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Abstract

Data stream management systems exist to support dynamic analysis of streaming data, often

to inform decision-making. Decision Support Systems (DSSs) exist to enable decisions to be made

that take into account user priorities. However, although these categories of system are now quite

mature, there has been little work investigating their use together. Bringing these technologies

together in a way that enables trustable decision support for dynamic applications is a di�cult

problem with particular impact in the military and medical domains. A framework has been

proposed, comprising eight desiderata for trusted dynamic decision support. These desiderata

aim to inform architects of dynamic DSSs on the implications of di�erent capacities for decision

support. An approach to dynamic decision support employing Genetic Algorithms (GAs) has

been proposed. Two case studies have been utilised to show how this approach can be leveraged

to provision DSSs with our desiderata. Weighted Product Model (WPM), Analytic Hierarchy

Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and

Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) have been

assessed on the stability of results and the consistency of trade-o�s, two of our desiderata. This

assessment determined TOPSIS to be the method that is the most suitable for dynamic decision

support. The problem of evaluating the e�ect of DSS features on trust has also been addressed

and a theoretical framework modelling trust and its antecedents in a real-time DSS has been

proposed. This model has then been used to carry out an assessment of the impact of explanation,

preferences and dynamic updates as components of dynamic decision support, giving designers

of DSSs an indication of which of these features are likely to have a positive impact on decision

making in a dynamic environment. Finally, the research has concluded with the identi�cation

and discussion of potential areas for future investigation.
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1 | Introduction

1.1 Motivation

Often, the problem of selecting the correct solution to a problem can be speci�c to a particular

decision maker. An example of this is selecting the correct train journey to get to a destination.

One train may be cheaper, whilst another is quicker. Which of these options is better depends on

the priorities of the decision maker. Therefore, a DSS with the ability to elicit user preferences is

required. Even for a task as simple as train journey planning, the list of requirements for a DSS

can become challenging. Preferences must be elicited, synthesised to create a recommendation or

ranking, and then presented in a way that is trusted and understood by the decision maker. For

train journey planning, this is required in a context where there is uncertainty relating to criteria

e.g. train arrival times. As a result, presenting a recommended journey to a user can become a

di�cult task.

Although DSSs can be built in any knowledge domain, it is an expensive operation to distil

information from a system to assist a decision maker. Therefore, in low-stakes decision making,

it is generally preferable to remove the human from the loop. As a result of this the majority of

DSSs are employed in high-stakes domains, such as medical or military decision making.

Clinical DSSs are often employed in medical practice to help doctors perform accurate diagno-

sis. These systems can analyse multi-modal data to highlight risks and recommend treatments,

whilst ultimately leaving the �nal decision to the doctor. In the military domain, DSSs can be
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used to support command and control. Command and control is a set of organisational and tech-

nical attributes and processes employing human, physical, and information resources to solve

problems and accomplish missions [140].

Command and control can be split into the planning and execution stages. Militaries have

spent considerable e�ort on development of DSSs to support the planning stage. Comparatively,

far less has been spent on assisting with execution [19]. The problem of assisting execution can

be framed as a dynamic decision making problem and therefore requires a dynamic DSS. For

dynamic decision support, trust is even more critical. The decision maker must make decisions

under real-time constraints and therefore has less opportunity to verify or second guess the sys-

tem. Therefore, to support the execution of missions a trusted dynamic DSS is required.

Maritime facilities face challenging demands, including monitoring ocean tra�c, port safety,

and emergency response. New technology is required to tackle these challenges, under the

stresses of higher levels of tra�c and an increased need for rigorous safety and prompt emer-

gency response [104, 123].

Drones are a technology that has been identi�ed for this role, and managing these drones for

various tasks is one aspect of the expanding role of harbour management. Situational awareness

has been highlighted as crucial in domains where the e�ects of ever-increasing technological and

situational complexity on the human decision maker are a concern [95]. Drones provide a means

for aerial situational awareness, within a harbour and beyond [48, 88]. One task, which has the

potential to improve situational awareness, is the automatic identi�cation of ships approaching

a harbour. Drones can be employed to take photos of ships, for the identi�cation of tra�c and

potential threats. To select an appropriate route, the decision maker must consider multiple con-

�icting objectives, such as identifying as many ships as possible, identifying ships as early as

possible and reducing fuel costs. Navigating this large space of potential routes and making con-

sistent trade-o�s between objectives is a di�cult task. Therefore, the management of such drones

is a complex command and control problem that can potentially be simpli�ed through the use
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of MCDM methods, employed within a DSS. A further challenge for such a system is that ocean

tra�c is constantly moving and quickly changes direction. This necessitates that the problem be

solved using a dynamic DSS, supporting the execution stage by updating routes as the scenario

unfolds.

1.2 Decision Support

A DSS is a computer system designed to support users when making complex decisions. For a

DSS, the choices made by decision makers often a�ect the state of the system. It is therefore useful

to model decision makers as not just users, but as components of a Cyber-Physical-Social System

(CPSS). CPSSs span the physical, information, cognitive and social domains. In the CPSS �eld,

human users are considered a component of the system, falling within the cognitive domain [82].

Human components can be a necessary part of a system, such as when making the �nal judgement

for life or death decisions. DSSs are therefore often vital, as they bridge the information and

cognitive domains by distilling data to assist decision makers. Furthermore, DSSs also support

information moving in the other direction by enabling the elicitation of knowledge from the user.

DSSs are enabled by decision analysis. Decision analysis is the �eld concerned with the study

of complex decisions. Multi-Criteria Decision Making (MCDM) is a sub-discipline of decision

analysis comprising techniques for evaluating solutions with multiple con�icting criteria [54].

A common example of this is purchasing a car; the safest car is not usually the cheapest and so

these criteria are con�icting. For such problems, the presence of multiple objectives gives rise

to a set of optimal solutions (known as Pareto-optimal solutions), rather than a single optimal

solution. In the absence of information regarding the priorities of a user, it is impossible to say

if any one of these Pareto-optimal solutions is better than any other. As a result, a vital part of

the elicitation of knowledge from the user is understanding the user's priorities (or preferences)

towards each objective. Pairwise Comparisons (PCs) are a common approach for this, used as
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part of many MCDM methods [4, 16, 118�120, 150]. The strategy breaks down the problem of

assigning ratio values to a set of objectives into manageable chunks. This is done by asking the

user to determine their preference with respect to only two objectives at a time. Once a set of

PCs is complete, one for each pair of objectives, a one-dimensional priority weighting vector can

be derived. The PC methodology has been shown to outperform constraint-based approaches for

preference elicitation [5].

1.3 Decision Support for Dynamic Applications

DSSs exist to support users in navigating a space of Pareto-optimal solutions [54]. Data

streams exist as an abstraction to support analysis of dynamic data as it is produced [100]. These

seem to be complimentary paradigms, which can be brought together to supportdecision making

with dynamic data.

Current practice in stream data processing makes extensive use of Stream Processing Engines

(SPEs) which provide a framework for acting upon elements in a stream. For decision support, an

interesting challenge is how to build on these capabilities to support real-time decision support

over streams. Dynamic decision support is necessitated by real-time MCDM problems; real-time

problems require a response within speci�c time constraints. An MCDM problem can be de-

scribed as real-time when it is a�ected by changing values of criteria, or changing sets of solutions

to a problem. For the example of purchasing a car, this could mean the devaluation of a car over

time or cars being removed from the marketplace. These problems require a prompt response, as

the best solution is likely to change if the decision maker spends too long adjudicating.

1.3.1 Multi-objective Evolutionary Algorithms

As a result of the lack of a single optimal solution, multi-objective problems demand an ap-

proach to �nding as many Pareto-optimal solutions as possible. Multi-Objective Evolutionary
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Algorithms (MOEAs) have been proposed as a solution to this problem [30, 46, 62]. The primary

reason for this is their ability to calculate multiple Pareto-optimal solutions in a single run [31].

The iterative nature of MOEAs also lends itself to real-time problems. The population (the in-

termediate set of solutions) can be updated each generation, in an attempt to maintain a set of

Pareto-optimal solutions as the environment evolves. The result is a Dynamic Multi-Objective

Evolutionary Algorithm (DMOEA) [148]. Research into DMOEAs is still in the early stages but

has recently seen growing attention from the evolutionary computation community [154].

Murugananthamet al. [99] called for more benchmark problems, appropriate performance

metrics and more e�cient algorithms to further the research into DMOEAs. In their paper, they

introduced the Kalman �lter technique for DMOEAs. This approach uses predictions to help

guide the search towards changed optima, as a means of accelerating convergence. To meet the

growing trend of DMOEA research, Geeet al.[51] put forward a test suite. Their paper proposed

a new dynamic test suite that allows researchers to assess the diversity maintenance and tracking

ability of DMOEAs. Diversity is an important metric for DMOEAs, with high diversity allowing

the algorithm to adapt more e�ciently to a changing environment.

1.3.2 Frameworks for dynamic multi-criteria decision making

Whilst providing a means to produce and maintain a set of pareto-optimal solutions, DMOEAs

alone do not solve the problem of dynamic decision support. This is due to two problems:

1. DMOEAs maintain a set of solutions rather than a single recommendation;

2. these sets of solutions are often highly unstable.

Together, this causes much di�culty when the decision maker is faced with selecting a single

solution. Consequently, multiple frameworks for dynamic decision maker have been created to

help guide the decision maker in a dynamic environment. To tackle the problem of selecting a
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solution, Campanellaet al. [22] introduced a framework for improving stability in dynamic de-

cision making. Their approach takes into account the historical criteria values of alternatives to

evaluate the appropriateness of a solution at decision-time. Their paper presents a number of

aggregation methods for synthesising this historical data into a single criterion. The choice of

aggregation depends on how the decision maker values the best-case value and the worst-case

over the time period. To improve this approach, Zuluetaet al. [156, 157] suggested a temporal

factor for the selection process. This approach takes into consideration the rate and direction of

change in criteria values as part of the aggregation. Another framework, produced by Yanet al.

[149], proposes an alternative method for handling the di�erences in temporal behaviour of al-

ternatives using grey numbers. A grey number is an abstraction that represents an indeterminate

value that falls within an interval or a set of numbers [81]. These numbers can be "whitenized" to

return a crisp value. This framework applies grey numbers as a means to aggregate the criteria

values of alternatives across periods of time.

These methodologies aim to improve the stability of the rankings as the problem evolves,

highlighting stability of results as a desired feature for dynamic DSS. An outstanding question

is what is the best way to evaluate stability and which methods can be employed to provide high

stability of results?

1.4 Trustable Decision Support

Decision analysis is often utilised to support decisions in medical and military �elds. In these

high-stakes decision making domains, experts are relied upon to make a �nal decision, supported

by DSSs. Together they form a human-computer team, (ideally) performing better than either the

human or computer alone [129, 133].

An important aspect underpinning the e�ectiveness of human-computer teams istrust. If

a decision maker does not trust the system they are working with, then useful outputs can be
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discarded or ignored. On the other hand, if a user has too much trust in a system this can lead

to over-reliance [9, 78]. Therefore, an e�ective team requires a decision maker to be aware of

what the system does and does not know. This highlights the importance ofinterpretabilityin

DSS. Interpretability is the ability to explain or to present in understandable terms to a human

[39]. This includes giving decision makers the ability to understand what aspects a system has

taken into consideration, and how it has used these factors to arrive at a solution. We refer to

this capability astransparency[146].

