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Adaptive Constrained Kinematic Control using
Partial or Complete Task-Space Measurements

Murilo M. Marinho, Member, IEEE and Bruno V. Adorno, Senior Member, IEEE

Abstract—Recent advancements in constrained kinematic con-
trol make it an attractive strategy for controlling robots with
arbitrary geometry in challenging tasks. Most current works
assume that the robot kinematic model is precise enough for
the task at hand. However, with increasing demands and safety
requirements in robotic applications, there is a need for a
controller that compensates online for kinematic inaccuracies. We
propose an adaptive constrained kinematic control strategy based
on quadratic programming, which uses partial or complete task-
space measurements to compensate online for calibration errors.
Our method is validated in experiments that show increased
accuracy and safety compared to a state-of-the-art kinematic
control strategy.

Index Terms—Robust/Adaptive Control, Kinematics, Opti-
mization and Optimal Control.

I. INTRODUCTION

K INEMATIC CONTROL has been applied effectively to
a myriad of tasks that use velocity-actuated robots with

distinct geometry, such as manipulator robots, mobile robots,
and humanoid robots.

Kinematic control strategies use a model derived from the
geometric parameters of the robotic system [1]. The accuracy1

of the control strategy is directly related to the accuracy
of the robot’s geometric parameters, such as link length for
manipulator robots, wheel radius for mobile robots, and so
on. Moreover, in applications that require cooperation between
robots and/or between robots and humans, the geometric
parameters can also include the relative pose between the ref-
erence frame of each robot and other entities in the workspace.

In applications in which accuracy is not a major require-
ment, using the parameters defined in the robot’s design plans
(schematics, computer-assisted design files, etc.) is accurate
enough. For some applications that require a finer degree
of accuracy, it is common practice to perform a calibration
process before executing the task to obtain a more reliable
estimate of the robot parameters [2]–[5]. A calibration process
that happens before the task execution is hereby called an
offline calibration strategy.

In this work, our main motivations are applications in
which offline calibration is impractical and/or insufficient,
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1Accuracy is a measure of how close a robot is able to move its end effector
to a desired point in its task space.

and task-space constraints are necessary. A few examples
include medical applications in constrained workspaces, in
which the robot might have to be repositioned to be used
in different steps of the surgery [6]; reconfigurable robots,
for which the kinematics may change according to novel
configurations, especially when the coupling between different
robot parts within a new configuration is not precise enough; or
even assistant mobile manipulators handling different loosely
grasped tools. In those cases, it is not practical (or even
impossible) to temporarily stop the task to perform a time-
consuming calibration procedure.

Moreover, in realistic applications, sensors that provide
complete task-space measurements might not be available,
especially when the workspace is constrained. For instance,
in robot-assisted surgery for endonasal [6] or neonate pro-
cedures [7], the constrained workspace prevents the use of
extra sensors. Also, having a reliable estimate of the robotic
instruments’ tip pose just from the endoscopic camera is
challenging. A more realistic approach would be to use the
information of the instruments’ shaft centerline [8], [9].

To further enable using robots in realistic and challenging
scenarios, our interest lies in integrating an online calibration
strategy with constrained kinematic control to make the best
of either partial or complete task-space measurements. In this
sense, online refers to calibration being performed at the same
time as the task is being executed by the robot, resulting in an
adaptive controller.

A. Related works

Constrained kinematic (and dynamic) control has received
a lot of attention and has been extended to take into account
task inequalities [10], provide a fast hierarchical solution [11],
prevent collision with static and moving obstacles [12], and
prevent self collisions [13]. All these works suppose that the
robot model is precise enough after an offline calibration is
performed.

Offline calibration strategies rely on having high-precision
measuring equipment in a highly controlled setting [2]–[5].
In those approaches, the robotic system is placed in the
calibration setup that might be composed of cameras and
markers, coordinate-measurement machines, etc. Data are ob-
tained from moving the robot around the workspace and
measuring end-effector poses by using markers with known
geometry or with respect to reference objects in the workspace.
The kinematic parameters are obtained from an optimization
algorithm that minimizes the error between the measured data
(e.g., pose, position, orientation) and the corresponding data
obtained from the estimated parameters.
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Inspired by those offline techniques, recent works [14],
[15] have integrated high-precision sensors in the robot’s
workspace in industrial settings, which allows for the periodic
update of the robot parameters. However, those works do not
provide updates while the task is being performed.

Recent works have explored the optimal path to calibrate the
robot’s dynamic and geometric parameters in an offline fashion
[16], [17]. Those works use constrained quadratic optimization
strategies to minimize the time required for offline calibration
by proving a “sufficiently rich” trajectory [18], [19].

To the best of our knowledge, one of the best techniques to
the target application of this work is adaptive control because
it compensates for inaccuracies in the robot model while
the task is performed. For instance, the dynamic parameters
[20], [21] and some kinematic parameters [22] of robots can
be estimated and adjusted online. However, there are two
major drawbacks of most existing adaptive controllers in this
context: first, with very few exceptions, most of them require
linearity on the kinematic parameters [23] because they rely
on the so-called parameter regression matrix; second, they
cannot consider task-space inequality constraints. Most of the
research making use of the parameter regression matrix is in
the context of grasping objects with uncertain weight using
dynamic control. In that case, there are efficient algorithms to
obtain the parameter regression matrix when, for instance, only
the inertial parameters are to be adapted [24]. A parameter
regressor can be found algebraically when the system is simple
and there are few parameters to be adapted [19], [22], [25].
Based on the observations that it is not possible, in general,
to find linearity on the kinematic parameters, Marcucci et al.
[26] proposed a technique to factorize the robot kinematics
into a regressor matrix and a vector of nonlinear functions
of the uncertain parameters. Then an adaptive control law
that updates the estimate of these nonlinear functions of the
unknown parameters is proposed. Nonetheless, in addition
to assuming that the model is linearly parameterizable and
that the robot Jacobian is invertible, they do not account for
constraints, and the controller requires complete task-space
measurements. Lastly, the proof of closed-loop stability in
existing works on adaptive control is not trivially extensible
to constrained kinematic control, especially when inequality
constraints are considered.

Data-driven approaches such as reinforcement learning [27]
aim to find a suitable reward function to perform a task and
has been idealized to take into account autonomous systems
with arbitrary geometry. The technique sought in this work
would be complementary to research efforts in reinforcement
learning. This is because we aim for an adaptive constrained
controller that guarantees safety and adapts the robot’s uncer-
tain model online according to available measurements. There-
fore, it could also be used to improve sim-to-real transfer [28],
[29] by adapting the learned robot’s model online. Similarly,
many trajectory planning approaches [30], [31] could directly
benefit from such controller for the same reasons. Part of the
planning can be performed offline and the constrained adaptive
constrained controller can allow the transfer of this planning
to real scenarios.

Visual servoing is a technique that relies on cameras to

control the motion of robotic systems. Most classic techniques
in visual servoing require the system’s Jacobian to be invertible
(at least those with stability proof), need a continuous stream
of reliable camera readings, and do not address workspace
constraints. Recent approaches [32] take advantage of data-
driven algorithms to overcome one or more of those lim-
itations. For instance, recent works address visual servo-
ing under temporary occlusions [33] or tackle configuration-
space constraints by using a data-driven strategy to learn the
robot’s model [34]. Related data-driven approaches allow for
impressive performance in robot grasping in low-risk and
low-accuracy scenarios [35]. In contrast with these existing
approaches in visual servoing, we are interested in making use
of any sensor (not only cameras) that can provide a possibly
discontinuous stream of data to update the robot model in
scenarios that might demand high-accuracy, with nonlinear
workspace constraints, and without imposing any requirement
on the Jacobian, such as invertibility.

Also, it is important to mention that this work does not
aim to address hand/eye calibration of cameras, which has
been extensively studied in the literature [8], [36], [37]. In the
current study, we address task-space measurements only, and
the estimation of a camera’s intrinsic and extrinsic parameters
are out of this paper’s scope.

