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Application of higher order dynamic mode
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power systems with renewable sources of energy?

Jones, C. N. S.1, Utyuzhnikov, S.V.1;2
1 Department of Mechanical, Aerospace & Civil Engineering,
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Abstract

Concern for climate change is driving a vastly increased use of electricity and

variable renewable energy supply encourages larger and evermore intercon-

nected power systems. Stability analysis and short-term prediction of power

system output has never been more urgent or more complex. Many distribu-

ted and renewable generators contribute zero inertia to the system and incre-

ase the risk of poorly damped oscillations leading to cascading outage. Data-

driven techniques, higher order dynamic mode decomposition (HODMD) and

total-least-squares higher-order dynamic mode decomposition (THDMD) are

applied to modal analysis and short-term prediction of frequency and power

exchange deviations. The decomposition uses multiple and randomized sam-

pling windows of historical measurements. Dominant THDMD and HODMD

modes can be used to show the contribution of renewable generation, such as
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wind power, to wide-area oscillations. The developed techniques are applied

to the analysis of blackouts in Europe (2006) and the UK (2019), as well as

the separation event in Australia (2018). The obtained results demonstrate

that the damping of some HODMD modes can be overestimated. Although

selected HODMD modes can reconstruct and predict power system output,

the results are not always reliable. In turn, THDMD can predict dominant

oscillations, with reduction of noise bias error in modal analysis of noisy me-

asurements. With low noise data both techniques can produce very similar

modal results.
Keywords: higher order dynamic mode decomposition, total-least-squares

higher-order dynamic mode decomposition, power system stability analysis,

oscillatory modes, wide-area monitoring, prediction

1. Introduction

International targets to reduce carbon emissions and to reduce the im-

pact of climate change encourage a greater use of electrical power. Heating

and transport, especially, are set to place unprecedented demands on power

systems. Often great distances between suitable locations for renewable ge-

neration (such as wind farms, which are often remote) and the load, such

as electric vehicle charging points, require a growing use of capacitance for

voltage control. Increasing grid connection of renewable generators compli-

cates frequency control, due to grid connection via power electronics with a

reduced system inertia. Regional fossil-fuelled generators have for many de-

cades provided a controllable power supply with physical electromechanical

connection of the rotor speed to the grid frequency.
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Greater current drawn by a greater load, with many more heat pumps, is

causing power systems to be operated closer to their voltage stability thres-

hold [1]. Mixed requirements of the load for reactive power (with a combi-

nation of electronic devices, capacitive solar generation and inductive heat

pumps), complicate the estimation of how close is a given system to a critical

point for voltage instability.

Traditional equations of voltage and torque for modelling generation are

suited only to synchronous machines and do not apply to renewable sources

of energy. With up to six equations for the full model per generator, it

is not possible to estimate system stability close to real time, with current

computational power. Larger, highly interconnected systems increase the

complexity of computation for stability analysis of power systems close to

real time. Continental interconnected systems increase the urgency of online

stability analysis and near-future prediction of the behaviour of a system.

Renewable energy favours long-distance transmission to export power, for

economic reasons and to make greatest use of all available carbon-neutral

power.

If known, the system of equations governing a power system would be

highly nonlinear, due to the interconnected nature of generators and load in-

uencing rotor speeds and acceleration. Weather-related output of renewable

generators is also nonlinear.

A data-driven approach in the form of dynamic mode decomposition

(DMD) [2] is used in this work for stability analysis and near-future prediction

of power system output, without the need for any governing equations. Using

measured output of power systems prior to blackout, an exponential series
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is formed to approximate the nonlinear power system dynamics. This expo-

nential series of complex conjugate eigenvalues is scaled by amplitudes and

normalized modes, which represent the contribution of each location to each

frequency of oscillation. Real parts of the eigenvalues represent the damping

of modes and imaginary parts represent the frequencies. Nonlinear dynamics

of the power system are thus approximated by linear dynamics, equivalent to

the solutions of an unknown system of ordinary di�erential equations, which

approximate the true system.

Susuki and Mezi�c pioneer the use of data-driven Koopman mode analy-

sis for modal analysis of power system blackouts, using actual power system

recordings in [3]. The Koopman analysis is closely related to the standard

DMD, formulated such that the number of modes is determined by the num-

ber of samples. Modes are not selected for physical relevance, however. Ba-

rocio et al. apply standard DMD to power system modal analysis of PMU re-

cordings in the review paper [4]. Whilst modal analysis is performed, neither

full reconstruction nor prediction are performed, in [3] and [4].

Ramos et al. [5] use standard DMD to form a library of dominant mo-

des, which are then selected via compressive sensing DMD. The accuracy of

reconstruction, but not prediction, of a simulated voltage pro�le is assessed.

Ramos et al. seek to identify optimally sparse sensor locations, although the

sampling windows used for DMD are extremely short. The sampling window

used is less than the wave period of the lower frequency inter-area oscillati-

ons, which can be 0.1 Hz. This approach does not address noise, as it lacks

redundancy of snapshots, and actual PMU measurements are not used. The

simulated test system does not include renewable sources of energy.
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Dynamic mode decomposition in its original, numerically robust form [2]

has the limitation that the number of modes can not be greater than the

spatial dimension of the snapshot measurements. The series of modes and

eigenvalues of power system output are exposed in this work, therefore, using

variants of DMD. As introduced by Koopman [6] and as explained in [7],

non-linear dynamics might have in�nitely many eigenvalues and continuum

spectrum.

In order to increase the number of available modes which can be calcula-

ted, Le Clainche et al. introduce a higher order dynamic mode decomposition

(HODMD) in [8]. Higher order DMD is able to reveal a greater number of

modes in a more accurate way than the standard DMD, as delay-coordinates

of measured data are denoised and then stacked in matrix blocks. Le Clain-

che et al. [8] thus combine DMD, which globally identi�es dynamics throug-

hout a sampling window, with a moving-window technique based on Takens’

delay-embedding theorem [9].

In HODMD, stacked measurements of a system are expressed in a reduced-

dimensional basis, prior to the modal analysis and computation of eigenva-

lues. The reduced-dimensional basis is found using the singular value decom-

position (SVD) [8]. For denoising, the SVD is performed twice in HODMD.

(Details of the SVD can be found in a linear algebra textbook such as [10]).

Le Clainche et al. [8], [11] discard the smaller singular values below a

threshold, since these correspond to low-energy orthogonal components of

the measurements. Small singular values are therefore regarded as noisy

insigni�cant components of measured data [8]. Plots of relative error of re-

construction are used in [8] to estimate a threshold for truncation of singular
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values. Thus, low-dimensional bases of measurements of uid ows are used

within HODMD in existing studies of uid dynamics [12], [11], and for pre-

diction of turbulent ows [13], [14]. All samples are used in the computation

of amplitudes.