Transparency allows a decision maker to make use of their expert knowledge, supplemented

by the systems' ability to process large amounts of data. For a system to be interpretable, it should

provide enough information for its decision process to be understood, without overloading a

user. Therefore, a system should be designed to be transparent, without inducing highcognitive

load. Unfortunately, any features added to a system are likely to incur additional cognitive load,

therefore when building DSS it is important to scrutinise the cost-bene�t of features. We have

identi�ed decision maker preferences [113] and explanation [73] as two system features that

should help improve transparency in DSSs.

Trust is especially challenging when working with dynamic data; a decision maker does not

have time to ascertain if a black box system has made a mistake, and therefore it is highly bene�-

cial to provide provenance data to the decision maker, ensuring that the information motivating

a recommendation is readily available. Data provenance provides a historical record of data and

its origins, which allows the user to trace and assess data quality and suitability. In addition to

the underlying evidence, it is also important that the user has some understanding of the space of

possible solutions; as a result, some form of explanation mechanism is required that explains how

a recommendation has been arrived at, and/or describes the relationship between alternative op-

tions. Therefore provenance is another feature of DSS that has potential to improve transparency

and hence increase trust. A latent construct is an idea which cannot be observed or measured

directly; trust and transparency are two examples of latent constructs. As a result of their latency,
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a di�cult challenge in the �eld is evaluating how trust and its antecedents are a�ected by these

decision support features.

1.5 Approach

The approach taken in this work involved compiling a list of desiderata or desired features/char-

acteristics for trustable dynamic decision support. To explore and analyse our desiderata, we

utilise two dynamic MCDM case studies: train journey planning and harbour management. A

system is developed for each, and the harbour management scenario is used as part of a evaluation

of MCDM methods and a user study to assess trustability.

1.5.1 Desiderata

A framework for trusted dynamic decision support has been developed, comprising a bundle

of desiderata for DSSs. Through analysis of the literature and the train journey planning case

study, we began with a set of 5 desiderata. The di�erentiating characteristic between an algo-

rithm that generates a set of pareto-optimal solutions, and a DSS, is the ability to recommend a

speci�c solution to a user. The ability to dynamically revise this solution, makes a DSS dynamic.

Therefore, declarative speci�cation of preferences and dynamic revision of recommendations are

deemed the cornerstones of dynamic decision support. Declarative speci�cation means that the

preferences are expressed without describing how the DSS will interpret them [83]. This allows

the system to elicit preferences in an intuitive fashion.

In addition to the provision of preferences and dynamic updates, data provenance has been

identi�ed as a feature that provides trustability. To support the underlying evidence, it is also

important that the user has some understanding of the space of possible solutions; as a result,

some form of explanation mechanism is required that makes explicit how a recommendation has

been arrived at, and/or describes the relationship between alternative options.
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All this is required in a context where there may be genuine uncertainty relating to criteria

that inform a recommendation. As such, it is important for maintaining trust to ensure that the

uncertainty intrinsic in a recommendation is either presented to a user or able to be re�ected

within the decision-making process.

Drawing this together, we arrive at the following desiderata for trusted dynamic multi-criteria

DSSs:

ˆ declarative speci�cation of preferences,

ˆ dynamic revision of recommendations,

ˆ provenance capturing the data underpinning decisions,

ˆ explanation of outputs, and

ˆ explicit support for uncertain data.

Di�erent methods can produce di�erent rankings when applied to an identical problem, even

with identical user preferences. For an MCDM problem, it is often impossible to say which resul-

tant ranking is optimal [152]. Therefore, selecting an appropriate MCDM method for a problem

is di�cult. A solution to this is to pick some alternate desired characteristics for a method [72],

for example, consistent trade-o�s or high stability of results. Utilising our second case-study as

a test-bed environment we revised our set of desiderata to include these desired characteristics.

The revised set of desiderata for the harbour management task adds three desired characteristics

of MCDM methods for dynamic decision support:

ˆ high stability of results,

ˆ high diversity of options,

ˆ consistent trade-o�s between criteria.
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A desirable characteristic for dynamic decision support problems is high stability of results.

In this work we refer to the propensity to reorder under changes to criteria values as thestability

of a ranking. For a ranking to be functional, the frequency of change must be less than the

time it takes for a decision maker to act. For this to be ful�lled, the rankings must take into

account changing criteria values, without reordering signi�cantly when small changes are made.

Therefore, it is desirable for the rankings to be stable under small changes to criteria values.

We also noted that, it is impossible to capture every nuance of a problem within a DSS. Con-

sequently, it is important that the expert is presented with a diverse array of options, rather than

multiple similar solutions which may fall prey to similar pitfalls that have been overlooked by

the system. If our diverse set of results still doesn't present the user with a suitable solution, the

decision maker can alter their preferences.

To make e�ective use of preferences, it would be useful for changes in criteria weights to

have predictable e�ects. An aspect underpinning the predictability of changes in criteria weights

is theconsistencyof trade-o�s between criteria. It is expected that as the weighting for a criterion

increases, the trade-o�s become more favoured towards that criterion. However, this relationship

is not always predictable, as small changes in criteria weightings can lead to large changes in how

an algorithm values certain trade-o�s. We view consistency in trade-o�s as a desired feature, as

it gives rise to predictable e�ects when decision makers adjust their preferences. After expanding

our framework with these points in mind, we arrived at the following set of revised desiderata as

shown in Figure 1.1.
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1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

3. high stability of results,

4. explicit support for uncertain data,

5. explanation of outputs,

6. provenance capturing the data underpinning decisions,

7. high diversity of options, and

8. consistent trade o�s between criteria.

Figure 1.1: The eight proposed desiderata for trusted dynamic multi-criteria DSSs

1.5.2 Train Journey Planning Case Study

The �rst case study considers an application relating to train journey planning. We assume

that a user can state where they need to gofrom and to, along with the proposed start time.

We also assume that the most suitable journey time for a user may depend on di�erent criteria,

speci�cally the arrival time of the journey, thepriceof the journey, and thenumber of changes.

One such criterion, arrival time, indicates the expected arrival time of a journey. This is subject

to change, as trains may be delayed or lines closed. Ticket prices are also subject to change until

the time of purchase.

To investigate how our desiderata could be supported using SPEs, a dynamic DSS for train

journey planning has been developed. The approach demonstrates how user preferences(Desider-

ata 1)can be combined with a continuously running genetic algorithm to provide a dynamically

revised ranking of recommendations(Desiderata 2). The system shows how the uncertainty in-

26



herent in train journeys can be captured and quanti�ed to help guide decision makers(Desiderata

4). The system also gives an explanation of the ranking of routes(Desiderata 5)and captures the

provenance data detailing changes to the train schedule(Desiderata 6).

1.5.3 Harbour Management Case Study

The second case study is a harbour management task. In this task, a decision maker takes

the role of a harbour master managing a harbour. The harbour master controls a single drone

to identify ships close to the harbour zone. The job of the user is to select a route for the drone,

identifying ships before they reach the harbour zone. The length of these routes is limited by the

fuel of the drone. Once the drone has run out of fuel, it must return to the refuel point, located

within the harbour zone. We assume that the most suitable route may depend on di�erent criteria:

the time spent by unidenti�ed ships in the harbour, the average time between identi�cation of a ship

and its arrival in harbourandthe amount of fuel used to identify each ship.

To demonstrate how these desiderata can be supported, we outline a dynamic DSS. This sys-

tem applies an MCDM method as a �tness function within a continuously running genetic al-

gorithm. The system takes into consideration user preferences(Desiderata 1), to generate a con-

tinuously updated ranking(Desiderata 2), with a mechanism to control the diversity of options

(Desiderata 7).

This DSS is then used as a test-bed environment. This environment can be controlled through

a User Interface (UI), to assess UI features of DSSs, or run in headless mode, to assess character-

istics of MCDM methods. Using this test-bed environment to determine an appropriate method

for dynamic DSSs, we evaluate MCDM methods with respect to the stability of their rankings

(Desiderata 3)and the consistency of trade-o�s between criteria(Desiderata 8). The methods

evaluated are the WPM [20], the AHP [118], the TOPSIS [150] and the PROMETHEE [16].
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1.5.4 Harbour Management Trustability Study

Trust is a principal in�uence in the interactions between a user and a DSS. As a result, dy-

namic DSS architects should try to understand what characteristics of a DSS govern trust. What

are the principal drivers of trust? What DSS features a�ect these drivers? We have carried out

a study that investigates this in the context of the harbour management scenario by develop-

ing a trust-based model for interactions with real-time DSSs. We have validated this model by

applying the Partial Least Squares Structural Equation Modeling (PLS-SEM) technique [147], pro-

viding empirical evidence that transparency is a strong determinant of a decision maker's trust

and satisfaction with a system. This study also assessed the e�ect of explanation, preferences and

dynamic updates on our model. To collect data for validation, we used our harbour management

test-bed environment. Users of the system were provided with a random selection of interface

features enabled/disabled. The users then completed a series of tasks before �lling out a ques-

tionnaire. The features and questionnaire answers for experiment users were then compiled for

analyses.

1.6 Aims and Objectives

The overarching aim of the project is to investigate the suitability of decision support features

and methodologies for trusted dynamic DSSs. To achieve this we accomplished the following

research objectives:

1. To identify and demonstrate desiderata for dynamic DSSs, through the development and

analysis of a train journey planning application.

2. To show how to support and evaluate desiderata for dynamic DSSs through a test-bed based

on harbour management.
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3. To evaluate the suitability of WPM, AHP, TOPSIS and PROMETHEE for dynamic DSSs

through the assessment of the stability of results and consistency of trade-o�s for each

method.

4. To assess the e�ect of enabling/disabling explanation, preferences and dynamic updates,

through the production of a trust-based model for interactions with real-time DSSs, which

was then validated using PLS-SEM.

1.7 Contributions

This thesis provides contributions in the �eld of dynamic decision support and the role of trust

in governing interactions between a user and a dynamic DSS. The contributions are as follows:

1. A set of desiderata for dynamic decision support, along with examples of how they can

surface in speci�c applications. The set of desiderata includes eight desired features/char-

acteristics that form the basis of trustable dynamic DSSs.

2. A dynamic genetic algorithm that can be used to incrementally re�ne recommendations,

with a speci�c emphasis on the production of diverse recommendations. This algorithm

applies the principles of DMOEAs, combined with MCDM methods as a �tness function,

to support the cornerstones of dynamic decision support.

3. An evaluation of MCDM methods in terms of our desiderata for dynamic decision sup-

port. WPM, AHP, TOPSIS and PROMETHEE were assessed on their ability to provide high

stability of results and consistent trade-o�s between objectives.

4. A theoretical framework modelling trust and its antecedents in a real-time DSS. To create

this, we have applied a methodology for the assessment of DSS and their features in the

absence of clear success criteria.
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5. An assessment of the e�ect of explanation, preferences and dynamic updates on our model

is also included. This gives designers of DSS an indication of which user interface features

are likely to assist decision making in a dynamic environment.

1.8 Thesis Outline

The structure of the thesis and �ow through the chapters is shown in Figure 1.2.

This chapter has introduced the concept of trustable dynamic decision support, motivated the

work and outlined the aim and contributions of the thesis.

In Chapter 2, multi-criteria decision making methods are described along with background

on the streaming methodologies employed to process dynamic data.

In Chapter 3, details are given for the rail journey planning case study and the set of desiderata

designed and implemented with this study in mind.

In Chapter 4, a description is given of the harbour management case study and the revised

set of desiderata for dynamic decision support. This chapter features an approach to real-time

decision support driven by a dynamic genetic algorithm, along with a discount function designed

to encourage diversity.