B. Statement of contributions

In this work, we build upon our constrained kinematic
controller [12] and propose an adaptive constrained kinematic
control strategy that makes use of partial or complete task-
space measurements while taking into account both equality
and inequality constraints that are linear in the control in-
puts. To account for nonlinear constraints in both task-space
variables and robot configurations, we extend the vector field
inequalities (VFIs) [12] framework to our adaptive controller,
such that those nonlinear constraints are transformed into
linear differential inequalities in the control inputs.

Differently from existing approaches, our strategy does
not demand a parameter regression matrix, requiring only
differentiability of the forward kinematics with respect to the
estimated parameters. Using Lyapunov stability theory, we
show that the closed-loop system is stable in the sense that the
error between the estimated end-effector pose and the desired
pose is always non-increasing. We perform two experiments.
In the first experiment, we perform a thorough experimental
evaluation of the proposed methodology, in which we vary the
amount of information available about the task-space. In the
second experiment, we evaluate the controller in a scenario
requiring multiple nonlinear task-space constraints.

II. PROBLEM DEFINITION

Before describing the proposed adaptive control strategy,
this section introduces the online calibration problem with
(partial) measurements, in general terms. Also, we present the
mathematical notation used in this paper, which is summarized
in Table I.
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TABLE I
MATHEMATICAL NOTATION.

Notation Definition
Qr � Q � Rn Restricted configuration space and configuration space of n dimensions.
Ar � A � Rp Restricted parameter space and parameter space of p dimensions.
Tr � T � Rm Restricted task-space and task-space of m dimensions.
Y � Rr Measurement space of r dimensions, with r � m.
Y � R�r Space of unmeasured variables of �r dimensions.

s Number of constraints dependent on both the control inputs and the adaptation signal.
sq Number of constraints dependent only on the control inputs.
sâ Number of constraints dependent only on the adaptation signal.

x 2 T ;y 2 Y Real task-space and measurement-space vectors, respectively.
x̂ 2 T ; ŷ 2 Y Estimated task-space and measurement-space vectors, respectively.

�x 2 T Error between the estimated (x̂) and desired (xd) task-space vectors.
~y 2 Y Error between the estimated (ŷ) and real (y) measure-space vectors.

A. Uncertain kinematic model

Consider a velocity (or position) actuated robotic system2

with n degrees-of-freedom (DoF) and configuration vector
given by q , q (t) 2 Qr, in which the restricted configuration
space is given by

Qr , fq 2 Q : qmin � q � qmax and qmin; qmax 2 Q � Rng :

Let the p real parameters of the robot kinematic model, which
are impossible to measure directly, be a 2 Ar, where

Ar , fa 2 A : amin � a � amax and amin;amax 2 A � Rpg :

If all parameters and joint values were perfectly known, the
forward kinematics model (FKM) could be used to obtain the
real task-space variables, x , x (q;a) 2 T � Rm. The FKM
is the nonlinear mapping

f : Q�A !T ; (q;a) 7! x; (1)

and the restricted task space is

Tr , ff (q;a) 2 T : q 2 Qr; a 2 Arg � T :

Let the estimated parameters be â (t) , â 2 Ar. The
estimated task-space vector x̂ , x̂ (q; â) 2 Tr is obtained
as

x̂ , f (q; â) : (2)

The first time-derivative of (2) is the estimated differential
forward kinematic model (DFKM)

_̂x =
@f (q; â)

@q| {z }
J x̂;q

_q +
@f (q; â)

@â| {z }
J x̂;â

_̂a; (3)

where J x̂;q , J x̂;q (q; â) 2 Rm�n is the estimated task
Jacobian and J x̂;â , J x̂;â (q; â) 2 Rm�p is the estimated
parametric Jacobian.

Let us consider a measurement system capable of measuring
an r-dimensional subset of the real task-space variables given
by y , y (t) 2 Y � Rr, and the r-unmeasured dimensions
compose the space of unmeasured variables3 Y � R�r. In
addition, let the estimated measure-space FKM be given by
the surjection

g : Qr �Ar � Y; (q; â) 7! ŷ; (4)

2The robotic system can be comprised of any number of individual robots.
3When both Y and Y are parameterized with minimal representations, �r =

m�r. However, if nonminimal representations are used, such that the number
of independent coordinates in T , Y , and Y are mind < m, rind < r, and
�rind < �r, respectively, then �rind = mind � rind but �r 6= m� r.

with DFKM

_̂y =
@g (q; â)

@q| {z }
J ŷ;q

_q +
@g (q; â)

@â| {z }
J ŷ;â

_̂a; (5)

where J ŷ;q , J ŷ;q (q; â) 2 Rr�n is the estimated measure-
space task Jacobian and J ŷ;a , J ŷ;a (q; â) 2 Rr�p is the
estimated measure-space parametric Jacobian.

B. Problem statement and main assumptions

Given an external measurement system that provides partial
or complete measurements y 2 Y , drive the real task-space
variable x(q(t);a(t)) 2 Tr as close as possible to a constant
desired value xd 2 T .

We assume that:
1) Perfect measurements are obtained in the task space

and the configuration space. Any sensor that provides
a partial or complete measurement of the task-space can
be used.

2) All constraints are represented by differentiable func-
tions and no constraint is violated at t = 0.

3) The control input uq = _q(t) = 0 is a feasible solution
for all t � 0, which means that the robot is always able
to stop.

III. PROPOSED CONTROL STRATEGY

To control the robotic system while updating the robot
kinematic parameters, we propose a control strategy based on
two independent quadratic4 programming (QP) problems that
are solved either in cascade or simultaneously to generate each
instantaneous control input.

First, a task-space control law uses the estimated parame-
ters, â, and the desired task-space reference, xd, to calculate
the optimal joint-velocity control input _q , uq , which is sent
to the robotic system. Then, an adaptive law generates the
optimal adaptation signal _̂a , uâ using the current task-
space measurement y and robot configuration q to update
the estimated kinematic parameters. The process repeats until
x̂(q(t); â(t)) becomes as close as possible to xd. The block
diagram of the control strategy is shown in Fig. 1.

A. Task-space control law

The control input is obtained as

uq 2 argmin
_q

kJ x̂;q _q + �q �xk22 + k�q _qk22

subject to Bq _q � bq
(6)

W q _q � wq;

where �q 2 (0;1) is a proportional gain and �q 2 Rn�n is a
positive definite gain matrix, usually diagonal, that penalizes
high joint-velocities. In addition, J x̂;q is the estimated task
Jacobian, as defined in (3), and �x , �x (x̂(t);xd) is a suitable
task error that quantifies how close the estimated task-space

4Linear-quadratic optimization problems with inequality constraints cannot
be solved analytically and are solved with numerical methods.
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Task-space 
control law Robot

 Adaptation law

 

 

 

    

  
 

 

 
q

Fig. 1. Block diagram of the adaptive constrained controller. The task-space control law (6) aims to reduce the estimated task-space error �x using the current
robot configuration vector q, the estimated parameter vector â, and the current desired task-space value xd to compute the next optimal control input uq sent
to the robot. The adaptation law (12) aims to reduce the measurement error ~y using q, â, and the current task-space measurement y to compute the optimal
adaptation signal uâ. The red lines indicate the feedback of the parameter vector â whereas the blue lines indicate the feedback of the robot configuration
vector q.

variable is to the desired setpoint. A common choice is �x ,
x̂�xd. Furthermore, since x̂ depends on â, as shown in (2),
the objective function in (6) also depends on the estimated
parameters â.

If �x = 0, then uq = 0. This is due to the fact that
when �x = 0, the objective function in (6) boils down to
kJ x̂;q _qk22 +k�q _qk22, which is minimized if and only if _q = 0.
This happens even when J x̂;q has a non trivial nullspace
because �q is positive definite, hence invertible.

Constraints: The matrix Bq , Bq (q; â) 2 Rs�n and
b , b (q; â) 2 Rs, with bq � 0, define the s linear (scalar)
constraints imposed on the control inputs that also depend on
the estimated parameters. Those constraints can be used to
prevent self-collisions or collisions with other objects in the
workspace using VFIs [12], as explained in Section III-C.