Alassaf et al. in [15] employ the randomized DMD, developed in [16] for

computationally e�cient DMD in the presence of white noise. In [15], sequen-

tially delayed and stacked measurements are oversampled on multiplication

by a Gaussian random matrix. These data are used to form a reduced-

dimensional orthogonal basis, onto which the snapshots are projected.

As noted by Le Clainche et al. [8] and [13], DMD and HODMD modes

which reconstruct data can be spurious artefacts of the sampling window. Le

Clainche et al. [8] recommend that a range of singular value thresholds and

stacking parameters be tested for consistently low reconstruction error, in

order to identify physically meaningful modes. Alassaf et al. perform recon-

struction within short sampling windows but not prediction. All identi�ed

modes are used. The technique of Alassaf et al. [15] reduces noise in PMU

measurements and its computational e�ciency is designed for analysis in real

time. It does not, however, address bias error due to an imbalance in the

treatment of noise in DMD, described by Dawson et al. [17].

Whilst the application of HODMD by Vega and Le Clainche [14] often

concerns turbulent uid ows with high process noise, Cheng et al. [18] focus

on reduction of bias error due to additive white measurement noise. Cheng

et al. devise the total-least-squares higher-order dynamic mode decomposi-

tion (THDMD) for the prediction of the remaining useful life of machinery

using recordings of bearing vibration [18]. This THDMD is an adaptation
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to HODMD which projects stacked, delay-coordinate measurements onto a

reduced-dimensional basis. Crucially, this basis is formed using two stac-

ked sets of earlier and later measurements in [18], for a total-least-squares

estimation of the system dynamics.

Since numerous modes are exposed by these higher order techniques, it

is necessary to select modes suitable for prediction. Le Clainche et al. apply

the mode selection energy criterion of Kou and Zhang [19] to the prediction

of transient ows in [13]. In order to extract the relevant true dynamics,

single-frequency modes are sorted in decreasing order of energy throughout

the snapshot time series. The highest-energy modes are retained, which

dominate the dynamics throughout the sampling window. Noise bias error is

reduced using THDMD to reduce imbalance in the treatment of noise within

HODMD.

This work seeks physically relevant dynamics: frequencies, damping and

oscillatory modes must be physically meaningful for prediction and not spu-

rious. Spurious modes can occur due to noise or aliasing within a given

sampling window and some modes can be too well-damped to be useful for

prediction. As noted in [8], physically relevant modes for prediction should be

consistent for a range of values of d, the number of stacks of delay-coordinate

snapshot data. Modes are selected for their inuence throughout the sam-

pling window.

This paper is organized as follows. The DMD and underlying Koopman

operator theory, necessary for HODMD, are briey introduced in Section 2.

Then, this section introduces the higher order variant of DMD, HODMD,

and the THDMD for reduction of error due to measurement noise. The
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two higher-order techniques, HODMD with energy criterion (HODMDc) and

THDMD with energy criterion for selection of modes (THDMDc), are used

in Section 3 for near-future prediction of power system measurements. Both

techniques are used �rst to predict the South Australia frequency during

the Queensland and South Australia separation event of 25th August 2018.

Then, we consider blackouts in the UK of 9th August 2019 and Europe of

4th November 2006. This is followed by the Conclusion.

2. Methodology

2.1. Introduction to the Dynamic Mode Decomposition

Kutz et al. [20] provide an introduction to DMD [2] and to the under-

lying Koopman operator theory [6]. This theory is based on the Koopman

linear operator matrix, K, which acts upon a set of scalar-valued observation

functions, g, of the system states, xk, in a time series of snapshot vectors at

each time, k: xk 2 RJ . As is noted in [20], the DMD operator is a �nite-

dimensional approximation to an in�nite-dimensional Koopman operator. A

snapshot, here, is a column vector of measurements of power system output,

such as frequency, taken at various locations at the same time. The matrix

of snapshots consists of a time series of such vectors, observed at a uniform

sampling interval, �t. The Koopman operator transforms a snapshot vector,

g(xk), into the observation at the next time step, g(xk+1), one time step

later:

Kg(xk) = g(F(xk)) = g(xk+1); (1)

where F represents the system transition.
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In DMD, using a �nite sampling window and with a �nite number of

snapshots, the DMD operator, A, is used to approximate the Koopman

operator. In matrix form, this system transition is the following:

X2 = AX1; (2)

where X1 = [x1;x2; : : : ;xK�1], X2 = [x2;x3; : : : ;xK ], K is the number of

snapshots. Thus, X2 represents a matrix of snapshot vectors one time step

later than the snapshot columns of matrix X1. In this work, it is assumed

that the measurements are equal to the state, such that xk = g(xk), for

k = 1; 2; : : : ; K.

Similarly, the DMD operator can be expressed as a locally linear approx-

imation to the system dynamics [20]:

dx
dt

= Ax: (3)

In order to �nd operator A in Eq. (2), the standard DMD algorithm �rst

decomposes the earlier set of snapshots via the SVD: X1 = U�V�:

Here, U 2 RJ�R and V 2 RK�R are complex unitary matrices; � 2

RR�R is a pseudo-diagonal rectangular matrix with positive diagonal ele-

ments �k; (k = 1; :::; R) called the singular values; the Hermitian, or com-

plex conjugate, transpose is denoted by the asterisk. It is supposed that

�k � �k+1 (k = 1; :::; R� 1).

In DMD, the earlier snapshot matrix, X1, is expressed in a reduced-

dimensional basis, using the dominant r singular values and corresponding

singular vectors. The use of SVD retaining only these r largest singular va-

lues, �r, and their corresponding orthonormal singular vectors is referred as
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the truncated SVD. The minimum number, r, of singular values and corre-

sponding singular vectors to be retained is determined by a threshold, �SV D

[14]: s
�2
r+1 + � � �+ �2

R

�2
1 + � � �+ �2

R
� �SV D: (4)

Alternative techniques for thresholding of singular values can be found in

[20].

The DMD operator can then be found via the SVD-based pseudoinverse

matrix X1: A = X2Vr��1
r U�r. Here, Ur 2 RJ�r, Vr 2 RK�r, �r 2 Rr�r,

��1
r is the pseudoinverse matrix to �r with the inverse non-zero elements.

In the standard DMD [2], instead of A, its low-dimensional projection is

usually used:
�A = U�rAUr = U�rX2Vr��1

r : (5)

Next, consider the eigenvalues of the DMD operator in Eq. (5) which

are the frequencies (imaginary parts) and damping values (real parts) of

the power system oscillations, according to the eigenvector equation [20]:
�AW = W�. The r eigenvalues, �n for n = 1 : : : r, are expanded in an

exponential sequence of increasing powers. This expansion forms the time

series trajectories, exp((�n + i!n)(k� 1)�t), where ln(�n)=�t = �n + i!n for

snapshot numbers k = 1; : : : ; K [8].

