p=3 (mod 4) then (k-¢° (mod ¥)) € Dy 3(f).
Proof. The proof is practically identical to that of Lemma [7.3 O

Lemma 8.4. Let (p,b) be a solution to with p # 3, 23. Let M be a positive integer satisfying
22| M. Let

E={0<B<M-1:k-¢°=1 (mod4)}.
Let f be a newform of weight 2 and level N’ so that is satisfied. Let

]-'(f):{{ﬁeg : 1118} z:fN’:23-5-Rad(/f)~q or 2% .52 - Rad(k/5) - q
{B€& : 118} if NN=23-5-Rad(k) or2®-5%-Rad(k/5)

Let L be a set of primes satisfying

(54) £12-5-11 - kqp, Oe(q) | M.
ForfeLandj=1,3

Gei(f) = {BEF(f) : (5-¢” mod {) € Dy j(f)}.
Let
Hi(f) = () Ges(f)-
tel
If p=1 (mod 4) then there is some 5 € H1(f) such that b= 5 (mod M). If p =3 (mod 4) then
there is some 8 € Hs(f) such that b= (mod M).

Proof. This is almost identical to the proof of Lemma[7.4] The main difference is that the sets &,
F(f) do not depend on the class of p modulo 4, and we explain this now. Observe from that

H.qb:T(p4)Ep44—|—p33—|—p22+p11+153+2p51 (mod 4)
regardless of the residue class of p modulo 4. O
Lemma 8.5. The equations 7(p*) = £1 and 7(p*) = £5 have no solutions with p prime.

Proof. From the proof of Lemma we know that 7(p?) = 1 (mod 4). Thus we need only
consider the equations 7(p*) = 1 and 7(p*) = 5. Suppose 7(p*) = 1 and write z = 27(p)? — 3p'L.
From we have

2% —5p?? = 4.
Write € = (14 1/5)/2. Then (|z| 4+ p'*v/5)/2 is a positive unit in Z[¢] with norm +1. Hence

11
5
H#[ = &, e=(1+V5)/2.
for some n € Z. Thus
S .
p /5 2
where F,, denotes the n-th Fibonacci number. By [II] the only perfect powers in the Fibonacci
sequence are 0, 1, 8 and 144, giving a contradiction. Alternatively, Fs, = F,, L, where L,, is the
n-th Lucas number. From the identity L2 — 5F2 = 4 - (—1)" we see that ged(F,,L,) = 1 or 2.
Thus F,, =1 or L, =1 quickly leading to a contradiction.
Next we suppose that 7(p*) = 5 and write z = 5w. Hence

Sw? —p*? =4
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and it follows that there is an integer n such that
pt=e"+&" =Ly,

where L,, denotes the n-th Lucas number. By [I1], the only perfect powers in the Lucas sequence
are 1 and 4, again giving a contradiction. 0

Proof of Proposition [8_1. We checked that has no solutions with p < 200 for primes 3 < ¢ <
100. We shall henceforth suppose that p > 200. In particular, p # ¢q. Moreover, any solution to
is a solution to with Kk =1 or —1.

We consider ¢ = 5 first. By (50), ords(r(p*)) = 0 or 1. Thus we reduce to the equations
7(p*) = 1 and 7(p*) = £5. These do not have solutions by Lemma and hence we may
assume that ¢ # 5. From Lemma again we have b > 0. By 7 5 is a quadratic residue
modulo ¢q. The possible values of g are

(55) 11, 19, 29, 31, 41, 59, 61, 71, 79, 89.
For each of these values we take
(56) M =396 =2%.32.11, L ={3<¢<200prime, £ #5, 11, q : Ouq) | M}.

Observe that since p > 200 that ¢ # p, and thus satisfies .

We consider first the case 111 b. Thus, in , the level N’ = 23 .5 q. We computed for each
newform f of level N’ the sets H1(f) and Hz(f), both for k =1, kK = —1. We found all of these
to be empty. By Lemma we conclude that has no solutions with 111 b.