The constraintW q _q � wq , whereW q ,W q (q) 2 Rsq�n

and w , w (q) 2 Rsq , is used to enforce the sq (scalar)
constraints unrelated to the estimated parameters. For instance,
configuration velocity limits qv;min, qv;max can be trivially
enforced with �

�In�n
In�n

�
_q �

�
�qv;min

qv;max

�
: (7)

Moreover, to define limits for the robot configurations, we start
by defining ~qmax(t) , q(t)�qmax and ~qmin(t) , q(t)�qmin,
such that ~qmax(0) � 0 and ~qmin(0) � 0, with the correspond-
ing differential inequalities (notice that the joint limits do not
vary with time, i.e., _qmin = _qmax = 0)

_~qmin (t) + �~q~qmin (t) � 0; (8)
_~qmax (t) + �~q~qmax (t) � 0: (9)

By Gronwall’s Lemma [38], (9) and (8) ensure that ~qmax(t) �
e��~qt~qmax(0) � 0 and ~qmin(t) � e��~qt~qmin(0) � 0 and can
be rewritten as�

�In�n
In�n

�
_q � ��~q

�
�~qmin(t)
~qmax(t)

�
: (10)

The configuration-only constraints can therefore be the com-
position of (7) and (10)2664

�In�n
In�n
�In�n
In�n

3775
| {z }

W q

_q �

2664
�qv;min

qv;max

�~q~qmin(t)
��~q~qmax(t)

3775
| {z }

w

: (11)

B. Adaptation law

The adaptation law is given by

uâ 2 argmin
_̂a

J ŷ;â _̂a+ �â~y
2

2
+
�â

_̂a
2

2

subject to

Bâ
_̂a � bâ

W â
_̂a � wâ

N â
_̂a = 0

�xTJ x̂;â _̂a � 0;

(12)

where �â 2 (0;1) is a proportional gain and �â 2 Rp�p is a
positive definite gain matrix, usually diagonal. In addition, ~y ,
~y (ŷ(t);y(t)) is the estimation error, that is, the error between
the estimated measure-space value and the real measure-space
value. The estimation error indirectly measures the parameter
estimation error using the measure-space estimated FKM. For
example, ~y , ŷ � y. Nonetheless, any differentiable error
function that satisfies

~y = 0 () ŷ = y (13)

is acceptable.
The parameters can be updated even when the task error

is zero, as long as the measurement error is not zero and the
estimated task error is not affected. This can be interpreted as
moving the end effector of a virtual robot made of estimated
parameters â in the direction of the real end-effector of the
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real robot made of actual parameters a.5 The term
�â

_̂a
2

2
can be used to scale parameters that use different units, to
minimize the detrimental effects that occur when the Jacobian
is ill-conditioned, and to guarantee that the parameters stop
being updated when ŷ = y () ~y = 0. More specifically,

~y = 0 implies
J ŷ;â _̂a

2

2
+
�â

_̂a
2

2
, where �â is positive

definite, which is minimized if and only if _̂a = 0.
Given the definition of the measure-space FKM (4) and (13),

~y = 0 () ŷ = y () g (q; â) = g (q;a) :

However, as the measure-space FKM is in general not injec-
tive, we cannot say that a = â when ~y = 0.

The adaptation law has four linear (vector) constraints. The
first constraint is used to enforce task-space constraints that
depend on the parameters, in which Bâ , Bâ(q; â) 2 Rs�p
and bâ , bâ(q; â) 2 Rs, with bâ � 0, and s is the
number of VFIs. That constraint is used to ensure that the first
(vector) constraint in (6) is satisfied even during the adaptation
of parameters, and explained in detail in Section III-C. The
second constraint is used to enforce parameter bounds that
are independent of the robot configuration, analogously to
(8)–(10), with W â 2 Rsâ�p and wâ , wâ (â) 2 Rsâ .
The third constraint restricts the trajectories of the estimated
parameters to lie within an invariant set. This is to prevent
disturbing unmeasured variables, with N â , N â (q; â) 2
R�r�p being the parametric task-Jacobian projector. The fourth
constraint is a Lyapunov constraint [39], explained in detail in
Section III-D.

C. Vector field inequalities in an adaptive framework

In both (6) and (12), we have constraints that are used
to enforce VFIs [12]; namely, Bq _q � bq and Bâ

_̂a � bâ.
The main idea of VFIs is as follows. Given s differentiable
functions hi : Q�A ! R, such that hi , hi(q(t); â(t)), we
define the feasible set as

F =

(
(q; â) 2 Q�A :

ŝ

i=1

�
hi (q; â) � 0

�)
:

The s VFIs are defined as _hi(t) + �vhi(t) � 0, where
�v 2 (0;1). Let h =

�
h1 � � � hs

�T 2 Rs, then _h =�
Bq Bâ

�
_v, with v ,

�
qT âT

�T
,

Bq =
�
rq(h1) � � � rq(hs)

�T
;

Bâ =
�
râ(h1) � � � râ(hs)

�T
;

in which rq(hi) ,
�
@hi=@q1 � � � @hi=@qn

�T
and

râ(hi) ,
�
@hi=@â1 � � � @hi=@âp

�T
.

From Gronwall’s lemma, given the differential inequality
_h(t) + �vh(t) � 0, if h(0) � 0 when t = 0, then h(t) �

5The attentive reader will notice that, when �x = 0; the last constraint in
(12) is innocuous because it becomes 0 � 0, which is always true regardless
of _̂a. However, in this situation, the trajectories of the closed-loop system
have already converged to the invariant set determined by _V (�x) = 0, as
shown in Section III-D, which means that the norm of the task error cannot
increase despite changes in the estimated parameters â.

e��vth(0) � 0 for all t � 0. Thus, we stack the s scalar VFIs
to obtain a single differential inequality in vector form:

Bq _q +Bâ
_̂a � ��vh(t): (14)

To ensure (14) by means of the first inequality in (6) and the
first inequality in (12), we define bq , ��vh(t) (1� �) and
bâ , ��vh(t)�, with � 2 [0; 1], such that

(Bq _q � bq) ^
�
Bâ

_̂a � bâ
�
: (15)

D. Closed-loop stability
To prove that the closed-loop system composed of (3), (5),

(6), and (12) is stable, we first define equivalent optimization
problems to (6) and (12). Then, we show that under Assump-
tions 2 and 3 of Section II-B, those optimization problems are
always feasible, which means that it suffices to analyze the
objective functions to determine closed-loop stability. Finally,
we choose a Lyapunov function candidate and exploit the
optimal solution to prove that the closed-loop system is stable.

Equivalent optimization problems: We use the extended
vector v =

�
qT âT

�T
such that

uv;q 2 argmin
_v

kJ x̂ _v + �q �xk22 + k�v;q _vk22

subject to

Bv;q _v � bq
W v;q _v � wq

Aq _v = 0;

(16)

in which J x̂ =
�
J x̂;q J x̂;â

�
, �v;q =

�
�q 0n�p

�
2

Rn�(n+p), Bv;q =
�
Bq 0n�p

�
2 Rn�(n+p),

W v;q =
�
W q 0sq�p

�
2 Rsq�(n+p), and

Aq = blkdiag(0n�n; Ip�p) 2 R(n+p)�(n+p). Notice
that (16) boils down to (6). More specifically, Bv;q _v = Bq _q
and W v;q _v = W q _q. Also, Aq _v = 0 implies _̂a = 0. (It also
implies 0T _q = 0, which is always true regardless the value
of _q). Hence,

J x̂ _v + �q �x = J x̂;q _q + J x̂;â _̂a+ �q �x = J x̂;q _q + �q �x:

Lastly, �v;q _v = �q _q and uv;q =
�
uTq 0T

�T
.