Normalized modes, ��n, the spatial contributions of each measurement

location to the oscillations, multiply this eigenvalue expansion, together with

the modal amplitudes, an. As shown by Tu et al. [21] and discussed in [20],

the exact DMD modes, �� are calculated as follows:

�� = X2Vr��1
r W: (6)
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The number of exponential terms in this series, r, is the spectral complex-

ity of the decomposition [14]. Thus, each later snapshot vector is decomposed

as follows:

g(xk+1) = Kg(xk) ’ �Ag(xk) =
rX

n=1

an��n exp((�n + i!n)k�t); (7)

where k = 1; : : : ; K are the snapshot column numbers.

2.2. Higher order dynamic mode decomposition

Higher order DMD [8] is a variant of DMD, to expose a broader spectrum

of modes than the modes available via standard DMD. This may be necessary,

especially with noisy snapshot data, to improve the linear approximation to

the dynamics of a nonlinear system [8].

Higher order dynamic mode decomposition uses the full snapshot ma-

trix, denoted X. An initial denoising step uses the truncated SVD with a

singular value threshold �SV D, as in Eq. (4). The SVD threshold, �SV D,

is set according to an approximate point of change in the trend of singular

values, as in [8]. Denoised, so-called reduced snapshots, X̂, are formed by

reconstruction of the r retained singular values and temporal right singular

vectors: X̂ = �rV�r .

Higher order DMD relates the reduced snapshots in a sliding-window

system transition, using the higher-order Koopman assumption [8]:

x̂k+d ’ Â1x̂k + Â2x̂k+1 + � � �+ Âdx̂k+d�1; for k = 1; : : : ; K � d; (8)

where d > 1 is the order. Higher order DMD can also be referred as DMD-d.
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Enlarged-reduced, modi�ed snapshots, ~xk, are formed and the transition

of Eq. (8) is: ~xk+1 ’ ~A~xk; k = 1; : : : ; K � d; where:

~xk =

2

6666664

x̂k

x̂k+1
...

x̂k+d�1

3

7777775
; ~A =

2

6666666664

0 I 0 : : : 0

0 0 I : : : 0
...

...
... . . . ...

0 0 0 : : : I

Â1 Â2 Â3 : : : Âd

3

7777777775

:

The modi�ed snapshot matrix is ~X 2 Rdr�K�d+1. Modi�ed Koopman

matrix, ~A, is the higher-order counterpart of the standard DMD operator,
�A, in Eq. (7).

Since the modi�ed Koopman matrix is a (dr � dr)-matrix and is usually

noisy and high-dimensional, the truncated SVD is used a second time, simi-

larly to Eq. (4), upon ~X. The number of retained singular values is denoted

M , which is the spectral complexity of the higher-order decomposition. The

matrices of M left singular vectors, singular values and right singular vectors

retained at this stage are denoted ~UM , ~�M and ~VM , respectively.

The reduced-enlarged-reduced snapshots, produced using this second trun-

cated SVD, form a (M � K � d + 1)-matrix, ��X = ~�M ~V�M . The earliest

K � d reduced-enlarged-reduced snapshots in ��X are denoted ��X1 and those

one time step later are denoted ��X2. The pseudoinverse, ��X
y
1 = ��V1

���
�1
1

��U
�
1,

provides a least-squares solution ��A = ��X2
��X
y
1, which minimizes the l2-norm

jj��A��X1 � ��X2jj2. The HODMD eigenvalues, denoted ���m, m = 1; 2; : : : ;M , are

the eigenvalues of ��A.

Eigenvectors of ��A are left-multiplied by the left singular vector matrix,
~UM . The high-dimensional eigenvectors are then reduced, by retaining only
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the last r elements of each eigenvector, and normalized to form the reduced

modes, ���m. Amplitudes, am, are formed by the solution of a linear system,

to minimize the error of HODMD reconstruction of all snapshots.

The matrix of r-dimensional reduced modes, ���, is scaled by the amplitu-

des and left-multiplied by the spatial left singular vectors, Ur (formed using

the �rst truncated SVD). The modes are �nally normalized to have RMS

= 1, to form the matrix of M HODMD modes, � 2 RJ�M . Amplitudes, am,

are transformed, such that they are real and positive.

The original snapshots, xk, for k = 1; 2; : : : ; K, are approximated using

the HODMD expansion:

xk ’
MX

m=1

am�m���k�1
m =

MX

m=1

am�m exp((���m + i��!m)(k � 1)�t); (9)

where ���m + i��!m = 1
�t ln(���m) and �t is the snapshot sampling interval.

2.3. Total-least-squares higher-order dynamic mode decomposition

Some noise almost inevitably remains in snapshots when the HODMD

operator is computed, despite the use of truncated SVD for denoising. This

is often evident in a curved and unclear change in behaviour of singular

values, when RRMSE of truncated SVD reconstruction is plotted for a range

of r retained singular values, using Eq. (4). The setting of �SV D as an

estimation of the noise threshold is often unclear, therefore, as �SV D set too

high would curtail the basis for genuine dynamics [8], [11].

Total-least-squares higher-order dynamic mode decomposition (THDMD)

was devised by Cheng et al. in [18] to adapt HODMD for analysis of re-

maining useful life of machinery, with high measurement noise of bearing
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oscillations. This adaptation employs theory of reducing bias error in the

computation of the DMD operator, identi�ed by Dawson et al. [17]. The

HODMD operator is a least squares solution of the equation:

��A��X1 = ��X2; (10)

where ��X1 and ��X2 are the earlier and later reduced-enlarged-reduced snaps-

hot matrices, respectively. In HODMD, this linear system is solved using the

SVD-based pseudoinverse of the �rst K�d reduced-enlarged-reduced snaps-

hots, ��X1 = ��U1
���1

��V
�
1. The reduced-enlarged-reduced Koopman operator is

thus produced:
��A = ��X2

��X
�
1(��X1

��X
�
1)y; (11)

using an identity for the pseudoinverse (��X1)y.

To expose the treatment of noise, ��X1 = �X1 + NX1 and ��X2 = �X2 + NX2

are substituted into Eq. (11). That is, where NX1 and NX2 represent the as-

sumed zero-mean Gaussian sensor noise remaining in ��X1 and ��X2; �X1 and �X2

are the reduced-enlarged-reduced snapshot matrices without measurement

noise [17]. Only the even-valued powers, and not the odd-valued powers,

of the noise terms can have non-zero expectation. Higher-order noise terms

of the resulting in�nite series are discarded, which gives the approximate

expectation of the HODMD operator [17]:

E(��A) ’ ��Atrue(I � E(NX1N�X1)(�X1 �X�1)�1); (12)

where ��Atrue is the true HODMD operator, formed without the noise terms,

E is the mathematical expectation operator.

Only the noise term, NX1N�X1, of the earlier reduced-enlarged-reduced

snapshot matrix, ��X1, is considered in Eq. (12). Noise of the later set of
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snapshots, ��X2, is excluded. As explained in [17], this causes bias in the

computation of the DMD operator and can result in the estimation of modes

to be stable when they could be truly poorly damped. Inspired by the de-

biasing work of Dawson et al. [17] and Hemati et al. [22], Cheng et al.

introduce THDMD [18].