In Chapter 5, various MCDM methods are evaluated in relation to the revised set of desiderata.

The consistency of trade-o�s and the stability of results for each algorithm are considered to

determine an appropriate method for dynamic decision making.

In Chapter 6, a methodology is outlined for the assessment of decision support features with-

out a clear metric for success. The methodology applies PLS-SEM to a user case study to assess the

impact of dynamic updates, explanation and pairwise preferences on trust and its antecedents.

Finally, Chapter 7 presents the conclusions from the research and identi�es areas of potential

future investigation.
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Figure 1.2: Overview of the thesis chapters.
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2 | Technical Background

In this chapter the concepts that are built upon and evaluated in our case studies are described.

Firstly, the MCDM methods that are integrated into our dynamic DSSs are detailed. Secondly, the

chapter introduces basic constructs of stream processing and describes how stream processing

can be combined with MCDM methods to produce a dynamic DSS.

2.1 Multi-criteria Decision Making Methods

MCDM methods provide a methodology for synthesising a set of con�icting criteria relating to

an overall goal, a set of alternatives which relate to each criterion, and an expression of a decision

maker's preferences into a ranking. This ranking indicates how appropriate each alternative is

for ful�lling the overall goal, ordered from most to least appropriate.

In this section we describe four of the predominant MCDM methods;

1. the Weighted Product Model (WPM);

2. the Analytic Hierarchy Process (AHP);

3. the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS);

4. the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE).

These four were chosen to represent the principal schools of MCDM methods; WPM typi�es

the early approaches to MCDM, AHP belongs to the category of value measurement models,
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TOPSIS is a goal, aspiration and reference model and PROMETHEE exempli�es the French school

of decision support. We explore the background and concepts behind each methodology, the

advantages and disadvantages they give rise to, and present details of our implementation.

2.1.1 Weighted Product Model

2.1.1.1 Background

The WPM is a modi�cation of the Weighted Sum Method (WSM) proposed byP. Bridgman

in 1922. WSM is the earliest multi-dimensional decision making method [136]. WSM combines

scores for criteria in a linear model. The criteria values are normalised, then multiplied by the

weighting of the criterion and summed for each alternative. This sum represents the global score

for the alternative. WPM overcomes some of the weaknesses of the WSM approach [20]. These

weaknesses of WSM include rank reversal under di�erent normalisation methods and rank re-

versal on removal of an alternative [132]. Such occurrences of rank reversal under WSM are

caused by the interdependence between scores of alternatives incurred by normalisation. WPM

raises weights as powers of the criteria value (positive powers for bene�ts and negative powers

for costs), eliminating any units of measure.

The main bene�t of the WPM approach is that the di�erent units do not require normalisation

[103]. As a result, WPM is often referred to as providing dimensionless analysis [135]. The lack

of normalisation means that all scores for alternatives derived through WPM are independent

and therefore the method su�ers less from rank reversal. A drawback of the method is that it is

required that the decision maker's preferences are encoded as a vector of weights, expressing the

relative values of criteria. This process of expressing preference as a vector of weights is often

non-intuitive to decision makers.
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2.1.1.2 Implementation

WPM scores alternatives by a simple multiplicative model. The algorithm involves the fol-

lowing steps:

WPM Step 1. Weights are used to score each alternative using Equation 2.1. The criteria

value of alternative0 is represented as09 for criterion 9. The weighting for criterion9is given as

F 9. For criteria we seek to minimise, we replaceF 9 with � F 9.

, %" ¹0º =
=Ö

9=1

¹09ºF 9 (2.1)

WPM Step 2. Rank alternatives according to the value of, %" ¹0º.

2.1.2 Analytic Hierarchy Process

2.1.2.1 Background

AHP was developed byT. Saaty in the 1970s as an alternative to these simplistic multi-

dimensional models [118]. AHP is a structured technique for organising and analysing com-

plex decisions. AHP consists of an overall goal, a group of options or alternatives for reaching

the goal, and a group of factors or criteria that relate the alternatives to the goal. The decision

maker's preference between two alternatives are quanti�ed on a scale of 1 to 9, with 1 represent-

ing no preference ofGover~ through to 9 representing a strong preference ofGover~. The same

methodology can be used to compare criteria, resulting in a weighting vector expressing a deci-

sion maker's preferences. These judgements can then be used to synthesise an overall ranking of

alternatives.

This approach proved popular; by 2008 there were more publications that reported application

of AHP than any other MCDM method [142]. AHP �ts into the category of value measurement
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Figure 2.1: AHP hierarchy structure for the harbour management task; A-F represent the candidate routes

models, sometimes referred to as the American school of multi-criteria decision analysis [85].

2.1.2.2 Implementation

AHP is implemented in the following steps:

AHP Step 1. The problem is modelled as a hierarchy. The goal of the problem is at the

highest level, with the criteria below it. These criteria can be divided further into sub-criteria,

then at the lowest level we have the alternatives. Figure 2.1 shows the hierarchy for the harbour

management task (discussed in detail in Chapter 5).
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AHP Step 2. Criteria values are normalised according to the range of values across all al-

ternatives using the formula given in Equation 2.2, where minX and maxX are the smallest and

largest criteria values respectively.

#>A<¹Gº =
G� <8=-

<0G- � <8=-
(2.2)

AHP Step 3. Priorities are established across the hierarchy by constructing a pairwise com-

parison matrix for each level. In our experiments, we evaluate a �xed set of weights and therefore

it is only alternatives that require comparison. Each alternative has a value assigned according

to each of the criteria, we refer to these as criteria values. To produce a ranking, criteria values

must be scored. The normalised values are compared pairwise to generate a comparison matrix.

For three alternatives01, 02 and03 and a criterion- with normalised criteria valuesG1, G2,

G3, we would generate a comparison matrix� .

C =

01 02 03

2
6
6
6
6
6
6
6
4

3
7
7
7
7
7
7
7
5

01 1 5¹G1• G2º 5¹G1• G3º

02 5¹G2• G1º 1 5¹G2• G3º

03 5¹G3• G1º 5¹G3• G2º 1

Equation 2.3 is applied to compare criteria values. This formula maps two normalised values

(G,~) to the fundamental scale proposed by Saaty [118].

5¹G•~º = 4G� ~ (2.3)

AHP Step 4. Comparison matrices generated through AHP have a concern with departure

from consistency between judgements. When a matrix is inconsistent, the resultant vector of

relative weights is viewed as untrustworthy. Therefore, the next step in AHP is to check the

consistency of the matrix. In general practice, this is done by calculating the consistency ratio
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(CR) and discarding matrices with a CR greater than 0.1 [127]. A matrix� = ¹289º is termed

consistentif:

289� 29: = 28: 8 8• 9• := 1•2• ”””•=[10]

It is unnecessary to check consistency in our application of AHP as the comparison formula

5¹Gº produces comparison matrices that satisfy this equation for all values of8• 9• :as shown

below.

5¹8• 9º � 5¹9• :º = 5¹8• :º

48� 9 � 4 9� : = 48� :

48� : = 48� :

AHP Step 5. The principal eigenvector%9 of the comparison matrix for each criterion9is

calculated; this vector represents the priorities for each alternative. This priority vector%9 is then

multiplied by the weightingF 9 of each criterion9and summed to produce a global score vector

� . For a problem with< alternatives and= criteria, the formula is given by Equation 2.4.

� = ¹68º< =
=Õ

9=1

%9 � F 9 (2.4)

AHP Step 6. Rank alternatives according to their global score. For alternative8, the global

score is entry68 in � .
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2.1.3 TOPSIS

2.1.3.1 Background

Another school of MCDM methods is comprised of goal, aspiration and reference models.

These models formulate the problem as a comparison to a goal rather than assigning value directly

from the criteria values.

The �rst such model, TOPSIS, was developed in the 1980s byHwang and Yoon[150]. TOPSIS

de�nes a positive ideal solution which represent the best alternative. This imaginary solution is

created by collecting the best possible values across all criteria. The same is done with the worst

criteria values to create a negative ideal solution. The best alternative is then determined by

minimising the euclidean distance from the positive ideal solution and maximising the euclidean

distance from the negative ideal solution. These distance metrics are used to score each alterna-

tive, to form an overall ranking of solutions. The distances along each dimension of the problem

are scaled using a weighting vector. This weighting vector is an encoding of decision maker

preferences. Unfortunately, TOPSIS provides no method to derive this vector from pairwise com-

parisons or any other natural expression of a decision maker's preferences. Consequently, this

method is often combined with AHP, with AHP being utilised to create a weighting vector from

a pairwise comparison of criteria.

2.1.3.2 Implementation

TOPSIS is described by the following steps:

TOPSIS Step 1.Create an evaluation matrix¹G89º< � = consisting of< alternatives and= cri-

teria, with the criteria values for each alternative8and criterion9given asG89.

38



TOPSIS Step 2.Calculate the normalised evaluation matrix' = ¹A89º< � = by applying the

formula given in Equation 2.5.

A89=
G89

q Í <
: =1G2

: 9

• 8= 1•2• ””” •<• 9= 1•2• ””” •= (2.5)

TOPSIS Step 3.Calculate the weighted normalised decision matrix T =¹C89º< � = by applying

the formula from Equation 2.6.

C89= A89� F89• 8= 1•2• ””” •<• 9= 1•2• ””” •= (2.6)

TOPSIS Step 4.Compute the positive (� ¸ ) and negative (� � ) ideal solutions. These serve

as imaginary perfect and worst points in the solutions space, from which we can calculate the

distance from real solutions as a form of evaluation.

� ¸ = f Ģ1• Ģ2• ””” • Ģ= g

whereĢ9 = f<0G¹G89º if 92 � ;<8=¹G89º if 92 � ºg

� � = fG�
1 • G�

2 • ””” • G�= g

whereG�
9 = f<8=¹G89º if 92 � ;<0G¹G89º if 92 � ºg

where� is associated with bene�t criteria (values we seek to maximise) and� with cost cri-

teria (values we seek to minimise).

TOPSIS Step 5.Calculate the! 2-distance from positive ideal (3¸
8 ) and negative ideal (3�

8 )
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solutions for each alternative.

3¸
8 =

vut =Õ

9=1

¹G89� Ģ9º2• 8= 1•2• ””” •<

3�
8 =

vut =Õ

9=1

¹G89� G�
9º2• 8= 1•2• ””” •<

TOPSIS Step 6.Calculate the similarity to the worst condition for each alternative (B�
8 ).

B�
8 =

3�
8

3�
8 ¸ 3¸

8
• 8= 1•2• ””” •<

TOPSIS Step 7.Rank the alternatives according to the similarity to the worst condition (B�
8 ).

2.1.4 PROMETHEE

2.1.4.1 Background

The French school was founded byB. Roy, who produced the series of ELimination Et Choix

Traduisant la REalité (ELECTRE) methods [116]. This served as inspiration for the family of out-

ranking methods, characterised by the limited degree to which a disadvantage on one criterion

may be compensated by advantages in another. PROMETHEE is an outranking method devel-

oped byJ.P Brans[16]. PROMETHEE ranks a set of alternatives on the basis of several criteria

by identifying pros and cons of the alternatives in a pairwise fashion. Criteria for MCDM prob-

lems can fall across a wide-range of scales, with di�erent utility for similarly valued trade-o�s.

For example, when selecting a car, price may create an exponential range of values, whereas
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horsepower falls across a linear range. This is caused by the net worth of individuals forming

an exponential scale, whereas horsepower is limited by engineering. To capture these di�erence

between criteria, PROMETHEE de�nes a preference function (%¹Gº) for each criterion.