Analogously,

uv;â 2 argmin
_v

kJ ŷ _v + �â~yk22 + k�v;â _vk22

subject to

Bv;â _v � bâ
W v;â _v � wâ

Nv;â _v = 0

�xTJ x̂ _v � 0

Aâ _v = 0;

(17)

in which J ŷ =
�
J ŷ;q J ŷ;â

�
, �v;â =

�
0p�n �â

�
2

Rp�(n+p), Bv;â =
�
0s�n Bâ

�
2 Rs�(n+p), W v;â =�

0sâ�n W â

�
2 Rsâ�(n+p), Nv;â =

�
0�r�n N â

�
2

R�r�(n+p), and Aâ = blkdiag(In�n;0p�p) 2 R(n+p)�(n+p).
Again, it is easy to show that (17) is equivalent to (12). First,
by direct calculation we find that the first three constraints in
(17) boil down to the first three constraints in (12). Also, the
constraint Aâ _v = 0 ensures that _q = 0. Therefore, �xTJ x̂ _v =
�xTJ x̂;â _̂a. Lastly, because _q = 0, the objective function in
(17) reduces to the one in (12), and uv;â =

�
0T uTâ

�T
.
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Feasibility of the optimization problems: Assumption 2 in
Section II-B determines that v(0) 2 F , which implies that
h(0) � 0 and, consequently, bq(0); bâ(0) � 0. Because _v =
0 is a feasible solution by Assumption 3, the optimization
problems (16) and (17) are always feasible. In other words,
in the worst case, the robot can stop. Hence, it is sufficient to
analyze only the objective function to determine closed-loop
stability.
Remark 1. Gronwall’s lemma [38] guarantees that the system
composed of (3), (5), (6), and (12) will never violate a
constraint in the estimated task-space. However, this does not
mean that it is guaranteed that there will be no violation in the
real task-space. A practical solution to this problem is shown
in Section VI, which consists of giving the system some time
to adjust the estimated model to be closer to the real one before
the robot starts moving.

Lyapunov stability: Choosing the Lyapunov candidate
V (�x) , V = (1=2) �xT �x, in which �x = x̂ � xd, we obtain
_V = �xT _̂x = �xTJ x̂ _v. Since uv;q = _q and uv;â = _̂a, then
_v = uv;q + uv;â. Therefore,

_V = �xTJ x̂ _v = �xTJ x̂uv;q + �xTJ x̂uv;â: (18)

Now we show that each term of the right-hand side of (18) is
non-positive. From (16), we have

kJ x̂uv;q + �q �xk22 + k�v;quv;qk22 � k�q �xk22
because uv;q is the optimal solution and _v = 0 is always a
feasible solution by assumption. Therefore,

kJ x̂uv;qk22 + 2�q �xTJ x̂uv;q + k�q �xk22 + k�v;quv;qk22 � k�q �xk22 ;

which implies

�xTJ x̂uv;q � �
1

2�q

�
kJ x̂uv;qk22 + k�v;quv;qk22

�
� 0: (19)

From (17) we have that �xTJ x̂uv;â � 0 is enforced by
the optimization problem. Hence, (18) is nonpositive, which
implies _V = �xTJ x̂ _v � 0. Thus, we conclude that the closed-
loop system is stable.
Remark 2. Due to the generality of the constraints being
considered, only closed-loop stability can be ensured. One
intuitive way of illustrating this is to think of a manipulator
robot holding an object trying to place it on a table nearby. If
there is a wall between the robot and the table, the constraint
will prevent the robot from reaching the table, making it
physically impossible to have asymptotic convergence without
piercing through the wall. Notice that this is the desired
behavior: the safety of the robot and its environment are
prioritized over asymptotic convergence.
Remark 3. When using non-additive errors (e.g., when using
unit quaternions to represent orientations or unit dual quater-
nions to represent poses), it is possible to use suitable projec-
tors such that the argument above still holds. See Appendix C.

IV. USE CASES

We summarize four relevant use-cases for the measure-
ment space Y (i.e., the space of relevant end-effector mea-
surements with respect to the sensor’s reference frame

TABLE II
PARAMETRIC MEASURE-SPACE ESTIMATED JACOBIAN AND

PARAMETRIC TASK-JACOBIAN PROJECTOR.

Yx Yr Yt Yd
J ŷ;â Jx;â Jr;â Jt;â Jd;â
N â 0 Jt;â Jr;â (20)

Notice that Jx;â 2 Rmx�n, Jr;â 2 Rmr�n, Jt;â 2 R3�n, and Jd;â 2
R1�n are the parametric Jacobians that satisfy (3) for the estimated pose,
rotation, translation, and distance, respectively. The dimensions mx and mr
depend on the parameterization used for the pose and rotation.

Fw), the estimated measure-space Jacobian J ŷ;â, and the
parametric task-Jacobian projector N â in Table II. A more
detailed description of how each measurement space is pa-
rameterized is given in Appendix B.

Measurement of complete end-effector pose: The measure-
ment space is the end-effector pose space Yx (Appendix B-C).
Given that this represents a complete measurement, the
parametric task-Jacobian projector is trivial, i.e. N â , 0.

Measurement of end-effector orientation: The measurement
space is the end-effector rotation space Yr (Appendix B-B).
In this case, the real translation t is unknown, so we enforce
_̂t = 0, which is achieved when N â , J t;â.

Measurement of end-effector translation: The measurement
space is the end-effector translation space Yt (Appendix B-A).
In this case, the real rotation r is unknown; hence, we
constrain any parameter update on the rotation by enforcing
_̂r = 0, which is achieved when N â , Jr;â.

Measurement of the end-effector distance: The measure-
ment space consists of the (Euclidean) distance space, Yd ,�
kpk2 : p 2 R3

	
, which contains all possible distances be-

tween the end-effector position and the inertial reference-
frame. When we measure only the Euclidean distance of the
end-effector to the origin of the reference frame, we constrain
any rotation estimation update. In addition, we constrain the
position estimation updates to the line that connects the current
end-effector position to the origin of the reference frame, as
shown in Fig. 2. This is because moving along that line ensures
that the estimated end-effector distance improves while the
position estimation does not worsen, as shown in the following
lemma.

Lemma 4. Consider a sphere of radius R, an arbitrary point
t on the sphere’s surface, and a point t̂ outside of it. Also,
let tn = Rt̂=

t̂ and � 2 [0; 1]. Assuming the center of the
sphere as the reference point, the distance between any point
t� = (1��)t̂+�tn and t is smaller or equal than the distance
between t̂ and t.

Proof: See Appendix A.
Therefore, when preventing the update of the rotation esti-

mation and constraining the position estimation update to the
line that connects the current end-effector position to the origin
of the reference frame, we obtain(

_̂r = 0

t̂� _̂t = 0
=)

�
Jr;â

S
�
t̂
�
J t;â

�
| {z }

Nd;â

_̂a = 0; (20)
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t̂

t

d = R

d̂
tn

Fig. 2. All distances are measured with respect to the origin of the sphere, and
t; t̂ 2 R3 are the real and estimated positions, respectively. The figure shows
the circle formed by the intersection of the sphere and the plane containing
t, t̂, and the sphere’s center. The solid green line represents all t� 2 R3

along the line that connects t̂ to the center, such that R � kt�k2 �
t̂


2

and t̂ � t� = 0. Distance estimation updates in that line guarantee that the
distance estimation improves and the position estimation given by

t̂� t


2
does not worsen. The green point tn satisfies ktnk = R with t̂� tn = 0.

TABLE III
DH PARAMETERS OF THE VS050 ROBOT.

1 2 3 4 5 6
�DH [rad] �� �=2 ��=2 0 � 0
dDH [m] 0:345 0 0 0:255 0 0:07
aDH [m] 0 0:250 0:01 0 0 0
�DH [rad] �=2 0 ��=2 �=2 �=2 0

in which S(�) : R3 ! so(3) is a skew-symmetric matrix such
that S(a)b = a � b, with a; b 2 R3, and t 2 R3 is the
end-effector position with respect to Fw.