Following the �rst truncated SVD in Eq. (4), an augmented snapshot

array, Z, is formed of the modi�ed (stacked) snapshot matrices for THDMD:

Z = [~XT
1

~XT
2 ]T . Each of the earlier and later modi�ed snapshot matrices

are projected onto a reduced basis: PZ = V�V��, where V� are the �rst

� right singular vectors of the augmented matrix. Similarly to the TDMD

approach of Hemati et al. [22], �, the number of retained right singular

vectors of Z, does not exceed the number of rows of the modi�ed snapshot

matrix, ~X. For the de-biasing projection step of THDMD, therefore, �P is set

as a threshold for the RRMSE of SVD reconstruction of modi�ed snapshot

matrix, ~X. Similarly to Eq. (4), the singular values of ~X thus determine

�. Thus, �X1 = ~X1PZ and �X2 = ~X2PZ , where �X1 and �X2 represent the

projected modi�ed snapshot matrices [18].

The projected modi�ed snapshot matrices are used in THDMD in place of

the HODMD modi�ed snapshot matrices. The remaining steps of THDMD

continue as for HODMD, as described in [18]. It is expected that noise bias

inherent in HODMD is to be minimized via THDMD, assuming that the

measurement error follows a Gaussian distribution. It is proposed that the

true nature of any unstable modes is therefore to be predicted using THDMD.
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2.4. Mode selection and application of techniques

Higher order variants of DMD expose a broad discrete spectrum of modal

frequencies. In the HODMD algorithm [8], the spectral complexity of the

decomposition, that is, the number of modes, equals the number of retained

singular values. The SVD threshold, �SV D, and stacking parameter, d, are

calibrated using the RRMSE of HODMD reconstruction, similarly performed

in [13]. Le Clainche et al. recommend selection of the SVD threshold close

to a change in behaviour of the singular values in [8]. Using noisy data, the

’elbow’ point in the RRMSE of SVD reconstruction values is often unclear

and is used as a guide for a suitable �SV D.

Unlike the high-dimensional uid snapshots used in previous applications

of HODMD, such as [13], the snapshots of available power system measure-

ments have low spatial dimension. To maintain a spectral complexity high

enough to expose modes suitable for prediction, �SV D must be low enough

to maintain a suitable number of singular values and modes. The power sy-

stem measurements must be denoised using a high enough setting of �SV D,

however, so that modes may be extrapolated for prediction.

Most of the modes are usually noisy. The advantage of the higher-order

techniques over standard DMD, however, is that there is a greater probability

that some of the many computed modes produce a good linear approximation

to the true dynamics of the sampling interval. Test cases in this work are

all power system disturbance events and the sampling intervals are all taken

prior to, or during, a blackout. Transient modes seem to dominate during

these times and so this work uses the energy criterion of Kou and Zhang [19]

for selection of modes.
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This energy criterion is applied to transient uid ow around wind tur-

bines in [13]. As explained in [19] and [13], normalized modes �m are ranked

and sorted in descending order of energy index, Im. The energy index is the

summation, an approximate integral, of the absolute value of each mode’s

time-varying coe�cient throughout the interval of K snapshots. Thus, the

energy index is de�ned, based on [19], [13]:

Im =
KX

k=1

jam exp((���m + i��!m)(k � 1)�t)j�t; (13)

where am represents the amplitude and ���m + i��!m = ln(���m)=�t. The uniform

snapshot sampling interval is �t, and ���m and ��!m represent the damping and

angular frequency, respectively, of an mth modal oscillation. A maximum

of twenty complex conjugate eigenvalue pairs are retained each time when

HODMDc or THDMDc is performed, in this work, according to the energy

criterion.

Centering of snapshots data is shown to be bene�cial in applications of

DMD in [23], so the time series mean is subtracted from snapshots. Real

eigenvalues (without oscillation) are therefore discarded as noise.

Since the recorded data of power output and frequency are noisy, it is

important to test consistency of HODMD results, as described by Le Clainche

et al. in [8] and by Vega et al. in [14]. Since a suitable sampling window is

uncertain, and since the phase angles of the modal oscillations are unknown,

a random variable sampling window is used in each blackout case. Three

hundred random and shifted sampling windows of snapshots are decomposed

via HODMDc and THDMDc for each test case. The resulting modes are

stored. Inspired by the work of Hua et al. [24] for selection of consistent
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eigenvalues central to a neighbourhood, we fuzzy-cluster stored eigenvalues.

To ensure symmetry, such that retained modes and eigenvalues form com-

plex conjugate pairs, clustering is performed using only the part of each ei-

genvalue conjugate pair with positive imaginary part. Once the eigenvalues

with positive imaginary part and their corresponding modes have been se-

lected, their complex conjugates are retained from the stored decomposition

results.

Mode-pairs are tested for accuracy of conjugate pairs. Only mode-pairs

with absolute di�erence less than 10�10 are retained. Complex-valued modes

are rounded to eight decimal places. Inspired by Hua et al. [24], modes are

then selected by the phase angles of their spatial elements. The argument

vectors of modes corresponding to the eigenvalues in each cluster are then

�tted to a multivariate Gaussian mixture model (GMM), for selection of the

mode closest to the principal mean. Hua et al. [24] select a corresponding

mode for each eigenvalue by minimizing the change in phase angle between

neighbouring modes, produced using randomly shifted sampling windows.

The multivariate GMM similarly allows for noise and for a slight phase shift

due to the randomized snapshot windows.

The mode closest (by Euclidean norm) to the principal mean is selected,

together with its corresponding eigenvalue. This clustering and selection of

the eigenvalue-mode pairs is performed 300 times, due to slight uncertainty

of optimization and of the cluster membership. Results are stored and the

modes to be used for prediction are selected for lowest RRMSE of recon-

struction.

The maximum reliable frequency recommended in [14] using HODMD
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Figure 1: Summary of the process of HODMDc/THDMDc mode selection applied.

is approximately one �fth of the sampling frequency. If information of the

original sampling frequency is not available, the approximate frequency of

data obtained from plots via UN-SCAN-IT [25] is used. Modes oscillating

at a frequency higher than one �fth of this approximate sampling frequency

are discarded. The process of mode selection is summarised in the schematic

diagram Figure 1.

The MATLAB code written by Le Clainche and Vega to accompany the

text [14] is downloaded from Mendeley Data [26]. The published code for

DMD-d, especially code for Chapter 2 of [14], is adapted and used throughout

this work. Adaptations are especially made for THDMD and for alternative

techniques for selection of modes.