Next we consider 11 | b. Thus N’ = 23 . 5. There is a unique newform f of level N’ which
corresponds to the elliptic curve E with Cremona label 40al :

https://www.lmfdb.org/EllipticCurve/Q/40al/

Thus, from we obtain Pe, ~ PE- Note, by that E), has multiplicative reduction at g.
However, E has good reduction at g. Thus, by [19], we have +(q + 1) = a4(EF) (mod 11). We
checked that this does not hold for all the values of ¢ in . This completes the proof. O

Proof of Proposition[8.4 Again we checked that has no solutions with p < 200, whence we
may suppose p > 200. Moreover, as 5 is a quadratic non-residue modulo 3 and 7, we see from ({50))
that by = b3 = 0 in (48)). Also 52 1 7(p?) from (50), so bo = 0 or 1. But from Proposition
have by # 0, and so by = 1. We have thus reduced to consideration of the equation

T(p*) = £5-11°,

whereby we have kK = +5 and ¢ = 11. Observe that b > 0 by Lemma Suppose 11 1 b. Thus
N’ =8-25-11 = 2200. We take M and L as in . There are 25 conjugacy classes of newforms f
of weight 2 and level 2200. For each, we found H1(f) and Hs(f) to be empty, both for x = 5 and
k= —b. By Lemma there are no solutions with 111 b. Thus 11 | b, and so N’ = 23 .25 = 200.
There are five weight 2 newforms of level 200. We computed #H;(f) and Hs(f) for these, both for
k =5 and kK = —5. The only non-empty one we found was H3(f) for K = 5 where f is the rational
newform corresponding to the elliptic curve F with Cremona label 200Db1 :

https://www.lmfdb.org/EllipticCurve/Q/200b1/

Then pg, 11 ~ pp,11- Here E, has multiplicative reduction at 11, though E has good reduction at
11. As before, (11 + 1) = a11(E) (mod 11). However, a11(E) = —4, giving a contradiction and
completing the proof. O


https://www.lmfdb.org/EllipticCurve/Q/40a1/
https://www.lmfdb.org/EllipticCurve/Q/200b1/
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9. ON THE LARGEST PRIME DIVISOR OF 7(p%)

Proposition 9.1. Let p be a prime for which 7(p) # 0. Then P(7(p3)) > 13, unless p = 2, in
which case we have 7(8) =2%-3-5-11.

We consider
(57) P(r(p*)) < 11.
We checked that the only p < 200 satisfying is p = 2. We shall therefore suppose p > 200.
Recall that 7(p®) = 7(p) - (7(p)? — 2p*!). From and (14)), we easily see that 3 and 7 do not
divide 7(p)? — 2p't. Moreover, we recall that 7(p) is even, so ords(7(p)? — 2p't) = 1. Thus
(58) 7(p)? —2p't = 42-5%-11° and 7(p) = £2"-3%-5'. 7% . 11",
As before, we associate to this a Frey-Hellegouarch curve
E, : Y? = X(X?+27(p)X +2p").

By the recipes of the first author and Skinner, the conductor of E,, is one of

N=2%.p, 2%.5.p, 28 .11 - p, 28.5.11-p,
and holds for some weight 2 newform f whose level N’ is one of the following
(59) N’ =28, 28 .5, 28 .11, 28.5.11.

There are a total of 123 conjugacy classes of newforms f at these levels. Let f be any of these
such that holds. Let £ # 2, 5, 11, p be a prime. Then 11 | Norm(a,(E,) — c¢(f)) where co(f)
is the ¢-th coefficient of f.

Lemma 9.2. Let ¢ # 2, 5, 11 be a prime < 200. Let p be an odd prime with 7(p) # 0 and
P(r(p®)) < 11. Let f be a newform of weight 2 and one of the levels N in so that 18
satisfied. Write

A — {(s,t) : s, t€Fy, s(t? —2s')#£0 (mod ¢)}, =37
{(s,t) : s, t€Fy, st(t>—2s') 20 (mod ¢)}, > 13.