V. EXPERIMENT PM: PARTIAL MEASUREMENTS

The experimental setup6 is composed of a six-DoF manip-
ulator robot (VS050, DENSO WAVE, Japan) with coordinate
system Fbase and an image-based position sensor (Polaris Vega,
NDI, Canada) with coordinate system Fsensor. The image-based
sensor was used to obtain the pose of the tip marker with
respect to Fsensor. The tip marker was attached to the tip of the
robotic manipulator and is represented by Ftip. These elements
are shown in Fig. 3.

In this first experiment, the objective is to reach four
consecutive setpoints in the robot’s real task-space, which
consists of the space of end-effector poses (i.e., position and
orientation), while adapting the parameters of the robot. There
is no collision avoidance because the purpose is to evaluate
the closed-loop system behavior under uncertain parameters
and complete or partial measurements. The parameters of the
robot consist of all the robot’s DH parameters and an initial
rough estimate of Fbase and Ftip.

We used the manufacturer’s documentation,7 summarized in
Table III, to obtain the initial value for the DH parameters.8

The control law adapts the parameters �DH; dDH; aDH; and �DH

6Software implementation based on https://github.com/SmartArmStack and
DQ Robotics C++11 [40].

7https://www.denso-wave.com/en/robot/product/five-six/vs050-060.html
8We chose the DH parameters because they are ubiquitous in the literature

on robot manipulators, but our methodology does not depend on specific
parameterization.

Fig. 3. Visualization of the experimental setup.

of each joint, resulting in 24 joint-related parameters. The
limits for the estimated translational parameters are of �1 mm,
and �1� for the angular parameters.

The transformations Fbase and Ftip are modeled using six
parameters each. Those parameters describe six sequential
transformations, namely a translation along the x-axis, a
translation along the y-axis, a translation along the z-axis,
a rotation about the x-axis, a rotation about the y-axis, and
a rotation about the z-axis. These two transformations were
roughly measured using a tape measure. The limits for the
estimate of the translation parameters are �10 cm from the
initially measured values, and the limits for the estimate of
the angular parameters are �20� from the initially measured
values. With these 12 parameters in conjunction with the joint-
related parameters, a total of 36 parameters were estimated
online (i.e., p = 36).

The experiments were executed under five conditions. With-
out any adaptation (PM0), and with adaptation using four
subsets of the pose measurement: (PM1) pose, (PM2) rotation,
(PM3) translation, and (PM4) distance. Although in PM2–4
only partial measurements are used in the adaptation law,
we store the information of the complete end-effector pose
measurements and use them as ground-truth in our analyses.

The control loop runs at 50 Hz (T = 20 ms), which is the
maximum sampling frequency of our measurement system.
The control gains are �q = �â = 40, and the damping factors
are �q = 0:01I6 and �â = 0:01I36. The joint velocity limits
were set at �0:2 rad/s to partially compensate for the relatively
low sampling time.

Results and discussion

The results regarding PM0 and PM1 are summarized in
Fig. 4 in terms of real task error ~x (i.e., the error between
the current measurement y and the desired pose xd), the
measurement error ~y (i.e., the error between the current
estimated pose x̂ and the current measurement y), and the
estimated task error �x (i.e., the error between the current
estimated pose x̂ and the desired pose xd). Notice that when
the pose error norm equals zero, the translation, rotation, and
error norms also equal zero.
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Fig. 4. Comparison of the pose error between PM0 and PM1, in terms of real task pose error ~x, estimated task pose error �x, and measurement pose error ~y.
The proposed controller with complete measurements (PM1) outperforms a state-of-the-art kinematic controller [12] without adaptation (PM0) in all errors.
The snapshots of the experiment show qualitatively the large final real task error in PM0, whereas the final real task error in PM1 is indistinguishable from
the real desired end-effector pose.

Regarding partial measurements, Fig. 7 shows the results of
PM0, PM2, PM3, and PM4 in terms of translation, rotation,
and distance errors. Notice that when the translation error
norm equals zero, the distance error norm also equals zero.
The converse, however, is not true because the distance error
can be zero while the translation error is not zero.

In our experiments, a given measurement space always
caused the convergence of the real task error and measurement
error in that specific dimension when the joint limits were not
reached. For example, when the rotation is measured, the real
rotation error norm goes asymptotically to zero, as shown by
the solid-blue starred curve of the third graph in Fig. 7, and the
measurement rotation error norm also goes to zero, as shown
by the solid-blue starred curve of the forth graph in Fig. 7.

No adaptation: PM0 represents the performance of a task
controller without any parameter adaptation, which means that
only (6) was used in the generation of control inputs. The
real task error for all setpoints in Fig. 4 illustrates the errors
in the initial estimation of the parameters. Because the robot
parameters are all initially incorrect, no adaptation means that
even if the estimated task error converges to zero, as shown
by the solid-black curves in the third graph of Fig. 4 during
the regulation to the second and fourth setpoints, there is no
guarantee that the real-task error norm will converge to zero.
The estimated task error could not converge for setpoints 1 and
3 because the robot reached its joint limits. This happened
in spite of all setpoints being reachable in the real task-
space. The measurement error when there is no adaptation can
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Fig. 5. Comparison of the partial errors among PM0, PM2, PM3, and PM4, in terms of real task pose error ~x and measurement pose error ~y. The errors
are defined in Appendix B-D. The controllers with partial measurements PM2 and PM3 achieve their real targets in translation and rotation, respectively, for
all setpoints. The controller with partial measurements PM4 has a distance error of several millimeters in some setpoints given that the nominal model was
imprecise and the robot got stuck near a joint limit (see Fig. 5).
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Fig. 6. The plot of the real distance error for PM4 and the distance to a
joint limit. Notice that in setpoint 3 the robot is unable to converge in distance
given the proximity to a joint limit.

be understood as the results of a state-of-the-art constrained
kinematic controller without adaptation [12], that we use as a
comparative baseline for our adaptive strategies.

Measurement of complete end-effector pose: The complete
pose measurement (PM1), represented by the solid red circled
curves in Fig. 4, resulted in the convergence to zero of the real
task error, the measurement error, and the estimated task error
for all setpoints. Because of that, the translation, rotation, and
error norms also converge to zero.

Measurement of end-effector orientation: When only ro-
tation is measured (PM2), there was convergence of the esti-
mated rotation error. It caused a reduction of the real pose error
and the pose measurement error. The real and measurement
translation errors remained similar to the unmeasured cases,
thanks to the projection into the nullspace of the translation
Jacobian, but the real and measurement distance errors wors-
ened (fifth and sixth graphs in Fig. 7). Although this may seem
counterintuitive, it is not unexpected. Indeed, let us consider
the estimated position p̂ and real position p associated with
the estimated end-effector pose x̂ and real end-effector pose
x, respectively. The translation measurement error is given by
~p = p̂ � p and the distance measurement error is given by
~d = kp̂k � kpk. Hence, k~pk2 �

 ~d
2

= �2p̂Tp+ 2 kp̂k kpk.
Since p̂Tp = kp̂k kpk cos�, where � is the angle between

p̂ and p, we obtain
 ~d
2

= k~pk2 � 2 kp̂k kpk (1� cos�).
Now, consider another estimated position p̂0 and the asso-
ciated translation measurement error ~p0 = p̂0 � p, such
that k~pk =

~p0
. Analogously, let ~d0 =

p̂0 � kpk, then ~d0
2

=
~p0
2�2

p̂0 kpk (1� cos�0), where �0 is the angle
between p̂0 and p. Thus, ~d0
2

=
 ~d
2

+ 2 kpk
�
kp̂k (1� cos�)�

p̂0 (1� cos�0)
�

because k~pk =
~p0
. If kp̂k (1� cos�) >

p̂0 (1� cos�0),

then
 ~d0
2

>
 ~d
2

, which implies
 ~d0
 >  ~d

.
Measurement of end-effector translation: When only the

translation is measured (PM3), the real translation error and
the measured translation error, indicated by the green squared
curves in Fig. 7 converge to zero. Since zero translation error

norm implies a zero distance error norm, the distance error
also converged to zero. A better estimation of the translation
allowed the estimated end-effector pose to converge to all
setpoints without reaching the joint limits.