3. Near-future prediction of power system states

3.1. Analysis of the Queensland and South Australia separation event, 2018

Snapshots are obtained from the Australian Energy Market Operator

(AEMO) Final Report for the Queensland (QLD) and South Australia (SA)
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system separation on 25th August 2018 [27]. South Australia separated from

Victoria at 13:11:46.8 h, due to emergency opening of the Heywood inter-

connector. This caused SA frequency to rise, as power could no longer be

exported to Victoria. Snapshots are a time series of recorded SA frequency,

power output measurements of six individual SA synchronous generators, SA

wind power, SA battery power, SA solar power and SA synchronous power

generated. Torrens Island B1 (TI B1) is one of the synchronous generators.

Snapshot data are obtained using UN-SCAN-IT graph scanning software

[25] at a sampling frequency of approximately 1 Hz. To ensure uniform

sampling frequency, snapshot data are interpolated using inbuilt MATLAB

function interp1.m. Linear interpolation, with extrapolation to endpoints,

gives a time series of sampling interval 1 s. These data are pre-processed

using a Savitzky-Golay �lter of order �ve. Snapshot data is thus used in a

sampling interval of approximately 300 s starting from 13:25:00 h, with start

and end times each plus or minus a random shift of up to 20 s. The maximum

frequency of retained modes is 0.2 Hz, according to the recommendation of

Vega et al. in [14].

Table A.1 in Appendix A shows the RRMSE of reconstruction values for

HODMD using 300 s mean-subtracted snapshots during the SA separation

event. For the setting d = 30, singular values show changes of behaviour of

RRMSE of SVD reconstruction close to �SV D = 10�2 and �SV D = 5 � 10�4,

which guides the range of �SV D to be tested for calibration. All Tables in

Appendix A are produced with use of the MATLAB code of [28]. Table A.1

reveals the low reconstruction RRMSE value of 0.0658 for HODMD with SVD

threshold 0:005 and parameter d = 30. The SVD threshold �SV D = 0:005
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is one of the highest settings tested to provide an RRMSE of reconstruction

less than 0.1. For calibration purposes, all available HODMD modes are used

with relative amplitude greater than the threshold value �SV D.

Reconstruction RRMSE values for approximately 300 s are less than 0.1

for d between 25 and 35 with �SV D = 0:005. For the de-biasing projection

step of THDMDc, a lower SVD threshold is set as �P = 0:001. These low

RRMSE of reconstruction values show consistency, which satis�es the low

sensitivity to d recommended in [8]. The selected parameter settings d = 30

and d = 35, used for prediction, are close to one tenth of the 301 snapshots,

as suggested in [14].

Similarly to Hua et al. [24] for use of consistent eigenvalues for prediction,

the HODMDc/THDMDc eigenvalues of positive imaginary part are divided

into 25 clusters using MATLAB [29] fuzzy clustering function fcm.m. To

allow a small number of eigenvalues to belong to more than one cluster, the

exponent of the fuzzy partition matrix is set at 3.

In order to select one eigenvalue-mode pair for each cluster, modes cor-

responding to each cluster are �tted to a multivariate GMM of eleven di-

mensions (equal to the spatial dimension of the eleven-dimensional snaps-

hots). The MATLAB function evalclusters.m is �rst used to estimate the

number of GMM components, each component being a cluster of modes of

similar phase angle which correspond to a given cluster of eigenvalues. The

MATLAB function �tgmdist.m is then used to �t the mode angles to an

eleven-dimensional GMM. A single Gaussian mixture component is identi-

�ed. A regularization parameter 0.01 is used with �tgmdist.m for HODMDc

and THDMDc with d = 30, due to ill-conditioning. No regularization is
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necessary with d = 35.

3.1.1. HODMDc and THDMDc results

Table A.2 reveals the RRMSE of HODMDc prediction of mean-subtracted

snapshots using a maximum of 20 modes. This table of results is produced

using a single snapshot window of 300 s. Settings d = 30 and d = 35

with �SV D = 0:005 for HODMDc provide 300 s prediction with relatively

low RRMSE values 6.802 and 3.145, respectively. With d = 35, RRMSE

of mean-subtracted prediction increases sevenfold to 22.517 for the slightly

lower threshold �SV D = 0:003 and is as high as 98.507 for �SV D = 0:01.

Some parameter settings of d and �SV D can give deceptively low RRMSE of

HODMDc prediction values due to very large, noisy oscillations about the

mean. One such example is HODMDc with d = 50 and �SV D = 0:005, which

gives RRMSE of prediction of just 1.312 despite excessive exponential growth

of predicted oscillations.

Reconstruction of SA frequency for 300 s and prediction for a further 300

s using �ve HODMDc modes is shown in Figure 2a. Using �SV D = 0:005,

HODMDc prediction is closer to the original values with d = 35 than it is

with d = 30. The same parameter settings are used for THDMDc, with �P =

0:001 in Figure 2b. Five THDMDc modes provide close reconstruction and

predicted oscillations peak close to the measured SA frequency. Prediction

of the full original snapshots using the selected �ve HODMDc modes with

d = 30 has RRMSE = 0.0859 and with d = 35, prediction has RRMSE =

0.0858. Prediction of the full original snapshot values using the selected �ve

THDMDc modes, with d = 30, has RRMSE equal to 0.0875. With d = 35,

the RRMSE of THDMDc prediction is 0.0865.
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Figure 2: Reconstruction for 300 s from 13:25:00 h and 300 s prediction of SA frequency

via (a) �ve HODMDc modes and (b) �ve THDMDc modes.

Reconstruction and prediction results with the same value �SV D = 0:005

but the higher value d = 35 appear more robust to noise in Figures 2a and 2b.

Modal oscillations are moderate and approximate the original measurements.

The �nal increase in SA frequency is not accurately predicted and is largely

underestimated, however, by both HODMDc and THDMDc after time 450

s.

Relative RMS error of 300 s prediction is shown using up to 25 HODMDc

modes in Figure 3a and up to 25 THDMDc modes in Figure 3b. Results are

produced using d = 35 with �SV D = 0:005 and, for THDMDc, �P = 0:001.

Whiskers represent values which di�er from the quartiles by 1.5 times the

interquartile range in all box plots, throughout this work. All box plots

are produced using supplementary code from [30]. Figures 3a and 3b reveal

that median and quartiles of the clustering results give a low RRMSE of

prediction, with median RRMSE values less than 0.09 for all HODMDc and
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(a) (b)

Figure 3: Box plots of RRMSE of prediction for 300 iterations of mode selection via

clustering of (a) HODMDc modes and (b) THDMDc modes. Median lines are thickened

and circles represent outliers.

THDMDc modes. The interquartile range of RRMSE for modal clustering

results is higher for HODMDc, however, at approximately 0.003, as opposed

to approximately 0.001 for THDMDc.

The box and whiskers plot in Figure 4a shows the initial reduction in

median HODMDc modal energy index, from Im = 92 for mode one to Im = 16

for mode �ve. Figure 4b shows a more gradual decline in median energy index

of the dominant THDMDc modes, from Im = 83 for mode one to Im = 16 for

mode eight. Higher modes, up to mode 20, have near-constant energy index

of around ten for both HODMDc and THDMDc.