Let By be as in . Let
Bt JFp 0 V2= X(X?+2tX +s'),
and
Ce(f) =A{(s.t) € By : Norm(ag(Esy) — ce(f)) =0 (mod 11)}.
Then there is some (s,t) € Co(f) so that (p,7(p)) = (s,t) (mod ¢).

Proof. This is is similar to the proof of Lemma g

Proof of Proposition[9.1] For each of the 123 conjugacy classes of newforms f we computed Cy(f)
for £ = 3, 7, 13 and 23. We found that at least one of these four empty, except for the three
rational newforms which correspond to the elliptic curves (in Cremona’s labelling) 256a1, 256b1
and 256¢1 :

https://www.lmfdb.org/EllipticCurve/Q/7hst=List&conductor=256&search_type=List

All three elliptic curves have CM, respectively by Q(v/—2), Q(v/—1), Q(v/—1). Note that 11
splits in Q(v/—2) and is inert in Q(v/—1). Hence the image of pg, 11 ~ pg11 belongs to the
normalizer of split Cartan subgroup in the first case, and the normalizer of a non-split Cartan
subgroup in the second and third case. Thanks to the work of Momose [28], and Darmon and
Merel [13, Theorem 8.1], the j(E,) € Z[1/11]. However, E, has multiplicative reduction at p
giving a contradiction. O


https://www.lmfdb.org/EllipticCurve/Q/?hst=List&conductor=256&search_type=List
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10. PROOF OF THEOREM

Lemma 10.1. Let p < 11 be a prime. Suppose P(t(p™~ 1)) < 11 with m > 3. Then p = 2 and
m = 4.

Proof. First let p = 2. Let m > 3 be such that P(7(2™71)) < 11. Note that 7(2) = —23 x 3. Let
{u,} be the Lucas sequence defined in Lemma with characteristic polynomial X2 — 3X + 2°.
Then P(u,,) < 11. Moreover, by part (i) of Theorem [8] we have 2 { u,, for all n > 1. We note that

ug = —3, uz=-—-23, ug=3x>5x11, wus=241,
ug = —32x23%x29, wy=7x1471, wug=3x5x 11 x 977.

By the Primitive Divisor Theorem (Theorem , every term u, with n > 9 is divisible by some
prime ¢ > 13. Thus the only terms with P(u,) < 11 are us and u4. Since m > 3 we have m = 4.
By a similar strategy we checked that P(r(p™ 1)) > 13 for 3 < p < 11 and m > 3. O

Lemma 10.2. Let p be a prime. Let m > 3 be an integer such that 7(p™~1) # 0 and
(60) P(r(p™7) <11.
Then p =2 and m = 4.

Proof. By Lemma[10.1} we may suppose p > 13. If 7(p) = 0, by Lemma we have 7(p™~1) =0
or a power of p contradicting the hypotheses of the lemma. We may therefore suppose 7(p) # 0.
Fix p and let m be the least value > 3 such that is satisfied. By Propositions and
we know that m > 6.

Suppose first that p | 7(p). By induction from we have p | 7(p") for all n > 1. Hence
p| 7(p™~1) and so p < 11 giving a contradiction. Thus p{ 7(p). Let u,, = 7(p"~!) for n > 1. Then
{u,} is a Lucas sequence by Lemma[3.4 Now uy, | u, if k | n. As m > 6, it is divisible either by 4
or an odd prime. However uy = 7(p3), and so P(uy) > 13 by Proposition Hence m is divisible
by an odd prime, and from the minimality of m it follows that m > 7 is a prime. By the Primitive
Divisor Theorem, u,, = 7(p™~!) has a prime divisor ¢ that does not divide ujusg - ty,_1 nor
D = (a — )? (where «, 3 are as in Lemma . Here ¢ = 2, 3, 5, 7 or 11. But my, the rank
of apparition of ¢, divides m by Theorem |8 and so m, = m. However m, | (¢ — 1)(q + 1), again
from Theorem [8| But (¢ — 1)(¢ + 1) is not divisible by a prime > 7 for ¢ =2, 3, 5, 7 or 11. This
contradiction completes the proof. O