Measurement of the end-effector distance: In PM4, using
the distance measurements only allowed for the convergence of
measured distance, but not the real and estimated distances in
setpoint 3 because the joint limits were reached, as illustrated
by the pink crossed curves in Figs. 5 and 7.

These results correspond to the theoretical expectations.
When the robot was unable to reach specific setpoints, it
gracefully stopped moving in accordance with our proof of
closed-loop stability. They also show the benefits of using
partial information when only that information would be
available. Depending on the requirements of a given task, the
designer should choose an appropriate sensor by considering
the trade-off between the expected improvement in real task
error and the monetary/time costs related to using that sensor.

VI. EXPERIMENT CA: COLLISION AVOIDANCE

Algorithm 1 Proposed task-space constrained adaptive control
strategy implemented in Section VI.

1: T  sampling time
2: xtarget  filtered target measurement
3: xinter  getIntermediateTarget

�
xtarget

�
4: xbox  filtered box measurement
5: â initially estimated parameters
6: while not isPlausible (q; â;xbox) do
7: â U (âmin; âmax)
8: end while
9: for xd in

�
xinter;xtarget

	
do

10: while not stopCriterion() do
11: q  current robot configuration
12: �x getTaskError (q; â;xd)
13: J x̂;q  getJacobianQ (q; â)
14: (W q;wq) getLimitsQ (q; qmin; qmax)
15: (Bq; bq) getVFIsQ (q; â;xbox)
16: . For the control law, see (6)
17: uq  controlLaw (�x;J x̂;q;Bq; bq;W q;wq)
18: y  current task-space measurement
19: if y is valid then
20: ~y  getMeasurementError

�
q; â;y

�
21: (J x̂;â;J ŷ;â) getJacobiansA (q; â)
22: N â  getParametricJacobianProjector (q; â)
23: (W â;wâ) getLimitsA (â; âmin; âmax)
24: (Bâ; bâ) getVFIsA (q; â;xbox)
25: . For the adaptation law, see (12)

26:
uâ  adaptationLaw(�x; ~y;J x̂;â;J ŷ;â

Bâ; bâ;W â;wâ)
27: â â + Tuâ
28: end if
29: q  q + Tuq
30: sendToRobot (q)
31: sleepUntilNextLoop ()
32: end while
33: end for

We conducted experiments to evaluate the behavior of
the system when there are obstacles in the workspace. The
parameters and parameter boundaries for the 24 joint-related
parameters and six base-related parameters were the same as
the ones described in Section V. The end-effector for this
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Fig. 7. Experimental setup for the collision avoidance experiment (CA).

experiment was a custom-designed intricate-shaped 3D-printed
holder for ARUCO fiducial markers [41]. The six end-effector-
related parameters were obtained from the CAD design and
parameter boundaries were set as �1 cm for the translation-
related parameters and �5� for the rotation-related parameters.

The goal for the experiment was to move the end-effector,
from the initial pose, to a target pose xd;1 in the real task-space
while avoiding collisions with the obstacles, and then insert the
end-effector into a narrow slit. The target pose was obtained in
real-time from a custom-designed 3D-printed holder with an
ARUCO marker. To facilitate the insertion of the end-effector
into the slit, we defined an intermediate pose, xd;0, with the
same rotation as xd;1, but displaced 15 cm. The obstacles
were four planes and two four-centimeter-diameter cylinders
attached to a 40 cm3 cube made of aluminum frames. The
position of these obstacles were obtained with respect to an
ARUCO marker placed on a 3D-printed holder attached to the
cube. The experimental setup is shown in Fig. 6.

Measurements of the three ARUCO markers were obtained
from a camera (STC-HD853HDMI, Omron Sentech, Japan)
and lens (VS-LDA4, Omron Sentech, Japan) set up for 1080p
60 Hz readings using a PCI-E capture board (Decklink Quad
HDMI Recorder, Blackmagic Design, Australia). The camera
was calibrated using MATLAB’s Camera Calibration appli-
cation.9 The ARUCO recognition was implemented using
OpenCV10 at 50 Hz. The end-effector measurement was
obtained online without filtering. The target pose and the cube
pose were obtained using a filter based on dual-quaternion
(spatial) averaging [42].

In the context of collision avoidance, the end-effector was
enclosed by six spheres. This is a conservative approach, but
it satisfactorily illustrates how we can use VFIs within the
proposed adaptive formulation to prevent collisions between
the end-effector and the obstacles in the workspace. The obsta-
cles were two cylinders and four planes. To prevent collisions
between the end-effector spheres and the obstacle cylinders,
we used 12 point-to-line constraints. Those constraints re-
quire the calculation of the squared distance Dti;lj [12, Eq.

9https://www.mathworks.com/help/vision/camera-calibration.html
10https://docs.opencv.org/4.x/d9/d53/aruco_8hpp.html

(29)] between the six end-effector’s spheres centered at ti,
i 2 f1; 2; 3; 4; 5; 6g, and the two obstacle cylinders’ centerlines
lj , j 2 f1; 2g, in addition to the Jacobians J ti;lj ;q and J ti;lj ;â
[12, Eq. (32)] that satisfy J ti;lj ;q _q + J ti;lj ;â

_̂a = _Dti;lj . To
prevent collisions between the end effector and the walls, we
used 24 point-to-plane constraints using the distance dti;�k

[12, Eq. (57)] between the six end-effector spheres and the
four obstacle planes �k, k 2 f1; 2; 3; 4g, in addition to the
Jacobians J ti;�k;q and J ti;�k;â [12, Eq. (59)] that satisfy
J ti;�k;q _q + J ti;�k;â

_̂a = _dti;�k
. With these definitions, the

VFI constraint in Problem 6 is composed of the following 36
inequalities

Bqz }| {2666666664

�J t1;l1;q
...

�J t6;l2;q
�J t1;�1;q

...
�J t6;�4;q

3777777775
_q � �vfi;q

hz }| {2666666664

Dt1;l1 �Dsafe;t1;l
...

Dt6;l2 �Dsafe;t6;l
dt1;�1 � dsafe;t1;�

...
dt6;�4

� dsafe;t6;�

3777777775
| {z }

bq

and the VFI constraint in Problem 12 is composed of the
following 36 inequalities

Bâz }| {2666666664

�J t1;l1;â
...

�J t6;l2;â
�J t1;�1;â

...
�J t6;�4;â

3777777775
_̂a �

bâz }| {
�vfi;âh;

where Dsafe;ti;l = (Rti +Rl)
2, with Rti 2

f0:04; 0:015; 0:015; 0:015; 0:015; 0:075g m and Rl = 0:02 m,
and dsafe;ti;� = Rti + d� , with d� = 0:02. The control gains
were �q = �â = 4 and the damping factors were �q = 0:01I6

and �â = 0:01I36. The VFI gains were �vfi;q = �vfi;â = 10.
The joint velocity limits were set at �0:01 rad/s to partially
compensate for the relatively low sampling time of the
ARUCO measurements.