The provision of%¹Gº enables a more �exible approach to the comparison of criteria values.

In a similar fashion to TOPSIS, PROMETHEE requires information on the relative importance of

the criteria and is therefore often paired with AHP.

Multiple versions of PROMETHEE have been introduced [15, 17, 18]. PROMETHEE I produces

a partial ranking, whereas PROMETHEE II computes a complete ranking of alternatives. In our

case, a complete ranking of alternatives is required. Consequently, PROMETHEE II has been

implemented as outlined below.

2.1.4.2 Implementation

In our work, PROMETHEE is de�ned by the following procedure:

PROMETHEE Step 1.Pairwise comparisons39¹G•~º are made between each criteria value

G89for alternative8and criterion9using Equation 2.7.

39¹G89• G: 9º = G89� G: 9 (2.7)

PROMETHEE Step 2.Unicriterion preference degree is calculated by applying a preference

function %¹Gº to the di�erence as shown in Equation 2.8.

c: ¹G89• G: 9º = %»3: ¹G89• G: 9º¼ (2.8)

This function can be di�erent for each criterion. Six types of preference function are pro-

posed; usual criterion, quasi criterion, criterion with linear preference, level criterion, V-shape

with indi�erence criterion, and Gaussian criterion [15]. In this work, the criterion with linear
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preference is applied, as shown in Equation 2.9.

%¹Gº =

8>>>>>><

>>>>>>
:

0 G� 0

G 0 Ÿ 3 � 1

1 3 ¡ 1

(2.9)

PROMETHEE Step 3. A multi-criteria (global) preference degreec ¹G•~º is computed to

globally compare every pair of alternatives as shown in Equation 2.10.

c ¹G89• G: 9º =
@Õ

: =1

c: ¹G89• G: 9º � F : (2.10)

PROMETHEE Step 4.Calculate the positive (q¸ ¹0º) and negative (q � ¹0º) preference �ows

for each alternative.

q¸ ¹0º =
1

= � 1

Õ

G2�

c ¹0• Gº

q � ¹0º =
1

= � 1

Õ

G2�

c ¹G• 0º

PROMETHEE Step 5.Calculate the net preference �owq¹0º.

q¹0º = q¸ ¹0º � q � ¹0º

PROMETHEE Step Six.Rank alternatives according to the net preference �ow.

2.2 Stream Processing

A growing number of large-scale data processing use-cases involve data which is produced

continuously over time. As a result, streaming analytics is a growing area of data science with
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Figure 2.2: An example of an operator consuming a stream of random integers and doubling them to
produce another stream.

considerable commercial interest. To handle these use-cases, a number of SPEs have been cre-

ated, such as Apache Storm [23], Apache Spark Streaming [151] and Apache Flink [134]. These

platforms o�er an API to process data as it is produced, utilising the abstraction of data streams.

In this section we introduce the generic streaming concepts employed by SPEs. We also in-

clude background on the two SPEs used as components of our dynamic DSSs: Apache Storm

and Apache Flink. Finally, we explain how we can build upon the extensibility points of SPEs to

provide decision support over dynamic data.

2.2.1 Streaming Concepts

Data streams are an abstraction for modelling dynamic data. A data stream is an in�nite

sequence of elements. Elements are made up of a piece of data and a timestamp, indicating when

an element was produced or when it was made available for processing. This could be the content

of a tweet and the time it was sent, or an update to the price of a car and when it was updated.

Such data streams are manipulated through the application of operators. Operators are func-

tions which consume zero or more streams to produce zero or more streams. A mapping is an

operator which consumes a single stream to produce a single stream, with each element in the

input stream corresponding to an element in the output stream. Figure 2.2 shows an example of a

mapping consuming a stream of random integers and doubling them to produce another stream.

Windows are another common operator which are one of the core building blocks of stream-

ing applications. Windows apply a function over a �nite section of a data stream. For example, a

window could be used to calculate the number of tweets made in the last 10 minutes. The most

common forms of windows are time-based and count-based windows, bound by either time or
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Figure 2.3: An example of a count-based sliding window (n=3) calculating the sum of a stream of random
integers.

number of elements respectively.

Windows can further be distinguished assliding windows, calculating an output with the

arrival of each new element, ortumbling windows, which can accumulate multiple elements

before a new calculation is performed [14]. Figure 2.3 shows an example of a count-based sliding

window, calculating the sum over a stream of random integers.

2.3 Multi-Criteria Dynamic Genetic Algorithm

A GA is a meta-heuristic search algorithm modelled on the process of natural selection. GAs

rely on mutate, crossover and selection operators to de�ne the search process. New solutions are

derived from a previous population through a combination of mutations and crossovers, with the

highest �tness solutions selected for the next population [97].

In this work, we apply SPEs to solving dynamic multi-criteria decision making problems. We

do this by using an incremental genetic algorithm utilising MCDM methods as a �tness function.

Incremental genetic algorithms are designed to handle problems which undergo frequent minor

modi�cations [89].
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This approach builds upon the GA methodology to maintain a solution set ranked according to

preferences, as the situation and therefore solutions, evolve over time. To apply this architecture

to a dynamic multi-criteria decision making problem it is must be formulated as a combination

of solutions, criteria, and state.

2.3.1 Formulating the problem

A solution (G) is an encoding of an alternative, a criterion (� ) is a property of an alternative

that contributes towards the goal and the state (( C) is a snapshot of the problem which allows the

criteria values for a solution to be calculated at a given time. For each criterion it is required that

we de�ne a function as follows:

LetGbe a solution•

Let ( Cbe the state at timeC•

G2C= � ¹G• (Cº

This function calculates the value ofG2C, which is the value of the criterion� at timeCfor so-

lution G. Together these data structures form an interface with the algorithm. For example, if the

problem is selecting an appropriate train journey to a destination, the solutions are the potential

journeys and the state is the information regarding line closures or delays. A journey duration

criterion function could then be applied to calculate a predicted duration for each journey.

To implement this architecture, we must also de�ne two of the operators for the genetic al-

gorithm: mutate(G) and crossover(G•~). The mutation operator exists to maintain the diversity

of the population. This function takes a solution and produces a slightly modi�ed but new solu-

tion at random. Whereas the crossover operator combines two solutions together to produce a

new solution, inheriting characteristics from both parents. The forms for mutate and crossover
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functions are shown below:

LetG•~• Ibe solutions of the problem•

~ = mutate¹Gº•

I = crossover¹Gº¹~º

2.3.2 Architecture

Figure 2.4 shows the �ow of data through the algorithm. TheSolution Creatortakes the current

state of the scenario and the previous ranking, and applies mutate(x) and crossover(x,y) opera-

tions to create new solutions. For the �rst generation it creates a random set of solutions. The

Criteria Calculatorthen calculates the criteria values for each solution (G) using the current state

of the scenario (( C) by applying criterion functions. This produces criteria valuesG2=C for each

solution (G) and each criterion (� =), valid at timeC.

A time-based sliding window is taken for all solutions valid at timeC, closing when a solution

marked with timeC¸ 1 arrives. This window comprises the current generation of solution. The

Solution Rankeruses this window as context to score each of the solutions validated at timeC.

This is done by applying one of the MCDM methods described in Section 2.1. Initial calculations

for each algorithm are applied within the solution ranker, by producing scores for each criterion.

These intermediary values and criteria weightings are then passed to theFitness Calculator.

Within the Fitness Calculator, solutions are assigned a �tness value calculated using the MCDM

method. When selecting solutions for the next generation of the algorithm, we �rst choose the

solution with the highest �tness. We then apply a �tness penalty to solutions that share charac-

teristics with the set of solutions chosen for the next generation. This is intended to promote a

diverse set of solutions for recommendation. This set of solutions forms a ranking, ordered by
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the �tness assigned to each solution. The ranking can be used as an input to theSolution Creator,

acting as a basis for the next generation.

2.4 Conclusions

The decision support literature outlines a wide variety of MCDM methods. These methods

apply di�erent approaches to the problem of synthesising a ranking from a list of potential so-

lutions and decision maker preferences. Generally, these methods are applied in a static context,

with a �xed set of solutions and preferences. If the set of solutions and preferences are subject to

change, then the problem is dynamic [22].

SPEs provide a set of tools for tackling dynamic problems. They handle dynamic data by

utilising the abstraction of data streams. Acting upon these streams, SPEs employ a variety of

streaming concepts to enable users to create dynamic applications. We have outlined an ap-

proach to solving dynamic multi-criteria decision making problems using SPEs. This approach

applies streaming abstractions to build a multi-criteria dynamic genetic algorithm that maintains

a ranking of solutions as both solutions and preferences change over time.

In later chapters we discuss this approach in the context of both a train journey planning

case study and a harbour defence case study; further we evaluate the suitability of the outlined

MCDM methods as a �tness function.
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Figure 2.4: The architecture for the dynamic genetic algorithm

48



3 | Desiderata for Decision Support for

Dynamic Applications: A rail

journey planning case study

In this chapter, we identify some of the key issues and concepts in dynamic decision support.

We explain how these give rise to our 8 desiderata for dynamic decision support. The literature

review continues by giving examples of dynamic DSSs and outlining which of our desiderata are

enabled. We then give a rail journey case study to illustrate how we can enable 5 of our desiderata,

namely:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. provenance capturing the data underpinning decisions, and

6. explanation of outputs.

The application helps a user to plan a journey between two stations according to thearrival

time, priceand thenumber of changes.
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3.1 Related Work

In this section we introduce the concepts inspiring our list of desired features for dynamic

decision support. We explain how these concepts inform our desiderata and we discuss method-

ologies that can enable the provision of our desiderata in dynamic DSSs. Finally, we give examples

of dynamic DSSs and detail which desiderata are supported.

3.1.1 Concepts

In this subsection we describe dynamic decision making as a concept and the desiderata which

fall out of the dynamic aspect of the problems. We then discuss the issues revolving around trust

calibration and features which can assist in the process. Together, these sections give rise to our

desiderata for dynamic decision support.

3.1.1.1 Dynamic Decision Making

As a result of the dimensionality of MCDM problems there is no single optimal solution,

instead we de�ne solutions as dominated or undominated. A solution is dominated by another

solution if it performs worse under every criterion. A solution which is not dominated by any

other is called pareto-optimal.

The set of pareto-optimal solutions is known as the Pareto-optimal front (POF). It is impossible

to say which ranking of a POF is optimal [152]; the di�erentiating factor is the trade-o�s between

criteria, consequently to compare solutions within the POF we require information regarding the

relative importance of criteria. These criteria can have di�erent importance to di�erent decision

makers, therefore common decision analysis techniques provide methods to elicit user prefer-

ences. These preferences allow the decision maker to traverse the POF, guiding the process of

selecting an appropriate solution.

For dynamic MCDM problems, it is not just the decision maker preferences that change, but
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also the values of criteria and the set of solutions. As a result, the best solution is likely to change

and it is important to dynamically revise the recommendations. Dynamic problems are subject to

real-time constraints; a decision maker must select a solution as the problem continues to evolve

and therefore, for a functional ranking, the frequency of change must be less than the time it

takes to act. If a ranking of solutions completely reorders under small changes to the problem,

it becomes di�cult to make a decision in a timely manner. Campanellaet al. [22] noted this

problem and introduced a framework for improving stability in dynamic decision making. This

approach provides stability by combining historical values for criteria through an aggregation

function.