Proof of Theorem[5 Suppose n is a powerful number such that 7(n) # 0 and P(7(n)) < 11.
Let p be a prime divisor of n. Thus p™~! || n, where, as n is powerful, m > 3. Now, as T is
multiplicative, 7(p™~!) # 0 and 7(p™ 1) | 7(n). In particular, P(7(p™!)) < 11. By Lemmal[10.2]
we have p = 2 and m = 4. Thus n = 8 as required. O

11. PROOF OF THEOREM

Proof of Theorem[6l Suppose 7(n) = £¢“ where 3 < ¢ < 100 is a prime and n > 2. Then 7(n) is
odd, and so n must be an odd square. Thus there is a prime p and an integer m > 3 such that
p™ 1 || n. Hence 7(p™~1) = 4¢° for some a > 0. The following lemma completes the proof. [

Lemma 11.1. Let 3 < g < 100 be a prime and a be a nonnegative integer. Let p be a prime and
m >3 an odd integer. Then T(p™~ 1) # +q°.

Proof. We argue by contradiction. Suppose m > 3 is the smallest odd integer such that

(61) T(p" ) = £¢".

By Propositions [7.1{ and we have m > 7. We treat first the case 7(p) = 0. By Lemma we

see that +¢% = 7(p™ 1) is either 0 or a power of p. Thus p = ¢ < 100, which gives a contradiction
since any p for which 7(p) = 0 satisfies (6). Thus 7(p) # 0.
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Let {u,} be the Lucas sequence given in Lemma It follows from that lemma that u,, |
7(p"~1) and p { u, for all n > 1. If p = ¢, then u,, = £1 which contradicts the Primitive Divisor
Theorem (Theorem [7), as m > 7. We conclude that p # gq.

Next we consider the case p | 7(p). Then p | 7(p™) for all n > 1 by (I8), and so p = g, giving a
contradiction. Thus p { 7(p). It follows that u, = 7(p"~!) for all n > 1. Recall that if k | n then
ug | up. By the minimality of m we see that m > 7 is a prime. We invoke the Primitive Divisor
Theorem again to conclude that ¢ { (o — 8)%ujuz - - - Uy, 1 (in the notation of Lemma . From
Theorem |8 m = my | (¢ — 1)(¢ + 1). The possible pairs of primes (¢, m) with 3 < ¢ < 100 and
m|(¢g—1)(¢+1) are

(13,7), (23,11), (29,7), (37,19), (41,7), (43,7), (43,11), (47,23), (53,13), (59,29),
(61,31), (67,11), (67,17), (71,7), (73,37), (79,13), (83,7), (83,41), (89,11), (97,7).
m),

it remains to solve 7(p™~ 1) = +¢%. By Lemma and the fact
11

Fixing any of these pairs (g,

that m is prime, we see that (X,Y,a) = (p'',7(p), a) is a solution to the Thue-Mahler equation

U, (X,)Y)=
We solved these Thue-Mahler equations using the Magma implementation of the Thue-Mahler
solver described in [17]. None of the solutions are of the form (p'!,7(p),a). This completes the
proof of Theorem [} We illustrate this by providing more details for the case ¢ = 83. Here m is
a prime > 7 dividing 832 — 1 = 23 x 3 x 7 x 41, and thus the possible pairs (¢, m) are (83,7) and
(83,41). For the first pair, the Thue-Mahler equation is
—X?+6X%Y —5XY?+Y? =83,
and the solutions are
(X,Y,a) = (5,1,0), (-9,-14,0), (2,3,0), (-7,-1,1), (5,2,1), (0,1,0), (—1,—2,0),
(-17,-38,2), (—8,-13,1), (13,20,1), (1,1,0), (4,13,0), (—6,—19,1), (—1,0, ) (21,25, 2),
(3,11,1), (—4,13,2), (-1,-3,0), (-5,—2,1), (0,—1,0), (17,38,2), (6,19,1), (7,1,1),
(LOaO): (_47 _1370)3 (4a _135 2)7 (97 1470)7 (_3a _1la 1)7 (1 3 O)a ( 13 -1 0)
(—=13,-20,1), (=5,-1,0), (—21,-25,2), (8,13,1), (1,2,0), (—2,-3,0).
For the pair (¢,m) = (83,41) the Thue-Mahler equation is