Similarly to the HODMDc analysis of Le Clainche et al. in [13], abso-

lute damping values and amplitudes of modes are shown in Figures 5a and

5b respectively. Results for modes which give the lowest RRMSE of recon-

struction of all clustering results using 25 modes with d = 35 are used here.

Figure 5a shows that most of the HODMDc and THDMDc modes have a
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(a) (b)

Figure 4: Box plots of modal energy indices, I m, of results using 300 iterations of mode

selection via clustering of (a) HODMDc modes and (b) THDMDc modes. Median lines

are thickened and circles represent outliers.

small absolute damping value, less than 0:01, and so could be classed as

permanent modes. Several THDMDc modes of j�j close to 0.01 have higher

absolute damping values than the HODMDc modes. The transient nature of

modes can therefore be stronger with THDMDc than HODMDc modes.

For both techniques, Figure 5b shows that one mode has amplitude close

to an order of magnitude higher than the mode of second highest amplitude.

Most of the modes lie in a band of amplitudes less than 0.1. Only three

HODMDc modes have amplitude greater than 0.1 but six THDMDc modal

amplitudes lie above 0.1.

Compass plots in Figures 6a and 6b show three dominant components of

the HODMDc and THDMDc �rst modes with d = 35, respectively. Each �rst

mode is selected for lowest RRMSE of reconstruction. These plotted elements

correspond to the SA wind power; the most dominant individual synchronous

generator, TI B1, and an average of all SA synchronous generation. This

25



(a) (b)

Figure 5: (a) Absolute damping and (b) amplitudes of 25 HODMDc and THDMDc modes.

polar form reveals the dominance of SA wind power following the islanding

operation. Mode one of the HODMDc results shows strong agreement with

THDMDc mode one, as approximate complex conjugates of the same mode

pair.

Reconstruction and prediction of snapshots by extrapolation of modes

for a further 300 s has low RRMSE using HODMDc and THDMDc. Most

of the 25 selected modes have amplitude in the band of low amplitude va-

lues less than 0.1. Many modes have small absolute damping value and are

permanent, however. Some THDMDc modes have higher amplitudes and ab-

solute damping values than some of the HODMDc modes. Modal clustering

results show very similar RRMSE of prediction overall, with lower interquar-

tile range of RRMSE for the THDMDc than the HODMDc results. It is not

possible using these HODMDc or THDMDc modes to accurately predict the

sharp increase in SA frequency during the �nal 100 s.

The inuence of renewable energy in power system behaviour is identi�ed

by HODMDc and THDMDc. This is revealed by the strong participation of
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(a) (b)

Figure 6: Dominant components SA wind power, TI B1 and SA synchronous generation

of (a) HODMDc mode one and of (b) THDMDc mode one.

SA wind power in the most dominant HODMDc and THDMDc modes.

3.2. Prediction of frequency, UK event of 9th August 2019

On 9th August 2019, a fault occurred on the Eaton Socon-Wymondley

circuit at 16:52:33.490 h, according to the National Grid ESO (NGESO)

Technical Report [31]. Three lightning strikes were recorded close to the

Eaton Socon-Wymondley circuit at 15:52:33 h. Although the fault cleared

within approximately 70 ms, Hornsea wind farm lost 737 MW and CCGT

units tripped at Little Barford in a cascade of events. At 16:53:49.398 h, grid

frequency fell below 48.8 Hz, triggering low frequency demand disconnection

[31]. To maintain the steady-state 50.0 Hz frequency, NGESO had secured a

1000 MW loss of power infeed at 16:52:26 h [31].

Snapshot data are obtained from National Grid ESO records of historical

frequency data [32]. Frequency data have uniform 1 Hz sampling frequency.

The maximum frequency of retained modes is therefore 0.2 Hz. Higher order
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DMD with energy criterion and THDMDc are applied to approximately 400

s snapshots in the minutes before the blackout in Subsection 3.2.1. Snapshot

windows have pseudorandom uniformly distributed start times from 16:43:00

h plus or minus 20 s. Snapshot window duration is similarly pseudorandom,

at 400 s plus or minus 20 s.

The RRMSE of SVD reconstruction values for a range of retained singular

values are shown in Figure 7a for d = 180. Values close to changes in trend in

the RRMSE shown in Figure 7a are tested for a range of d, for calibration of

the SVD threshold. Table A.3 shows the RRMSE of HODMD reconstruction

values using 400 s mean-subtracted snapshots from 16:43:00 h. The singular

value tolerance of �SV D = 0:004, used for this UK case for HODMDc and

THDMDc, is set at a point close to a change in behaviour of the RRMSE

of SVD reconstruction. Setting �SV D = 0:004, with d = 180, is also the

highest SVD threshold tested to give an RRMSE of HODMD reconstruction

less than 0.1. Using these settings, HODMD reconstruction has RRMSE =

0.067 and the RRMSE is consistently low (less than 0.2) for d between 160

and 190. For THDMDc, a lower singular value threshold of �P = 0:003 is set

for the initial projection and truncation of right singular values.

Use of all available HODMD modes, of the 401 snapshots, with d = 40

produces very large amplitude oscillations, without denoising. A similar

application of HODMD with the higher value d = 180 reduces the frequency

of noisy oscillations but reconstruction fails due to oscillations of very large

amplitude. Figure 7b shows the failed reconstruction and prediction of UK

frequency using all HODMD modes and retaining all singular values.

Eigenvalues produced using HODMDc/THDMDc are formed into 20 clus-
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(a) (b)

Figure 7: (a) Relative RMS error of SVD reconstruction with d = 180 and (b) HODMD

reconstruction for 400 s from 16:43:00 h and prediction of 200 s with d = 40 and d = 180,

without denoising.

ters, using the MATLAB fuzzy clustering function fcm.m. The exponent of

the fuzzy partition matrix is 3 for MATLAB function fcm.m. Modes are �t-

ted to a single Gaussian distribution using MATLAB function �tgmdist.m,

with zero regularization. Using the selected eigenvalue-mode pairs, recon-

struction of snapshots is performed for 400 s from 16:43:00 h and prediction

is tested for a further 200 s.

3.2.1. HODMDc and THDMDc results for the 9th August 2019 UK blackout

The RRMSE of prediction results are very low, less than 0.01, using up to

20 HODMDc modes in Figure 8a or 20 THDMDc modes, as shown in Figure

8b, for analysis of the UK frequency.

Energy indices decline gradually on a logarithmic scale. Median energy

indices decrease from 10.3 and 8.5 for HODMDc and THDMDc modes one,

respectively, to less than 0.1 for both HODMDc and THDMDc modes 20

in respective Figures 9a and 9b. Mode two has higher median energy index
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(a) (b)

Figure 8: Box and whiskers plots of RRMSE of prediction using 20 modes via (a) HODMDc

and (b) THDMDc. Median (thickened) and quartiles are shown for 300 iterations of mode

selection. Circles represent outliers.

using THDMDc, at Im = 8:5, compared to Im = 4:8 for HODMDc mode

two. Interquartile range of all energy indices is low, with few outliers.