3.1.1.2 Calibrating Trust

Trustability is an important characteristic of the human-computer team comprising the DSS

and the human decision maker. If a DSS is not trusted then the results can end up discarded and

the team is only as capable as the human alone [9, 78]. Issues can also arise from a DSS being too

trusted; common sense being overridden can lead to problems that would be avoided by a human

decision maker.

Lack of trust can be especially detrimental in a dynamic environment, as the decision maker

must act under real-time constraints. This means that more time deliberating over a decision may

a�ect the outcome. Consequently, trust calibration is a vital aspect of any DSS.

An important aspect of trust calibration is communicating the level of uncertainty within

a system [139]. Uncertainty is often divided into aleatoric and epistemic uncertainty; aleatoric

uncertainty is representative of unknowns that di�er each time we run an experiment (modelled

probabilistically) whereas epistemic uncertainty results from a lack of knowledge [133, 145].

For DSSs, there is often both aleatoric and epistemic uncertainty relating to the criteria that

inform a recommendation. As such, it is important to propagate both kinds of uncertainty to

ensure that the uncertainty intrinsic in a recommendation is either presented to a user or able to
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be re�ected within the decision-making process.

Epistemic uncertainty is often di�cult to quantify, and as a result several authors argue for

the need to use verbal expressions (linguistic variables) for risk assessment [35, 64]. An exam-

ple of this is using �trustworthy� or �untrustworthy� to represent the uncertainty underlying the

reliability of a piece of information. Another method for dealing with epistemic uncertainty is

understanding the source of information. Data provenance is a method for supporting this within

information systems. Data provenance provides a historical record of data and its origins, which

allows the user to assess data quality and suitability [21]. Understanding the source of infor-

mation allows a decision maker to judge for themselves the limitations, and therefore epistemic

uncertainty of the underlying data [69]. This allows a decision maker to judge the correct level

of trust to give data within a system.

Tomsettet al.[133] proposed that for trust calibration, AI systems should communicate expla-

nations for all outputs. For DSS, explanations complement the underlying evidence by allowing

the user some understanding of the space of possible solutions; this means explaining how a

recommendation has been arrived at, and/or describing the relationship between alternative op-

tions. Rudinet al.[117] noted that it is possible for machine learning training data to be �awed in

unknown ways; this is also the case for the data underpinning DSSs. Provenance and explanation

together can help to expose these �aws, allowing trust to be calibrated to an appropriate level.

When �aws are exposed in the recommended solution, it becomes the role of the decision

maker to navigate the space of options to choose an appropriate alternative. It is impossible to

avoid �aws in the underlying data and therefore it is imperative that DSSs provide capabilities to

deal with them.

If all the solutions are very similar it is more likely that a single �aw could permeate the

entire ranking. To solve this, Evans [43] argues that algorithms for supporting problem solving

should generate a diverse set of alternatives. Following this logic, a diverse o�ering of solutions

is a desired feature of DSSs [138]. Approaches to generating a diverse set of alternatives have
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employed agent technology [137] and genetic algorithms [45].

If a diverse ranking is insu�cient for selecting an appropriate solution the decision maker can

navigate the space of options by altering their preferences. To make e�ective use of preferences,

it is crucial for changes in criteria weights to have predictable e�ects. This helps to maintain con-

sistency in the search, an important goal of any MCDM method [130]. Promoting predictability

has been proposed as a foremost responsibility of leadership in project management [101]. For

dynamic decision support, this becomes the responsibility of the system. An aspect underpinning

the predictability of changes in criteria weights is the consistency of trade-o�s between criteria.

It is expected that as the weighting for a criterion increases, the trade-o�s become more favoured

towards that criterion. However, this relationship is not always predictable, as small changes in

criteria weightings can lead to large changes in how an algorithm values certain trade-o�s [25,

127]. We view consistency in trade-o�s as a desired feature, as it gives rise to predictable e�ects

when decision makers adjust their preferences.
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3.1.2 Desiderata

Figure 3.1: The eight proposed desiderata for trusted dynamic multi-criteria DSSs

In summary, to enable e�cient decision making in a dynamic environment, in addition to

the provision of preferences (Desiderata 1), it is required for the system to dynamically revise

recommendations (Desiderata 2)with a high stability of results (Desiderata 3).

All this is required in a context where there may be genuine uncertainty relating to the criteria

informing a recommendation. As such, it is important to ensure that the uncertainty intrinsic to

a recommendation is either presented to a user or able to be re�ected within the decision-making

process (Desiderata 4).

In an environment with dynamic uncertain data, calibrating trust is more important than ever.
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Two features are put forward to enable the calibration of trust: data provenance (Desiderata 5)

and explanation of outputs (Desiderata 6).

Once trust is properly calibrated, two desiderata are proposed to enable an e�cient and in-

tuitive search of the solution space. These are providing the users access to a high diversity of

options (Desiderata 7)and the ability to change preferences, with consistent trade-o�s between

criteria (Desiderata 8). Drawing this together, we arrive at the 8 desiderata for trusted dynamic

multi-criteria DSSs shown in Figure 3.1.

We can break our desiderata down into �ve categories of requirements: decision support,

dynamic problems, uncertain problems, trust calibration and handling poor results. Declarative

speci�cation of preferences is a basic requirement for decision support, allowing a user to select

the right solution from the POF. Dynamic revision of results and high stability of results allow

this to be done in a dynamic environment.

For uncertain problems, it is important to propagate the uncertainty through to the decision

maker, this is therefore a requirement for problems with uncertainty in the underlying data. An

example of this would be choosing an appropriate train based on train times, it is important that

the decision maker understands the uncertainty inherent to train arrivals. Provenance and expla-

nation provide a means to calibrate trust. These desiderata allow the human decision maker to

assess the evidence and reasoning behind a recommendation. The decision maker can then make

an informed decision on whether to follow a recommendation. In the case that a recommendation

is rejected, we are required to continue searching the solution space.

A high diversity of options and consistent trade-o�s between criteria allow us to deal with

poor results by �nding alternatives e�ciently.

These desiderata gives us a framework for comparing dynamic decision support systems but

cannot de�nitively say that an individual system is good and trustable. Instead the framework

gives us direction for improving dynamic decision support systems. Most systems will not ful�l

all eight desiderata but it gives architects an idea of the e�ects of di�erent features and char-
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acteristics. For example, if a problem is uncertain we can improve the system by propagating

uncertainty from the underlying data through the decision making logic. If the users are hav-

ing di�culty calibrating trust, then we can add explanation or provenance data. If the users are

struggling to handle poor results, then we can either improve the consistency of trade-o�s or

the diversity of the results. These examples show how such a framework is important for the

production and improvement of dynamic decision support systems.

3.1.3 Methodologies

In this section we describe the literature surrounding the methodologies that allow us to

enable our desiderata in dynamic DSSs. First we describe MOEAs, the methodology we employ to

provide declarative speci�cation of preferences with dynamic revision of recommendations. This

methodology enables the dynamic revision of rankings for problems where the size of the solution

space makes the reapplication of MCDM methods intractable.

3.1.3.1 Dynamic Multi-objective Evolutionary Algorithm

GAs have been widely applied to multi-objective optimisation problems, employing a heuris-

tic search methodology to calculate the most appropriate solution from the solution space [53].

GAs applied to multi-criteria decision making are known as Multi-Objective Evolutionary Algo-

rithms (MOEAs).

GAs have been highlighted as superior to conventional optimisation algorithms for multi-

objective problems as a result of the following features [12, 13]:

1. GAs search with a population of candidate solutions rather than a single point. Thus, they

are less likely to be trapped in a local optimum.

2. GAs use only the values of the payo� (objective function) information, and not the deriva-

tives or other auxiliary knowledge.
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3. GAs work with a coding (representation) of a parameter set not the parameters themselves.

Thus the search method is naturally applicable for solving discrete and integer program-

ming problems.

4. GAs use randomised parents selection and crossover from the old generation. Thus they

e�ciently explore the new combinations with the available knowledge to �nd a new gen-

eration with better �tness values.

Bingulet al.[12] identi�ed these advantages of GAs and proposed a genetic algorithm for real-

time multi-objective problems. The approach was applied to a war resource allocation problem,

controlling theblueside allocations with four criteria to optimise: minimise the territory theblue

side loses, minimise theblueside aircraft lost, maximise the number ofredside strategic targets

killed and maximise the number ofred side armour killed. The GA had three possible �tness

functions, shown in Equations 3.1, 3.2 and 3.3 respectively.

� 1 = 54
1 ¸ 53

2 ¸ 52
3 ¸ 54 (3.1)

Where� 1 is a �tness score,51 is the smallest criteria value,52 is the second smallest criteria

value,53 is the third smallest criteria value, and54 is the largest criteria value.

� 2 = 52
1 ¸ 52

2 ¸ 52
3 ¸ 52

4 (3.2)

Where� 2 is a �tness score and51, 52, 53 and54 are the MOEAs criteria values.

� 3 = � <0G �
4Õ

8=1

¹5<0G � 58º2 (3.3)

Where� <0G (16 for this case) is the maximum value of total �tness score and5<0G (2 for this

case) is maximum value of each �tness score.
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These �tness functions were applied in a GA with a �xed population size of 50, a crossover

probability of 0.7 and a mutation probability of 0.02.

In a later paper [13], Bingulet al.introduced an adaptive system for setting the mutation and

crossover rates. This change was designed to improve the convergence speed and stability of the

results. To do this, the authors use the mean, variance and the best �tness value of each generation

to set the mutation and crossover rates going forward. The results found that the adaptive GA

had a higher rate of convergence and converged to a higher �tness value. Convergence rate is an

important characteristic that underpins the stability of resultant rankings as a slow convergence

can unsettle rankings as the scenario evolves over time.

Following similar reasoning, Debet al. [31] introduced the Non-dominated Sorting Genetic

Algorithm II (NSGA-II), an elitist genetic algorithm for multi-objective optimisation. This al-

gorithm is often used as a baseline for comparing new MOEAs [51]. The algorithm employs a

fast non-dominated sorting approach with$ ¹"# 2º computational complexity, where" is the

number of objectives and# is the population size. The elitist selection operator creates a new

generation by combining the parent and o�spring populations and selecting the best# solutions.

To do this, the solutions are �rst sorted into dominated and non-dominated (pareto-optimal) solu-

tions. These non-dominated solutions form the �rst level non-dominated front. These solutions

are then removed and the process is repeated to �nd the second level non-dominated front. For

each solution, this hierarchy is used to calculate two entities: the domination count (the number

of solutions dominating a solution) and the set of solutions dominated by a solution. The fronts

are then integrated into the next generation, beginning with the �rst level non-dominated front.

The �nal front is then sorted using the crowded-comparison operator, that preserves diversity by

selecting solutions in a less crowded region of the solution space.

This approach approximates a pareto-optimal front e�ciently, providing a means for dynamic

revision, but integration with an MCDM method is required to solve the problem of recommend-

ing a single solution to the user.
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Example Preferences Dynamic Revision Stability Uncertainty Provenance Explanation Diversity Trade-o�s

1 X X � X X X � �
2 X X X � � X X X
3 X X � � � � � X
4 X X � � � � � X
5 X X X � � � � �
6 X � � � � � � �

Table 3.1: The fulfilment of our desiderata in a bundle of dynamic decision support case studies; 1 -
Train journey planning DSS, 2 - Harbour management DSS, 3 - A dynamic decision support system for
evaluating peer-to-peer rental accommodations in the sharing economy [131], 4 - A dynamic decision
support system for sustainable supplier selection in circular economy [6], 5 - A knowledge based system
for supporting sustainable industrial management in a clothes manufacturing company based on a data
fusion model [141], 6 - Urbanization suitability maps: a dynamic spatial decision support system for
sustainable land use [24].