X209 210X 1Y + 7315X18Y2 — 100947X 7Y 3 + 735471 X 16V — 3268760 X 15V °
+9657700X 1Y — 20058300X Y7 + 30421755 X 12Y® — 34597290X 1Y + 30045015X 10y 10
—20160075X %YM 4 10518300X8Y 12 — 4272048 X Y13 4 1344904 XY — 324632X5Y15

+ 58905 X4V 16 — 7770 X3Y 1T + 703 X2y 18 — 39X Y10 + Y20 = 4832,
and the solutions are
(-1,-3,0), (—1,-2,0), (1,2,0), (1,0,0), (=1,0,0),
(1,3,0), (0,1,0), (0,—1,0), (1,1,0), (—1,—1,0).
O

Remark. The aforementioned Thue-Mahler solver requires knowledge of the class group and unit
group of the number field defined by the equation ¥,,(1,Y) = 0; this number field has degree
¢(m)/2 = (m — 1)/2. Ordinarily, if the degree is too large, this might not be practical, or might
require assuming the Generalized Riemann Hypothesis. However, from Lemma this number
field is Q(()T. For the values of m under consideration (and in fact for all prime m < 67),
the class number A} of Q(¢y,)" is known to be 1; see for example [22, Theorem 1]. Moreover,
if we denote the unit group of Q(¢,,)* by E;. and the subgroup of cyclotomic units by C then
[E; - CF] = kil see [39) Theorem 8.2]. Hence in all our cases, E; = C;}, and is generated [39,

m? m)
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Lemma 8.1] by —1 and (1 — ¢%)/(1 — () with 1 < a < m/2. Thus for all values of m under
consideration we know the class group and unit group.

12. CONCLUDING REMARKS

As noted in the introduction, it would likely be extremely challenging computationally to ex-
tend, for example, Corollary to explicitly find all n with 7(n) odd and, say,

P(r(n)) < 17.

The bottleneck in our approach is related to the difficulty involved in classifying the primes p for
which P(7(p?)) and P(7(p*)) are “small”. For larger exponents m, finding the p with P(7(p™))
bounded appears to be somewhat more tractable. By way of example, we may show, by direct
application of the Thue-Mahler solver described in [I7], the following result.

Proposition 12.1. The equation
(62)  7(p%) = £30150270a11ba130s 7P 190723 29t 31003714 b2 prime, b € Z
has no solutions.

This amounts to solving the Thue-Mahler equation
—X? 4+ 6X%Y —5XY? +Y? = £305027bs11041305 170 19P723Ps 290 31 P10 37011 4102

and checking to see if any solutions have X = p!! for some prime p. Appealing to [17], we find
that all solutions in coprime integers X and Y have either max{|X|, |Y|} < 1000, or satisfy

+(X,Y) € {(241,1111), (303, 2675), (373, 1212), (383, 1243), (547, 1530),
(578,1171), (643, 1060), (839, 1305), (360, 1337), (870, 1499), (983, 1419),
(1061, 3530), (1095, 4577), (1376, 4467), (1408, 347), (1715, 339), (1793, —634),
(1855, 6023), (2069, 1766), (2313, 458), (2372, 4441), (2387, 1292), (2427, 6647),
(2469, 3877), (3091, 4806), (3482, 5869), (4168, 6481), (4220, 6013)} .

Readers interested in these computations may contact us for further details. For technical
publishing purposes, there is no “associated data”.
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