Several HODMDc modes and THDMDc modes in Figure 10a are seen

to be transient, with high absolute damping values greater than 0:01. One

THDMDc mode has the highest absolute damping value, greater than 0.1.

In Figure 10b, almost all modes have low amplitude less than 0:1. Most

modal amplitudes lie above 10�3 and one THDMDc mode has the highest

amplitude. Modes produced via THDMDc and HODMDc have similarly

negative correlation of frequency and amplitude. The 20 eigenvalues of the

clustering results with lowest RRMSE of reconstruction, with d = 180 and

�SV D = 0:004, are shown.

Prediction results from time 400 s to 600 s, using �ve HODMDc and �ve

THDMDc modes are shown in Figures 11a and 11b, respectively. Relative

RMS error of prediction of full values using the selected �ve HODMDc modes
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(a) (b)

Figure 9: Box and whiskers plots of energy index, I m, of 20 modes of UK frequency via

(a) HODMDc and (b) THDMDc. Median (thickened) and quartiles are shown for 300

iterations of mode selection. Circles represent outliers.

(a) (b)

Figure 10: (a) Absolute damping and (b) amplitudes of 20 HODMDc and THDMDc modes

of UK frequency.
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(a) (b)

Figure 11: Reconstruction of UK frequency for 400 s from 16:43:00 h and prediction of a

further 200 s using (a) �ve HODMDc modes and (b) �ve THDMDc modes.

is 5:64 � 10�3, compared to 5:46 � 10�3 using the selected �ve THDMDc

modes. The sharp decline in frequency following the circuit fault at Eaton

Socon-Wymondley, after 574 s, could not be predicted using HODMDc or

THDMDc.

In this UK test case, both HODMDc modes and THDMDc modes are able

to approximate the oscillations of frequency during the initial 400 s sampling

time. A small number, such as �ve, dominant modes can approximate the

oscillations. Modes computed via THDMDc provide greater detail of early

reconstruction around the time 100 s. A relatively high value of d = 180,

close to half of the number of snapshots, provides a high degree of delay-

embedding, without excessive loss of inuence of the later snapshots. The

moderately high setting of d also gives a high level of redundancy of singular

values and modes for selection, which improves the accuracy of reconstruction

and prediction. Prediction results are similar, lying close to a moving average
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for both techniques, although THDMDc prediction has slightly lower RRMSE

than HODMDc prediction. Neither HODMDc nor THDMDc can predict the

cascading drop in UK frequency towards the blackout, following the circuit

fault at 16:52:33.490 h.

3.3. Analysis of European power exchange deviations, 2006

Higher order DMD with energy criterion and THDMDc are applied to the

European blackout of 4th November 2006. To enable the passage of a ship

on the Ems River, the two circuits of the Conneforde-Diele line in Germany

were disconnected at 21:38 h and 21:39 h. The disconnection took place

earlier than originally planned. Telephone calls between operators E.ON

Netz, RWE TSO and Vattenfall Europe Transmission between 21:46 h and

21:52 h expressed concern that the system was operating close to overload

and close to thresholds of protection settings. The rushed coupling of two

busbars at 22:10 h, without due calculation, led to a cascading outage and

around 15 million European customers lost power supply.

Snapshot data are obtained from plots in the Union for the Co-ordination

of Transmission of Electricity (UCTE) Final Report (2007) [33] via UN-

SCAN-IT graph scanning software [25]. As recommended by Vega et al.

[14], the maximum retained frequency of eigenvalues is 0.2 Hz here. Data

are obtained from the plots in [33] at slightly unequal intervals between

approximately 1 s and 2 s. The original sampling frequency is not disclosed

in the Final Report. Data from the plots are linearly interpolated to form

1201 uniformly sampled snapshots of sampling interval 1 s. The data are

pre-processed to reduce noise via a MATLAB Savitzky-Golay �lter of order

�ve.
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In order to expose early instability, eight European power exchange devia-

tions (power exchange minus scheduled power exchange [33]), denoted PEDs,

are studied after 21:50 h for approximately 300 s. Snapshot sampling win-

dows each start at a pseudorandom time selected from a uniform distribution

from 21:50:20 h, plus or minus up to 20 s. Higher order DMD with energy

criterion and THDMDc are each performed using randomized sampling win-

dows, of 300 s plus or minus up to 20 s. Higher order DMD with energy

criterion and THDMDc techniques are applied for short-term prediction of

PEDs, by extrapolation of the calculated modes for a further 150 s.

Table A.4 shows RRMSE of reconstruction values for HODMD using

300 s of snapshots from 21:50:20 h. Table A.4 reveals the low RRMSE of

reconstruction (of mean-subtracted values), at 0.0723 with �SV D = 0:002 and

d = 35. Low RRMSE values, less than 0.2, are also recorded between d = 25

and d = 40, which shows consistency. Lower SVD threshold values o�er

little reduction in RRMSE, so the relatively high threshold �SV D = 0:002 is

selected for denoising.

Both HODMDc and THDMDc use a singular value truncation threshold

of �SV D = 0:002. The additional singular value threshold of �P = 0:001 is

used for the THDMD denoising step, in which snapshots are projected onto

a correlation matrix of truncated right singular vectors.

Eigenvalues are stored, from the 300 randomized sampling windows, and

are formed into �fteen clusters for consistency, using the MATLAB fuzzy

clustering function fcm.m. To allow a small number of eigenvalues to have

membership of more than one cluster, an exponent 3 is used for the fuzzy

partition matrix for fcm.m. Modes corresponding to the eigenvalues in each
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cluster are then �tted to an eight-dimensional Gaussian model using the

MATLAB function �tgmdist.m with zero regularization. MATLAB function

evalclusters.m is used to determine the number of mean values and compo-

nents of the GMM. A single Gaussian mixture component is identi�ed.

3.3.1. HODMDc and THDMDc results for the European blackout, 2006

Results in Figures 12a and 12b are produced using the �fteen eigenvalues

selected for lowest RRMSE of approximately 300 s reconstruction of PEDs.

Only around six modes produced by HODMDc or THDMDc in Figure 12a

can be considered permanent, with low absolute damping j�j < 0:01. Many

modes show slight transient behaviour, with j�j > 0:01.

Many amplitudes of the selected �fteen HODMDc and THDMDc modes

in Figure 12b are high, with several modes of amplitude between ten and 100.

All modes have amplitude greater than 0:1. The modes of lowest amplitude,

less than one in this case, may be considered as noise. Modes show negative

correlation of frequency and amplitude. A greater number of HODMDc than

THDMDc modes are of amplitude low enough to be regarded as noise.

Reconstruction and prediction results using the �ve modes of highest

energy index are shown in Figures 13a, and 13b for the German RWE and

French PEDs, respectively. Early reconstruction results are especially noisy

for the German PED. Neither technique predicts the German peak after 250

s. The THDMDc prediction appears to follow the peaks of the German PED

in the �nal 100 s. The RRMSE of prediction of all eight PEDs is 1.119

using the selected �ve HODMDc modes and is 1.073 using the selected �ve

THDMDc modes.