3.1.4 Examples

In this section we outline some recent dynamic decision support case studies from the litera-

ture and highlight how our desiderata surface within each system.

Tavanaet al. [131] designed a dynamic DSS for evaluating peer-to-peer rental accommo-

dations in the sharing economy. This system compares rental accommodation based upon 28

di�erent criteria divided into 5 categories of evaluation, property, neighbourhood, economic and

distance factors. The system applies TOPSIS over dynamic data to enable the provision of pref-

erences in a dynamic environment. The system does not automatically revise results but allows

for recalculation on demand. This system is applied in a context with no uncertain data and as

the results are not revised repeatedly, stability of results is not an issue that has been addressed.

The system also addresses a problem with a small number of solutions and therefore promoting

a high diversity of options is not a priority.

Alavi et al. [6] presented a similar dynamic DSS for sustainable supplier selection in circular

supply chains. This system also considered a large number of criteria and therefore chose to

apply the Best Worst Method (BWM). This method is similar to AHP but focuses on reducing

the number of pairwise comparisons needed by deducing the values of missing comparisons,
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reducing the number of pairwise comparisons required from=¹=� 1º
2 in AHP to 2= � 3. The system

enables dynamic revision through the re-application of BWM over dynamic data. The authors

also investigate the consistency of the trade-o�s by applying sensitivity analysis to assess the

robustness of rankings under changes to the weightings of criteria, concluding that the rankings

achieve a reasonable level of sensitivity. In our framework, we ignore the sensitivity of trade-o�s

in criteria in favour of a focus on consistency (Desiderata 8).

Vieira et al.[141] delineated a knowledge based system for supporting sustainable industrial

management in a clothes manufacturing company based on a data fusion model. They apply a

D-MCDM model proposed by Campanellaet al.[22]. The model uses an aggregation function to

synthesise historical and predicted future criteria values to create a ranking which aims to achieve

a high stability of results. The model also allows for the speci�cation of user preferences and is

recalculated as the situation unfolds as a means for dynamic revision. Overall, in the literature

most dynamic DSSs aim to ful�l a handful of our desiderata but fail to adequately address all our

desired features and characteristics for dynamic decision support.

Cerretaet al.[24] outlined a dynamic spatial DSS for guiding and managing sustainable land

use. The system applies AHP to select suitable land for consumption whilst minimising envi-

ronmental impacts of spatial planning. Through the AHP, decision makers can express their

preferences across a hierarchy of factors, such as geomorphology or the natural resources and

ecological network. Their approach is not dynamic in an integrated temporal sense but instead

models land consumption as a dynamic process, predicting the scenarios that might result from

the implementation of city planning strategies. The possible outcome is predicted but the char-

acteristics of the uncertainty are hidden and not propagated to the decision maker.
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3.2 Rail Journey Case Study

This section introduces a rail journey case study, which is used to give illustrate how a DSS

can be built which supports 5 of our desiderata, namely;

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. data provenance, and

6. explanation of outputs.

Further details of how we enable and evaluate (3)high stability of results, (7)high diversity of

optionsand (8)consistent trade-o�s between criteriaare given in Chapter 5.

3.2.1 Motivating Example

To illustrate multi-criteria decision support over streams, we consider an application relating

to train journey planning. We assume that a user can state where they need to gofrom andto,

along with the proposed start time. We also assume that the most suitable journey time for a

user may depend on di�erent criteria, speci�cally thearrival timeof the journey, thepriceof the

journey, and thenumber of changes. For example, in Figure 3.2, a decision maker must choose a

route from A to F in a way that takes into account price, arrival time and number of changes.

Solution Price (¿) Changes Arrival Time
ABF 15 1 14:00
ABDF 16 2 14:00
ACDF 9 2 14:40

Table 3.2: The solutions to figure 3.2.
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Figure 3.2: Example Train Routing Scenario

Circles and arrows depict stations and trains respectively.

Table 3.2 shows the solutions to this example. We note that the solution��� dominates����

as it is equal or better for all criteria values. This leaves us with two potential solutions;��� and

���� . A business person may prefer��� because it is quicker, whereas a student may prefer to

save money and take���� . There is no optimal solution for everyone and so we require user

speci�cation of criteria preferences(Desiderata 1).

One such criterion, arrival time, indicates the expected arrival time of a journey. This is

subject to change, as trains may be delayed or lines closed. Ticket prices are also subject to change

up until the time of purchase. If a train is delayed or the price increases, the resulting solution may

no longer be optimal, therefore dynamically revising recommendations(Desiderata 2)to re�ect

the most recent information is clearly bene�cial. The user may also move between stations as

a part of their interaction with the system, hence requiring an entirely new set of solutions. A

decision maker may see these solutions and choose option���� because they believe it will only

take 10 minutes. However, this route may be unreliable due to engineering works, so it may be

important for the user to understand the source and derivation of criteria values(Desiderata 3)
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Figure 3.3: Prototype Architecture; PROV is defined in Subsection 3.2.3

to improve trustability, or to understand the uncertainty that is characteristic of this particular

train service(Desiderata 5).

Finally, after expressing their preferences, accepting criteria values and understanding uncer-

tain aspects, a user is left with a recommended journey. It may be di�cult to trust this recommen-

dation without understanding why it was selected. Therefore we should provide the user with an

explanation of where the recommendation falls in the solution space, so that they can understand

the trade-o�s being made, and how this ties into their preferences for criteria(Desiderata 4).

3.2.2 Architecture

To evaluate our approach, a prototype platform has been developed. This platform imple-

ments our desiderata from Section 1.5.2, whilst providing decision support for train route plan-
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ning. The system utilises a micro-services architecture shown in Figure 3.3.

The decision maker operates the DSS through the user interface. The user inputs details for

a planned trip; an origin station, a destination station and a departure time. The user also must

specify their preferences with regard to the criteria. This information is sent with a request to

open a web-sockets connection to theApplication Controller. TheApplication Controllerholds the

state of the train journeys (solutions) within the system. The controller uses the planned trip to

build a http request to send to theTimetable Service.

Our architecture requires a solution service to generate the initial solution space. TheTimetable

Serviceis the implementation of the solution service for the train route planning scenario. The

service generates a list of train journeys between the requested origin and destination stations at

the speci�ed departure time. Initial values are then calculated for all criteria. TheTimetable Ser-

vicereturns an unranked list of train journeys which are passed from theApplication Controller

to the Live Train Service. A streaming component is also required to update the dynamic criteria

and to produce a new ranking in real-time. TheLive Train Serviceis an implementation of this

component for the train scenario. In this case the live train service must update the expected train

arrival time. TheLive Train Serviceis initialised with a list of train journeys, which are ranked

by the Ranking Service. A stream of UK-wide train updates fromNational Railis �ltered, and

matching updates are used to update criteria values. The updated list of train journeys is then

re-ranked by theRanking Service. The output stream of ranked train journeys is communicated

to the User Interfaceover web-sockets.

TheRanking Serviceaccepts a speci�cation of preferences and a list of solutions, to produce

a ranking. This ranking is calculated through the application of the AHP.

The criteria and criteria behaviour are speci�ed through the con�guration. For example,

we specify that price is a criterion and should be minimised. This allows the service to remain

generic. The other generic component is the provenance sub-system. The provenance sub-system

generates, stores and serves provenance data within the platform. This subsystem is made up of a
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Operator Input Output
NationalRailSpout N/A <timestamp :: Timestamp, id :: trainID, destination :: String, newExpectedArrival :: Timestamp>
DelayBolt NationalRailSpout <timestamp :: Timestamp, journeys :: [Journey]>
RankingBolt DelayBolt <timestamp :: Timestamp, rankedJourneys :: [<score :: Double, journey :: Journey>] >

Table 3.3: Input and Output types for each operator

message queue, a database (Prov DB) and two services; one for generating provenance (Prov Gen-

erator Service) and one for serving it (Prov Provider Service). The sub-system receives messages

from the streaming service which are processed to produce provenance graphs.

3.2.3 Architecture Components

In this subsection, we provide further details of the components in Figure 3.3.

Live Train Service

SPEs are programming frameworks designed to enable the intuitive manipulation of stream-

ing data. The live train service makes use of Apache Storm to transform streams of live train

updates. Apache Storm is an open source SPE that utilises three abstractions: spouts, bolts and

topologies. Spouts produce streams; bolts consume any number of streams to produce new output

streams; and a topology describes a network of spouts and bolts. Within our streaming compo-

nent we instrument these operators to extract provenance data.

We extend the base classes for bolts and spouts to produce two new provenance aware classes:

ProvenanceAwareBolt and ProvenanceAwareSpout. An example of a bolt extending this class is

shown in Listing 3.1.Executede�nes how a bolt processes each tuple anddeclareOutputFields

declares the shape of tuples in the output stream. An operator inheriting from these classes will

write provenance information concerning its inputs and outputs to the provenance sub-system.

For the train route scenario we have three operators:NationalRailSpout,DelayBoltand Rank-

ingBolt. TheNationalRailSpoutproduces a stream of delays; theDelayBoltapplies relevant delays

to a list of journeys; and theRankingBoltinterfaces with theRanking Serviceto calculate a score
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for each journey. Table 3.3 shows the input and output tuples for each operator. We instrument

all the operators to supply us with provenance regarding the history of solutions, their criteria

values and the resulting ranking.

publ ic c l a s s ExampleBol t extends ProvenanceAwareBol t {

publ ic void execu te ( Tuple t u p l e ) { }

publ ic void d e c l a r e O u t p u t F i e l d s ( D e c l a r e r d e c l a r e r ) { }

}

Listing 3.1: Code for a provenance aware bolt

Ranking Service

To calculate a recommendation we apply the AHP [118], using pairwise comparisons between

criteria to generate weightings. The details for this process are given in Subsection 2.1.2. We

applied the methodology as outlined with two potential formulas for comparing criteria values

under consideration, depending on whether the values fall along a linear scale (3.4) or an expo-

nential scale (3.5). These formulas map two normalised values (G, ~) to the fundamental scale

proposed by Saaty [118]. For the train route planning scenario, we apply the �rst formula (3.4),

because all criteria form a linear scale. For example, train prices might be ¿10, ¿15, ¿20 for three

alternative routes and not ¿10, ¿100, ¿1000.

5¹G•~º = j¹G� ~º � 8j ¸ 1 (3.4) 5¹G•~º =
4G

4~ (3.5)

The ranking service operates over web-sockets. The service requires a con�guration �le when

a connection is opened, providing information about criteria. Critically, the con�guration indi-

cates the number of criteria and whether numerical criteria should be maximised or minimised.
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Figure 3.4: Provenance graph for a train schedule update

The con�guration also allows us to indicate how we should compare non-numerical criteria. Once

a connection is opened, AHP is applied to a stream of solutions, producing a stream of rankings.

Provenance Sub-system

The provenance sub-system processes messages from the streaming system and stores the

output in a database for future querying. To store this data we choose to conform to the PROV

standard [98]. PROV de�nes a data model consisting of a set of vertices and edges for modelling

provenance as graphs. We adapt a subset of these to map to concepts from data stream analysis.