The initial estimated parameters were obtained by sampling
from a uniform distribution within the parameter bounds until
we obtained a set of parameters that did not indicate collisions
with obstacles. This is necessary because although the actual
robot is not in collision with the obstacles at t = 0 s, the
estimated robot might be due to the uncertainties in the
nominal model. In addition, the robot was given 10 s to update
the parameters without motion before moving from the initial
pose to xd;0. This initial adaptation allows the estimated model
to get reasonably close to the real model before the robot
starts moving, which simplifies the tuning of the control and
adaptation gains (notice that �q = �â and �vfi;q = �vfi;â).
After that, the robot was moved in sequence to xd;0 and xd;1.
The controller was executed during 150 s before moving to
the next set-point. The implementation for the experiment is
summarized in Algorithm 1.
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Results and discussion

The results of the experiment in terms of real task error ~x,
estimated task error �x, measurement error ~y, and minimum
distance to obstacles are summarized in Fig. 8. The minimum
distanceerror is the minimum distance obtained from all 36
collision pairs and a negative value indicates a penetration.
Snapshot ‹ stands for the beginning of the experiment, where
the end-effector was outside the box with a poorly estimated
initial model. For 10 seconds, the parameters were updated
using the ARUCO readings without moving the robot. This
caused a near convergence of the measurement error and
sharply improved the estimated model. The robot was then
moved while adapting the parameters until snapshot ›, where
the robot converged to the first setpoint xd;0. At that point, all
errors show convergent behavior and the setpoint was changed.
The robot used the high-quality model obtained so far to move
to the second setpoint, while continuously adapting the model
until snapshot fi. At that point, the ARUCO readings became
invalid. From that point onward, the robot relied only on the
model estimated so far. Without colliding with the workspace
obstacles, the robot reached xd;1 with reasonable accuracy, as
shown in snapshot fl. During the entire motion, the estimated
model never violated a constraint. This is specially important
because only the violations of the estimated model are relevant
to the feasibility of the controller, and by consequence, to the
closed-loop stability. The real model seems to have slightly
penetrated a constraint (< 2 mm), but that amount is within
ARUCO’s expected error margin. Moreover, the conservative
nature of our VFI specification prevented any physical colli-
sion.

The results of the experiment in terms of computational time
are summarized in Table IV. The time spent communicating
with the robot, datalogging, etc. are abbreviated as (Comm.).
In average, the time for computing uq using the task controller
was about 0:1 ms for a 6-DoF robot with 60 inequality
constraints; the time for computing uâ using the adaptation
controller was 7 ms, considering 36 parameters and 108
inequality constraints; and computations unrelated to the con-
trollers took 4:9 ms (for instance, the one-way communication
with the robot takes about 2:0 ms). All computations were
done within the sampling time of 20 ms, with great safety
margin, in all control modes.

These results indicate that the proposed strategy is an
effective way to mitigate errors in the nominal model when
measurements are available. Moreover, we have shown that
when measurements are unavailable, the robot can perform
well with the model updated up to that point. Our reproducible
experimental setup can become a benchmark for future works
in the field of constrained adaptive kinematic control.

VII. CONCLUSIONS

In this work, we proposed an adaptive constrained kinematic
control strategy for robots with arbitrary geometry. Our strat-
egy is based on solving two quadratic-programming problems
to generate the instantaneous control inputs. The first one, the

TABLE IV
COMPUTATIONAL TIME FOR THE EXPERIMENT IN SECTION VI.

Mean [ms] Std [ms]
Adaptive + Comm. (tAC) 11.9 0.32

Adaptive + Task + Comm. (tATC) 12.0 0.20
Task + Comm. (tTC) 5.0 0.24

Adaptive: tATC � tTC 7 -
Task: tATC � tAC 0.1 -

The time spent communicating with the robot, datalogging, etc. are abbre-
viated as (Comm.). In terms of average behavior, the task controller took
about 0:1 ms for a 6-DoF robot with 60 inequality constraints; the adaptation
controller took 7 ms, for 36 parameters and 108 inequality constraints; and
computations unrelated to the controllers took 4:9 ms (for instance, the one-
way communication with the robot takes about 2:0 ms). All computations
were done within the sampling time of 20 ms, with great safety margin, in
all control modes.

task-space control law, reduces the estimated task error and
the second one, the adaptation law, reduces the measurement
error. We have shown that the closed-loop system under those
two laws is Lyapunov stable.

Experiments have shown that, even if starting from only a
rough offline calibration, our control strategy is effective when
using a measurement system in the sense that the error between
the estimated end-effector pose and the desired pose is always
non-increasing, as our theoretical analyses predict. Also, the
end-effector measurement error and the real task error always
tend to improve, even when only partial measurements are
available, whereas all errors in the component related to
the measured variable also tend to improve. Errors in the
components related to the unmeasured parts of the task-space,
however, may increase compared to the baseline (i.e., when
there is no task-space measurement and the control is done
using the nominal forward kinematics) even if the overall
errors in the task-space decrease. This is because even though
we ensure that the adaptation law does not change the task
vector in the direction of unmeasured components, the robot
may execute different trajectories when different components
are measured. Therefore, when compared to the baseline, it
may be the case that the errors along unmeasured components
increase.

The experimental results also have shown that our control
strategy is capable of handling VFIs both in the task-space
control law and adaptation law, which enables the inclusion
of nonlinear constraints in the task-space variables as linear
differential inequalities in the control inputs. Therefore, we
can ensure that geometrical constraints in the workspace are
respected while the robot parameters are adapted, increasing
the overall safety.

The combination of controller parameters, such as task-
space error gains and adaptation gains determine the ratio
between task-space convergence and adaptation. The VFI
gains and the parameter � that is used to split the VFIs
between the task-space and adaptive control laws determine
how fast the system is allowed to approach constraints, such as
obstacles and joint limits, while accounting for the adaptation.
Although they should be chosen in a way that prevents the
robot from moving too fast before the model is properly
adapted, the overall system behaves well for a wide range
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Fig. 8. Results of the experiment described in Section VI in terms of real task error ~x, estimated task error �x, measurement error ~y, and minimum distance to
obstacles. The minimum distance error is the minimum distance obtained from all 36 collision pairs and a negative value indicates a penetration. Snapshot ‹
stands for the beginning of the experiment, where the end-effector was outside the box with a poorly estimated initial model. For 10 seconds, the parameters
were updated using the ARUCO readings without moving the robot. This caused a near convergence of the measurement error and sharply improved the
estimated model. The robot was then moved while adapting the parameters until snapshot ›, where the robot converged to the first setpoint xd;0. At that
point, all errors show convergent behavior and the setpoint was changed. The robot used the high-quality model obtained so far to move to the second setpoint,
while continuously adapting the model until snapshot fi. At that point, the ARUCO readings became invalid. From that point onward, the robot relied only
on the model estimated so far. Without colliding with the workspace obstacles, the robot reached xd;1 with reasonable accuracy, as shown in snapshot fl.
During the entire motion, the estimated model never violated a constraint. The real model seems to have slightly penetrated a constraint (< 2 mm), but that
amount is within ARUCO’s expected error margin. Moreover, the conservative nature of our VFI specification prevented any physical collision.
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of values and combinations. For instance, trivial choices such
as � = 0:5, which means that the VFI gains are the same for
both task-space and adaptation control laws, are suitable for
real applications. Nonetheless, a more systematic procedure
for tuning the parameters will be investigated in the future.

Future works will also focus on adaptively changing the
safety distances of the VFIs according to the uncertainties
associated with the measurement error in the adaptation law
to formally ensure that constraints are not violated in the
real task-space, without being overly conservative (i.e, making
safe distances much larger than necessary). Also, we will
extend our method to account for the second-order differential
kinematics and the full robot dynamics using the (constrained)
Euler-Lagrange equations.

APPENDIX A
PROOF OF LEMMA 4

Since ktk = ktnk = R and
t̂ � R, then

t̂ = �R
and kt�k = �R with � � � � 1. Hence, tn = t̂=�
and t� = t̂ (� � ��+ �) =�. Thus, kt�k = (� � ��+ �)R,
which implies � = � � ��+ � and t� = t̂ (�=�).

Let Dt̂t ,
t̂� t2

and D�t = kt� � tk2. Since Dt̂t �
D�t implies

t̂� t � kt� � tk, it suffices to show that
Dt̂t � D�t. Let us assume, for the sake of contradiction,
that Dt̂t < D�t. Since Dt̂t =

t̂2 � 2tT t̂ + ktk2 and
D�t = kt�k2 � 2tT t� + ktk2, then (�R)2 � 2tT t̂ + R2 <
(�R)2 � 2tT t̂ (�=�) + R2, which implies (�2 � �2)R2 <
2tT t̂ [(� � �)=�] and thus (� + �)R2 < 2tT t̂=�. Because
tT t̂ = ktk

t̂ cos�tt̂, we obtain � + � < 2 cos�tt̂. Since
(2 cos�tt̂) 2 [�2; 2], we conclude that � + � < 2, which is a
contradiction because �+� � 2. Therefore, it is not true that
Dt̂t < D�t. Hence, Dt̂t � D�t, which concludes the proof.