The prediction for France fails as neither HODMDc nor THDMDc modes
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(a) (b)

Figure 12: (a) Absolute damping and (b) amplitudes of 15 HODMDc and THDMDc modes

of European PEDs, selected for minimum RRMSE of reconstruction.

capture the sharp decline in French PED during the �nal 70 s of the snapshot

window. The inuence of �nal snapshots is reduced by the delay-embedding

used in higher-order techniques HODMDc and THDMDc. Reconstruction

of the French PED appears more accurate for THDMDc than HODMDc.

Reconstruction RRMSE for the eight European PEDs is 0.478 for the �ve

plotted THDMDc modes, compared to 0.524 for the �ve plotted HODMDc

modes.

The four dominant spatial elements of the �rst normalized modes cor-

respond to RWE TSO (Germany), France, Italy and Spain via HODMDc

and THDMDc in Figures 14a and 14b, respectively. Elements of mode one

for Germany and Italy oscillate against the dominant elements for France

and Spain in both HODMDc and THDMDc results. The magnitude of these

dominant mode elements is similar in both cases, with some di�erence par-

ticularly between the arguments of elements corresponding to Germany and

Italy. The PED for France is most dominant in both results for mode one.
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(a) (b)

Figure 13: Reconstruction of 300 s from 21:50:20 h and prediction for 150 s of the PEDs

for (a) German RWE and (b) France using �ve HODMDc and THDMDc modes.

(a) (b)

Figure 14: Compass plots of four dominant components of (a) the �rst HODMDc mode

and (b) the �rst THDMDc mode of European PEDs.
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(a) (b)

Figure 15: RRMSE of prediction for (a) 15 HODMDc modes and (b) 15 THDMDc modes of

European PEDs. Median, quartiles and outliers (circles) are shown for 300 mode clustering

iterations

Although prediction results for France fail to capture transient dynamics

necessary for prediction, the dominance of France in mode one in Figures

14a and 14b agrees with the large PEDs for France shown in [33].

Relative RMS error of prediction results are shown for all 300 mode clus-

tering iterations for HODMDc in Figure 15a and for THDMDc in Figure

15b. Median RRMSE results are similar, although RRMSE of prediction is

generally slightly higher for THDMDc than for HODMDc, particularly using

eight or more modes.
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Figure 16: Energy index, I m, for (a) 15 HODMDc modes and (b) 15 THDMDc modes of

European PEDs. Median, quartiles and outliers (circles) are shown for 300 mode clustering

iterations.

Energy indices for all clustering results of �fteen HODMDc modes and

�fteen THDMDc modes are shown in Figures 16a and 16b, respectively.

The �gures reveal that the median modal energy indices are higher for the

THDMDc modes than the HODMDc modes, up to mode eight. Median

energy index for HODMDc mode one is almost 4000, whilst the energy index

of THDMDc mode one is over 5100. Median energy indices of THDMDc

modes two to �ve are almost constant, above 1000. The �rst �ve HODMDc

median modal energy indices decline gradually, on the logarithmic scale, to

725 for mode �ve. Modal energy indices are low for modes ten and above for

both techniques, falling below 100 for mode �fteen.

The European UCTE Final Report [33] particularly noted that strong

winds and high wind power output in Germany were of great concern at the

time of the blackout. German wind power is commonly exported to southern

parts of Europe but at the time of the outage, transmission lines were highly
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loaded [33]. This high wind power generation was a signi�cant factor in the

cascading outage [33]. The PED for France has a greater range of values

during the prediction time than the RWE German PED spans. Both �rst

modes using HODMDc and THDMDc �nd the contribution of the German

PED to be one of the four dominant elements. The oscillation of Germany

against France and Spain reects the common North-South European mode,

known often to be caused by export of German wind power. German and

Spanish modal elements are almost exactly out of phase, with an angular

di�erence of almost 180� in THDMDc mode one.

Using a relatively low parameter d for delay-embedding of the snaps-

hots, both HODMDc and THDMDc can approximate some oscillations of

noisy snapshots. Using a relatively high SVD threshold �SV D, with a lower

projection SVD threshold �P, THDMDc modes especially can be selected to

form an approximate reconstruction and prediction. Prediction results can

fail, however, in cases of strong transient behaviour. This can particularly

concern cases of transition to a new steady state, towards the end of a given

sampling window.

4. Conclusion

Higher-order Koopman techniques, HODMDc and THDMDc, have been

used for modal analysis and short-term prediction of power systems. Data-

driven modal analysis in this work uses noisy measurements recorded before,

or during, historical blackout events. Eigenvalues, produced by multiple ap-

plications of HODMDc and THDMDc to randomly shifted snapshot windows,

are clustered for selection. Corresponding modes are �tted to a Gaussian
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model, to reduce dependence on the sampling window and to identify modes

suitable for prediction.

Smooth or multiple transitions in RRMSE of SVD reconstruction of the

snapshots suggest that noise can have a range of values. Parameters are set

for consistently low RRMSE of reconstruction, for a range of d at a given

SVD threshold. Inclusion of very small singular values can over�t noisy

snapshots and can introduce artefacts of the sampling window. Very small

singular values can also cause severe ill-conditioning. The SVD threshold

is therefore selected to retain a physically meaningful decomposition with

su�cient spectral complexity and denoising. This approach can provide a

short-term prediction close to original values.

Using a maximum of 20 HODMDc modes, analysis for a range of SVD

thresholds and settings of d reveals that the RRMSE of prediction can vary

by orders of magnitude. The RRMSE of HODMDc prediction can be se-

veral times higher with lower or higher SVD thresholds than the moderate

value, selected for low RRMSE of reconstruction and locally low sensitivity

to d. With calibrated parameter settings, prediction can still fail in cases of

extreme transient behaviour, which can involve external forcing.

Absolute damping values and amplitudes of some modes can be greater

with THDMDc than HODMDc, due to the total-least-squares reduction of

noise bias error. Prediction results of all modal clusters can also span a lower

range of RRMSE values using THDMDc, compared to HODMDc. Depending

on the levels of the noise, the two techniques can produce very similar modal

results. Prediction can be superior using THDMDc, which requires future

study and systematic analysis of a wider range of disturbance events.
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The obtained results demonstrate that HODMDc and THDMDc can iden-

tify the frequencies and damping of oscillations within a short sampling win-

dow of several minutes. Without governing equations speci�c to generators,

data-driven modal elements can identify contributions of renewable sources

of energy prior to, or during, power system disturbances.

For power system stability analysis, poorly damped modes of the true

system dynamics must be recognized. Future work will be focused on further

reduction of noise using alternative variants of these higher-order Koopman

techniques, especially of THDMD for mitigation of bias error due to noise.
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