For vertices we use entities, activities and agents. For edges we usewasGeneratedBy, usedand

wasAssociatedWith. The PROV data model describes entities as �an immutable piece of state�,

activities as �dynamic aspects of the world which produce entities� and agents as �parties which

take a role in activities�. We model stream elements as entities; stream operations as activities;

and stream operators as agents. Note, we call a set of inputs and outputs a stream operation. The

stream operator refers to the operator applied to these inputs to produce the outputs.
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Edges describe the relationships between two entities.wasGeneratedBylinks an entity to the

activity which generated it.used links an activity to an entity it consumed.wasAssociatedWith

links an activity to an agent associated with it. We say a stream element was generated by a

stream operation. These operationsuseda stream element or window of elements. The operation

alsowasAssociatedWiththe operator which was applied.

An example provenance graph is shown in Figure 3.4. This example shows the derivation for

an expected train arrival time. The newarrival time wasGeneratedByan operation whichused

the scheduled arrival timeand theschedule delay. The operationwasAssociatedWiththe delay

operator (DelayBolt).

3.2.4 Framework Concepts

In the remainder of this section, we explain what we mean byexplanationand uncertainty

and how these concepts surface within our architecture.

Explanation

The AHP algorithm outputs a weight vector for criteria and a score for each solution. Whilst

this is useful for constructing a ranking, these values are di�cult for a human to interpret. There-

fore we require some further explanation of how the system arrived at a recommendation. Fun-

damentally we describe explanation as a description of how a set of criteria preferences are used

by AHP to select a solution from a solution space. Perhaps the most important aspect is an expla-

nation of the trade-o�s and bene�ts of a recommendation and how this ties into the speci�ed user

preferences. For instance, in the case of train route planning, a user could specify that price is crit-

ical to them. Assuming the system recommends��� , the cheapest option, a simple explanation

would be that��� is the cheapest train and price is the most important criterion.

Our recommendations are dynamic and so it is important that an explanation can be pro-

cessed by the user quickly. This lead us towards visual forms of explanation such as bar and spi-
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der charts. Spider charts visualise multi-variate data as a shape constructed from three or more

quantitative variables across axes stemming from the same point. Typically a chart with a larger

area represents a better solution, but these charts can be misleading as the order of criteria can

greatly a�ect the area. For this reason we chose instead to visualise the solution space through

bar charts where the values for each criterion and solution are plotted side-by-side. Bar charts

are one of the most simple forms of data visualisation, leaving less room for misinterpretation.

Uncertainty

Uncertainty is modelled using Cumulative Distribution Functions (CDFs) drawn from histor-

ical data. These functions capture information regarding the potential values of an uncertain

criterion for a particular solution. Arrival time is an uncertain criterion for train route planning.

We derive a CDF of arrival times for a journey from the historical performance of the trains

travelling the same route. Such CDFs are a simple model, capturing the distribution of poten-

tial criteria values. Through this distribution we can view the probability of the potential risks

(lateness) for a journey. CDFs serve as alternatives to criteria values for uncertain criteria but

we require a method of comparing two CDFs. To do this we extract three key values from the

distribution; optimistic, expected and pessimistic values. For a CDF5, we de�ne optimistic, ex-

pected and pessimistic values asGsuch that5¹Gº = 0”05, 5¹Gº = 0”5and5¹Gº = 0”95respectively.

An example for train arrival times is shown in Figure 3.5. The user interface allows the decision

maker to toggle which of these three values is fed into the ranking algorithm.

3.2.5 Motivating Example Application

In this section we explain how the user interacts with the system and how this interface

supports the desiderata from Section 3.1.2. The user interface aims to target end-users, rather

than decision scientists [128]. The user interface for the train route planner is shown in Figure 3.6.

For a decision maker planning a train journey, the �rst task is to specify the planned trip. The
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Figure 3.5: Cumulative Density Function for Arrival Time

top left corner shows the trip input form, where the user can input where they wish to travelFrom

(Origin Station),To (Destination Station) and the time they areLeaving At (Departure Time).

Once these values are set the user can clickCalculate Routesto generate a set of possible journeys.

The next task is for the user to specify their preferences(Desiderata 1). In our user interface these

pairwise user preferences are located in the bottom left. In Figure 3.6 the preferences are set

to default, with all criteria equal. Each pair can be set through a drop-down menu one of �ve

potential values:
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Figure 3.6: Route Planning User Interface

1. - is much more important than. ,

2. - is more important than. ,

3. - is just as important as. ,

4. - is less important than. ,

5. - is much less important than. .

These preferences can be changed at any point, triggering the system to re-rank the journeys.

Once the planned trip and preferences have been detailed the user is presented with the top �ve

ranked journeys (the fourth and �fth fall below the fold). Immediately the user can view criteria
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values of each journey (Price, Arrival TimeandTransfers). These values and the resultant ranking

are updated continuously once routes have been calculated(Desiderata 2).

To prevent information overload some extra details are hidden. Clicking the plus next to

Journey Pathdisplays the information needed to undertake a journey, including the journey path

and the trains of which the journey is composed. Each journey also has aView Detail button,

which allows the user to view provenance information in a pop-up window(Desiderata 3). The

design for this window is shown in Figure 3.7. Here the user can view the history of values for

Arrival Time and the data sources.

The values for each of the criteria are shown in the bar charts at the top of Figure 3.6, with

the x-axes ordered according to the ranking. These charts allow the user to visually compare

a recommendation (the furthest left value) to the solution space (all other values). The charts

are also ordered according to the weighting calculated through AHP, with the most important

criteria appearing on the left. This means a user can both understand the trade-o�s of a rec-

ommendation and how this ties into their speci�ed preferences(Desiderata 4). Finally, the user

can toggle betweenPessimistic, ExpectedandOptimistic modes for the predicted arrival time by

clicking the corresponding button. These modes simply change the value extracted from the CDF,

as described in Section 3.2.4(Desiderata 5). Expectedvalues are more useful for users making a

journey many times (such as commuters) whereaspessimisticvalues would be more important in

a scenario where a user is travelling for something more time critical (such as a job interview).

3.3 Conclusions

In this chapter, we identi�ed and demonstrated desiderata for dynamic DSSs, through the

development of a train journey planning application. We presented a literature review revolving

around the key issues and concepts in dynamic decision support. This discussion explains how

these issues give rise to our eight desiderata. The chapter contributes these eight desiderata;
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jointly making up a framework for trustable dynamic decision support.

Our train journey planning case study illustrated how our eight desiderata surface in a real

application. The developed DSS helps a user to plan a journey between two stations according to

the arrival time, priceand thenumber of changes. This DSS support the �ve desiderata that can

be viewed as desired features (rather than characteristics), namely:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. data provenance, and

6. explanation of outputs.

For our train journey planning DSS, declarative speci�cation of preferences and dynamic revi-

sion of recommendations are enabled by employing a dynamic GA with AHP applied as a �tness

function. This is integrated with the uncertainty inherent to train arrival times, allowing the

user to swap between expected, optimistic and pessimistic criteria values for uncertain criteria.

Data provenance is provided, informing a decision maker on the source of information relating

to train delays. Finally, the system provides a visual comparison of the alternatives as a means of

explaining the rankings to the decision maker. This aims to provide an explanation of the outputs

in a medium suitable for real-time decision making.

The �nal three desiderata are desired characteristics of dynamic DSSs, with the details of

how we enable and evaluate these desiderata given in later chapters. In Chapter 4, we outline

a methodology for enabling high diversity of options(Desiderata 7), along with an evaluation.

In Chapter 5, we evaluate four MCDM methods as �tness functions for our dynamic GA, as-

sessing their stability of results(Desiderata 3)and the consistency of trade-o�s between criteria

(Desiderata 8).
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Figure 3.7: Provenance Data for an Arrival Time
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4 | Harbour Management Case Study

Maritime facilities face challenging demands, including monitoring ocean tra�c, port safety

and emergency response. New technology is required to tackle these challenges, under the

stresses of higher levels of tra�c and an increased need for rigorous safety and prompt emer-

gency response [104, 123]. Drones are one technology that has been identi�ed for this role, and

managing these drones for various tasks is one aspect of the expanding role of harbour man-

agement. Situational awareness has been highlighted as crucial in domains where the e�ects

of ever-increasing technological and situational complexity on the human decision maker are a

concern [95].

Drones provide a means for aerial situational awareness, within a harbour and beyond [48,

88]. One task, which has the potential to improve situational awareness, is automatic identi�-

cation of ships approaching a harbour. Drones can be employed to take photos of ships, for the

identi�cation of tra�c and potential threats. Selecting an appropriate route for the drone is a

complex decision that can be informed through a DSS.

In this chapter we present our harbour management case study for situational awareness

using drones. This case study is used as the basis for a test-bed environment that we used to

assess appropriate MCDM methods for decision support in Chapter 5 and to analyse the e�ect of

UI features on trust and its antecedents in Chapter 6.

An overview of the literature related to DSS applications to vehicle routing and drones is

given. We then explain the motivation for using a DSS to manage a Unmanned Aerial Vehicle
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(UAV) for situation awareness. Next, we explain how our desiderata relate to the task and give

details of the criteria for this case study, when formulated as a MCDM problem. Finally, we

present our DSS, showing the architecture and the user interface that a decision maker uses to

interact with the system.

4.1 Related Work

In this section, an overview of the literature surrounding the problems solved and techniques

used in the harbour management case study is presented. Firstly, an introduction to the Vehicle

Routing Problem (VRP) and some studies producing VRP DSSs are described. We then introduce

the UAV Task Assignment Problem (UAVTAP) and the application of MOEAs to solve them.

4.1.1 Vehicle Routing Problem

VRP is a well known problem in operational research and combinatorial optimisation. In VRP,

routes must be assigned to a set of vehicles that must visit a set of customers such that the total

cost of the operation is minimised. VRP has been tackled in a wide array of real-world systems.

Santoset al. [122] introduce a web-based spatial DSS for waste collections. The system pro-

vides static solutions with inputs in terms of constraints: shift time limit, vehicle types, capacities

and an attribute to maximise/minimise. The system is therefore limited by its ability to optimise

towards multiple objectives, requiring the user to specify a single attribute to optimise towards.

Addressing this issue in the Safe Route Planner, a DSS designed to provide drivers with rec-

ommendations for the safest route between two locations, Sarrafet al. [124] integrate MCDM

methods. The integration of user preferences allows the system to optimise towards multiple

objectives at once and trade-o� between the shortest, fastest and safest routes. They assess the

AHP, Fuzzy AHP, TOPSIS, Fuzzy TOPSIS and PROMETHEE for suitability, concluding that AHP

is most appropriate due to its simplicity and robustness.
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Abbatecolaet al. [1] introduce a decision support approach for postal delivery and waste

collection. This system provides static routes for o�ine optimal planning of vehicle assignments.

They apply a two-phase heuristic algorithm based on a clustering strategy and a fast insertion

heuristic for solving a travelling salesman problem. This approach scales very well compared to

a mixed integer linear programming approach, allowing results to be quickly recalculated. This

improvement paved the way for future work, including plans to modify in real-time the planning

of routes. Continuing the research, the approach was applied to a more complex problem, now

including time and shift constraints [44]. Abbatecolaet al.[3] provides further assessment under

these conditions, concluding that the approach obtains a set of well balanced routes with respect

to the vehicle travelling times and assigned loads. The latest paper [2], applied this algorithm to

a dynamic VRP, encapsulating the routing problem of pick-up and delivery services considering

both time windows and capacitated vehicles. The paper shows how the method can be applied

by the vehicles for both planning the workday of the pick-up services, and adapting the routing

plan to manage the ongoing requests.