APPENDIX B
PARAMETERIZATION OF RIGID MOTIONS, ROTATIONS, AND

TRANSLATIONS

The use cases explored in this work have been defined in
general terms in Section IV. Nonetheless, their implementation
depends on the choice of parameterization. We use dual
quaternion algebra to represent rigid motion transformations,
in which translations and rotations are particular cases. Since
our general formulation is not dependent on any particular
parameterization, here we do not present any comparison of
dual quaternion algebra with other representations. Instead, the
goal of this appendix is to ensure completeness of presentation
and reproducibility in case readers want to replicate our results,
which would require using the same representation that we
have used. Interested readers can find a gentle introduction
to dual quaternion algebra in [43]. A discussion about its
advantages in the context of constrained control can be found
in [12]. The computational library that we use to manipulate
elements of dual quaternion algebra is described in [40].

Let the quaternion set be

H ,
n
h1 + {̂h2 + |̂h3 + k̂h4 : h1; h2; h3; h4 2 R

o
with {̂2 = |̂2 = k̂2 = {̂|̂k̂ = �1 and the dual quaternion set be

H ,
�
h+ "h0 : h;h0 2 H; "2 = 0; " 6= 0

	
:

A. Positions and translations

The set of pure quaternions is given
by Hp , fh 2 H : Re (h) = 0g, where
Re
�
h1 + {̂h2 + |̂h3 + k̂h4

�
= h1, and is isomorphic to

R3 under the addition operation.

B. Orientations and rotations

The unit quaternion set, S3 , fh 2 H : khk = 1g, con-
tains elements that represent orientations and rotations in
the tridimensional space. When the set S3 is equipped with
the multiplication operation, we obtain the group Spin(3) of
rotations, which double covers SO(3).

C. Poses and rigid motions

Elements of the unit dual quaternion set, S ,�
r + (1=2) "tr : r 2 S3; t 2 Hp

	
� H, represent poses and

rigid motions in the tridimensional space. Analogously to
Spin(3), when S is equipped with the multiplication operation,
we obtain the group Spin(3)nR3, which double covers SE(3).

D. Error definition

TABLE V
COMPLETE AND PARTIAL TASK-SPACE VALUES.

Estimated
y;yr;yt; yd Measured pose, rotation, translation, and distance, respectively.
xd; rd; td; dd Desired pose, rotation, translation, and distance, respectively.

x̂; r̂; t̂; d̂ Estimated pose, rotation, translation, and distance, respectively.
x; r; t; d Real pose, rotation, translation, and distance, respectively.

TABLE VI
COMPLETE AND PARTIAL ERROR DEFINITIONS.

Estimated Real Measurement

Distance �d = d̂� dd ~d = d� dd ~yd = d̂� yd
Translation �t = t̂� td ~t = t� td ~yt = t̂� yt

Rotation �r = E (r̂; rd) ~r = E (r; rd) ~yr = E (r̂;yr)

Pose �x , E (x̂;xd) ~x , E (x;xd) ~y , E
�

x̂;y
�

Consider a desired end-effector pose S 3 xd = rd +
" 1

2tdrd, in which rd 2 S3 is the desired end-effector ori-
entation and td 2 Hp is the desired end-effector position.
Analogously, let x̂ 2 S be the estimated end-effector pose,
x 2 S be the real end-effector pose, and y 2 S be the
measured end-effector pose. These elements are summarized
in Table V.

Using the aforementioned elements, the error definitions are
summarized in Table VI and further explained as follows. The
estimated distance error and translation error, similarly to their
counterparts parameterized with elements of the Euclidean
group

�
R3;+

�
, are defined as �d = d̂�dd =

t̂
2
�ktdk2 and

�t = t̂ � td, respectively. On the other hand, orientation and
pose errors that respect the topology of the underlying space of
orientations and rigid motions are defined by multiplications in
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both Spin(3) and Spin(3)nR3, respectively [44]. For instance,
the estimated pose error is defined as �x , E (x̂;xd) such that

E (x̂;xd) =

(
x̂�xd � 1 if kx̂�xd � 1k2 < kx̂

�xd + 1k2
x̂�xd + 1 otherwise;

(21)

and the estimated rotation error as �r = E (r̂; rd) [45],
where x̂� and r̂� are the dual quaternion conjugate of x̂ and
quaternion conjugate of r̂, respectively. The reason for using
such pose and rotation errors is to prevent the problem of
unwinding [46], because �x and ��x represent the same pose,
and similarly �r and ��r represent the same orientation.

E. Mapping errors to vectors

Using the bijective operators vec3 : Hp ! R3, vec4 : H! R4,
and vec8 : S ! R8, which take the coefficients of (dual)
quaternions and stack them into a vector, we map those errors
to vectors to comply with the formulation in Sections II–IV.

F. Error norms

Rewriting the estimated pose error as �x = E (x̂;xd) = �xP +
"�xD, the estimated pose error norm used in Sections V–VI is
defined as k�xk2 , k�xP k2 + k�xDk2, whereas the orientation,
position, and distance norms are defined as k�rk2,

�t
2
, and �d


2

=
��� �d���, respectively.11

APPENDIX C
ANALYSIS OF CLOSED-LOOP STABILITY FOR

MULTIPLICATIVE ERRORS

Closed-loop stability is also guaranteed when using multi-
plicative errors such as (21). This can be shown by following
the procedure described in Section III-D.

Indeed, let the task-space be defined as the set of all
end-effector’s poses, parameterized using S. Consider the
Lyapunov function V (�x) = 1

2
�xT �x, where

�x = vec8 (E (x̂;xd)) : (22)

The time derivative of �x is given by _�x= vec8

�
_̂x�xd

�
because

_xd = 0 for all t. Using the Hamilton operator
�
H8 : H !

R8�8, such that vec8 (ab) =
�
H8 (b) vec8 a, with a; b 2 H,

we obtain _�x=
�
H8 (xd)C8 vec8

_̂x, where C8 2 R8�8 is the
matrix that satisfies vec8 a

� = C8 vec8 a for all a 2 H [43].

Defining _̂x , vec8
_̂x, we obtain _�x =

�
H8 (xd)C8J x̂ _v, where

J x̂ and _v are defined as in (16). Let Gx̂ ,
�
H8 (xd)C8J x̂,

then _�x = Gx̂ _v and

_V (�x) = �xTGx̂ _v = �xTGx̂uv;q + �xTGx̂uv;â: (23)

We partition Gx̂ such that Gx̂ =
�
Gx̂;q Gx̂;â

�
and replace

J x̂;q with Gx̂;q in (6), where �x is defined in (22).

11The quaternion norm is equivalent to the Euclidean norm, but the dual
quaternion norm is not. Therefore, if h 2 H, then khk = khk2. In contrast,
given h 2 H, except for particular cases, usually khk 6= khk2.

Now, consider two cases for the measurement space, where
the end-effector pose space and the end-effector orientation
space are parameterized as S and S3, respectively. We define
~y = vec8 (E (x̂;x)) for the pose or ~y = vec4 (E (r̂; r)) for
the orientation.

Using any of those definitions, we replace J ŷ;â with Gŷ;â

and J x̂;â with Gx̂;â in (12), where Gŷ =
�
Gŷ;q Gŷ;â

�
=

�
H8 (x)C8J x̂ for the pose or Gŷ =

�
H4 (r)C4J r̂ for the

orientation, where
�
H4 : H ! R4�4 satisfies vec4(ab) =

�
H4(b) vec4 a, with a; b 2 H, and C4 satisfy vec r� =
C4 vec4 r.

Therefore, by replacing J with G (using the appropriate
subscripts), the analysis is essentially the same, and thus we
conclude that multiplicative errors such as (22) do not affect
closed-loop stability.
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