These papers highlight user preferences as a desired feature for future VRP DSSs. This is

because the suitability of a route in the real-world depends upon a wide array of criteria. To

complement the addition of preferences, explanation is put forward as another useful feature for

decision support. Explanation refers to the addition of capabilities allowing the user to distin-

guish the trade-o�s made between solutions according to the user's preferences. We also identify

dynamic updates as a desired feature of VRP DSSs.

4.1.2 Situational awareness with drones

The UAVTAP consists of �nding an optimal assignment of UAVs to a set of tasks [28]. In this

section we discuss previous research in the area and their approach to solving UAVTAP as an

MCDM problem.
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Ries and Ishizaka[114] present a multi-criteria support system for a dynamic UAVTAP. Their

case study employs UAVs for surveillance to investigate ships in a maritime environment. The

approach applies AHP to calculate weightings for PROMETHEE, ranking ships from least to most

suspicious as a means of facilitating an e�cient priority for surveillance. The system then assigns

a UAV to investigate the most suspicious ship. This approach di�ers from our own as it calculates

only the next ship to be visited, whereas in our own system we attempt to qualify an entire tour,

limited by the fuel of the drone. This approach allows us to plan further ahead to �nd more

fuel and time e�cient routes. As a result of planning further ahead, our case study features an

exponentially larger set of possible solutions. To explore this large set of possible solutions, we

integrate a genetic algorithm as a meta-heuristic search function.

Ramerirezet al. �rst formulated UAVTAP as a constraint satisfaction problem, with the mis-

sion being modelled and solved using constraint satisfaction techniques [109]. In a later paper

[111], UAVTAP is formulated as a multi-objective optimisation problem. Their objective consists

of minimising the number of drones employed, the total �ight time, the total fuel, the total dis-

tance, total cost and the time taken. The original approach was combined with a MOEA [110],

this algorithm provides an estimate of the POF, i.e. the set of all non-dominated solutions of the

problem. A solutionB1 is dominated byB2 if B1 is not better in any objective andB2 is better in

at least one. A solution is non-dominated if it is not dominated by any solution in the solution

set. Their conclusion is that, as the complexity of the mission increases the number of solutions

in the POF becomes huge, and therefore the time needed to calculate the complete POF becomes

intractable.

To improve on this approach, Ramirezet al. [107] introduce a Knee-Point MOEA intending

to reduce the POF to a set of the most likely best solutions. This reduces the size of the POF

from hundreds to tens of solutions. This however, still leaves a di�cult task for decision mak-

ers who must select the most appropriate mission plan. In a later paper, the authors rank the

outputted POF using a selection of MCDM algorithms according to user preferences [108]. The
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work assumes that the decision maker cannot providea priori information regarding preferences

on criteria. A limitation of this approach is that it can become costly in a dynamic setting, as the

POF must be recalculated each time the mission scenario is updated.

Coelhoet al. [27] also proposed a multi-objective UAVTAP. Taking inspiration from a multi-

criteria view of real systems, the approach considers seven di�erent objective functions which

it seeks to minimise using a mixed-integer linear programming model solved by a matheuristic

algorithm. This produces an estimate of the POF but the paper does not attempt to rank the

non-dominated solutions.

In our work, we apply the MCDM methods as a �tness function of a genetic algorithm, rather

than applying an MOEA. We take this approach as it is infeasible to calculate a POF in a dynamic

setting. Our approach is enabled by the fact that the decision maker's preferences are available

prior to route calculation. If they are not available, we assume the decision makers priorities

are split evenly between objectives. Using a genetic algorithm with MCDM methods as a �tness

function allows us to maintain a solution set ranked according to preferences, as the situation

and therefore solutions, evolve over time.

4.2 Harbour Management Case study

In this section, we describe an UAVTAP for aerial situational awareness. For this task, a

decision maker takes the role of a harbour master managing a harbour. The harbour master

controls a single drone to identify ships close to the harbour zone. The job of the user is to select

a route for the drone, with a view to identifying ships, before they reach the harbour zone. The

length of these routes is limited by the fuel of the drone. Once the drone has run out of fuel,

it must return to the refuel point, located within the harbour zone. We assume that the most

suitable route may depend on di�erent criteria:Unidenti�ed Ships in the Harbour, Average Lead

TimeandFuel per Ship.
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ˆ Unidenti�ed Ships in the Harbour - The number of unidenti�ed ships which will arrive

in the harbour over the course of the route.

ˆ Average Lead Time - The average amount of time between a ship being identi�ed and

arriving in the harbour.

ˆ Fuel Per Ship - The amount of fuel used by the drone per ship identi�ed.

4.2.1 Desiderata for Situational Awareness with Drones

As with all MCDM problems, these criteria have di�erent values for di�erent decision makers,

so we require a speci�cation of preferences (Desiderata 1).

In our case, the criteria are predicted values, based upon the current trajectory of ships in

the area surrounding the harbour. Ships approaching a harbour can quickly change direction,

causing the criteria values of a route to change. This has an impact on the ranking of options,

necessitating dynamic revision of recommendations (Desiderata 2).

Such changes cause the criteria values for routes to change rapidly, resulting in di�cultly

when selecting a route under real-time constraints. This creates a requirement for a high stability

of results (Desiderata 3).

In this environment, there is no uncertainty captured in the underlying data. This means

that for this case study, uncertainty cannot be propagated through the decision making process

(Desiderata 4).

There is also only a single source for the incoming data, so we ignore the desired provision

of provenance (Desiderata 5).

Without provenance data, we require another mechanism to enable to calibration of trust. In

this case study, the harbour master has to select a route based on our three criteria. Understanding

where each route falls within our solution set and the trade-o�s being made is an important

factor when creating understanding of the system. As a result, explanation is a desired feature
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for calibrating trust (Desiderata 6).

It is also worth noting that a decision maker may have knowledge outside the scope of the

system. An example for harbour management could be multiple ships that do not require iden-

ti�cation. If every route visits these ships then the decision maker is left to manually plot a

route, rendering the system useless. This suggests that a diverse set of routes would be desired

(Desiderata 7).

When this diverse ranking is insu�cient for selecting an appropriate route, the decision

maker must generate a new ranking by altering their preferences. It is important that alter-

ing preferences has a predictable e�ect on the trade-o�s between our three criteria:Unidenti�ed

Ships in the Harbour, Average Lead Time, Fuel Per Shipif the user is to make a timely decision.

Hence, consistent trade-o�s between criteria are desired (Desiderata 8).

Bringing this together, we have the following list of desiderata for our harbour management

case study:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

3. high stability of results,

6. explanation of outputs,

7. high diversity of options, and

8. consistent trade-o�s between criteria,

In this section we have detailed how we enable (1)declarative speci�cation of preferences, (2)

dynamic revision of recommendations, (6)explanation of outputsand (7)high diversity of options.

Further details of how we enable and evaluate (3)high stability of resultsand (8)consistent trade-

o�s between criteriaare given in Chapter 5.
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4.2.2 Criteria

In this section we describe the motivation and calculations for each of the criteria used for

route selection in our harbour management task.

4.2.2.1 Unidentified Ships in the Harbour

The primary goal of the situational awareness task is to identify ships before they reach the

harbour. As a result, the �rst criterion is the number of unidenti�ed ships which will arrive in

the harbour over the course of the route. The system calculates the length of time needed to

complete a route, then uses the current trajectory and speed of all boats to calculate which of

the unidenti�ed ships will reach the harbour before the drone returns. The amount of time each

of these ships will spend in the harbour unidenti�ed is then summed. The total time spent by

Unidenti�ed Ships in the Harbourshould be minimised.

4.2.2.2 Average Lead Time

For situational awareness, information gained sooner is more valuable. If a ship is identi�ed

seconds before it passes the threshold into the harbour, there is no time to respond to the gathered

information. As such, it is important to maximise the time between a ship's identi�cation and its

arrival in the harbour. We call this metriclead time. The system takes the speed and trajectory of

each ship within a route to predict the lead time for each. The average of these values is calculated

and used as the criterionAverage Lead Time. TheAverage Lead Timeshould be maximised.

4.2.2.3 Fuel Per Ship

An important part of managing any operation is minimising cost. For this task, that means

reducing the amount of drone fuel we expend. To maximise e�ciency, another objective is there-

fore to minimise the fuel cost per ship visited. For our simulation, the drone burns a �xed amount

82




	Abstract
	Declaration
	Copyright
	Acknowledgments
	Introduction
	Motivation
	Decision Support
	Decision Support for Dynamic Applications
	Multi-objective Evolutionary Algorithms
	Frameworks for dynamic multi-criteria decision making

	Trustable Decision Support
	Approach
	Desiderata
	Train Journey Planning Case Study
	Harbour Management Case Study
	Harbour Management Trustability Study

	Aims and Objectives
	Contributions
	Thesis Outline

	Technical Background
	Multi-criteria Decision Making Methods
	Weighted Product Model
	Background
	Implementation

	Analytic Hierarchy Process
	Background
	Implementation

	TOPSIS
	Background
	Implementation

	PROMETHEE
	Background
	Implementation


	Stream Processing
	Streaming Concepts

	Multi-Criteria Dynamic Genetic Algorithm
	Formulating the problem
	Architecture

	Conclusions

	Desiderata for Decision Support for Dynamic Applications: A rail journey planning case study
	Related Work
	Concepts
	Dynamic Decision Making
	Calibrating Trust

	Desiderata
	Methodologies
	Dynamic Multi-objective Evolutionary Algorithm

	Examples

	Rail Journey Case Study
	Motivating Example
	Architecture
	Architecture Components
	Framework Concepts
	Motivating Example Application

	Conclusions

	Harbour Management Case Study
	Related Work
	Vehicle Routing Problem
	Situational awareness with drones

	Harbour Management Case study
	Desiderata for Situational Awareness with Drones
	Criteria
	Unidentified Ships in the Harbour
	Average Lead Time
	Fuel Per Ship

	Scenarios
	Criteria Correlations
	Experimental Set Up
	Results


	Genetic Algorithm for Route Selection
	Formulation of the problem
	Chromosome encoding of Routes
	Fitness Function
	Mutate Function
	Crossover Function
	Solution Selection
	Solution Initialisation

	Number of Generations Experiment
	Evaluation Methodology
	Results

	Diversification of Options
	Evaluation Methodology
	Results
	Conclusion

	Architecture
	Interface

	Conclusions

	Evaluating Decision Support Methods for Harbour Management Case Study
	Related Work
	Evaluating MCDM methods

	Trade-off Evaluation
	Motivation
	Evaluation Methodology
	Results
	Conclusions

	Sensitivity Evaluation
	Evaluation Methodology
	Results
	Conclusions

	Discussion

	Trust in Dynamic Decision Support
	Technical Background
	CB-SEM
	PLS-SEM

	Related Work
	PLS-SEM
	Frameworks for trust and the acceptance of technology
	Features
	Explanation
	Preferences
	Dynamic Updates


	Research model and hypotheses
	Theoretical Model
	Transparency
	Cognitive Load

	Extended Research Model
	Explanation
	Dynamic Updates
	User Preferences


	Approach
	Data Collection
	User Journey

	Results
	Reliability
	Construct Validity
	Structural model assessment

	Conclusion and Discussion

	Conclusion
	Reflections
	Future Research
	Multi-objective ant colony optimisation for decision support
	Integrating frameworks for dynamic decision support
	Trust calibration versus improving trust


	Appendix
	Harbour Management Questionnaire
	Harbour Management Qualification
	Acronyms

	Bibliography

