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There is no standard method for classifying eye fixations. Thresholds for speed, acceleration, duration,
and stability of point of gaze have each been employed to demarcate data, but they have no commonly
accepted values. Here, some general distributional properties of eye movements were used to construct a
simple method for classifying fixations, without parametric assumptions or expert judgment. The method
was primarily speed-based, but the required optimum speed threshold was derived automatically from
individual data for each observer and stimulus with the aid of Tibshirani, Walther, and Hastie’s ‘gap
statistic’. An optimum duration threshold, also derived automatically from individual data, was used to
eliminate the effects of instrumental noise. The method was tested on data recorded from a video eye-
tracker sampling at 250 frames a second while experimental observers viewed static natural scenes in
over 30,000 one-second trials. The resulting classifications were compared with those by three indepen-
dent expert visual classifiers, with 88–94% agreement, and also against two existing parametric methods.
Robustness to instrumental noise and sampling rate were verified in separate simulations. The method
was applied to the recorded data to illustrate the variation of mean fixation duration and saccade ampli-
tude across observers and scenes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It has long been known that the natural movement of an obser-
ver’s gaze over a scene is discontinuous, with distinct locations
being fixated sequentially, presumably reflecting their potential
value to the observer (Yarbus, 1967). During such fixations, the
eye is relatively stable, but between fixations it undergoes very ra-
pid movements—saccades—which often have speeds of over
700 deg s�1 (Carpenter, 1988). Since little information is collected
during saccades (Thilo et al., 2004) and it is the fixations them-
selves that are of principal interest in scene analysis, it is custom-
ary to summarize recordings of the point of gaze (PoG) by
extracting just the fixations and discarding the remainder of the
data.

Unfortunately, classifying fixations in practice can be difficult,
and there is no standard method. Part of the difficulty lies in the
fact that even during a fixation the eye continues to make small
movements. These fixational eye movements include tremor, a
small rapid movement of the eye with an amplitude between
about 5 and 60 arcsec; also microsaccades, which are short invol-
untary eye movements with an amplitude between about 1 and
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120 arcmin; and drift, which is a slow eye movement with an
amplitude between about 1.2 and 30 arcmin (Martinez-Conde,
Macknik, & Hubel, 2004). A typical eye-movement trace over one
of the images used in this study is shown in Fig. 1. Although there
are three candidate fixational areas, the eye clearly continued to
move within each, and the demarcation of fixations and saccades
within and between these areas is not easy to determine automat-
ically, without additional assumptions.

Existing approaches to classifying fixations include methods
based on gaze stability (or, in a complementary sense, dispersion
or displacement) and on gaze speed (Salvucci & Goldberg, 2000).
A stability-based method defines a sequence of eye movements
as a fixation if the PoG remains within a circle of given radius
(the stability threshold) for a given duration (the duration thresh-
old) (e.g. van der Linde et al., 2009); analogously, a speed-based
method defines a sequence of eye movements as a fixation if eye
speed remains below a given value (the speed threshold) (e.g.
Kienzle et al., 2009). The two methods may be combined by incor-
porating both stability and speed thresholds, sometimes also with
an acceleration threshold (e.g. Tatler, 2007).

The absence of a standard method for classifying fixations pre-
sents a problem, as does the absence of commonly accepted
threshold values for speed, acceleration, duration, and stability. It
is known that different choices of algorithms and their input
parameters can lead to systematic differences in reported fixations,
and consequently markedly different interpretations of gaze data
(Shic, Scassellati, & Chawarska, 2008).
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Fig. 1. A typical eye-movement trace. The vertical scale bar at the top right
indicates 1 deg visual angle and the inset at the bottom left shows a magnified
version of the lower section of the trace. The scene image has been darkened locally
to show the trace more clearly.
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The uncertainty about appropriate parameter values is not sur-
prising since the spatiotemporal characteristics of eye movements
may vary across observers, stimuli, and tasks (Andrews & Coppola,
1999). Appealing to biologically plausible values, which are them-
selves subject to debate, does not resolve the problem, nor does the
hand-tuning of thresholds based on visual inspection of PoG data, a
procedure which assumes experimenter independence and exper-
tise. In addition to these factors, the problem is complicated by the
fact that different eye-tracking systems may themselves generate
different levels of instrumental noise, which may, for example,
come from errors in image sampling and processing by a video
eye-tracker, from movement of the observer’s head relative to
the eye-tracker, and from environmental vibration. A more objec-
tive method for classifying PoG data would therefore be desirable,
especially if it were nonparametric and accommodated both indi-
vidual variation and noise variation in a natural way.

There have been previous attempts to develop data-driven ap-
proaches to classifying fixations, but none has succeeded in being
completely nonparametric. A method proposed by Blignaut
(2009) introduced a range of values for the optimum spatial
threshold, but the associated temporal threshold was derived from
previous studies and was fixed at 100 ms. A method described by
Santella and DeCarlo (2004) used a clustering technique preceded
by a so-called mean-shift procedure that required the use of a ker-
nel function, typically a Gaussian function, but the parameters con-
trolling its scale had to be selected by the user. A method proposed
by Engbert and Kliegl (2003) needed little user input, but it de-
pended on a speed threshold being derived from the data by a
method that, although data-driven, required a choice of multiplier
of the estimated noise levels. The method was later extended by
Nyström and Holmqvist (2010), but it retained a parametric
dependence. Two other speed-based methods, one proposed by
van der Lans, Wedel, and Pieters (2011), another by Behrens,
MacKeben, and Schröder-Preikschat (2010), which additionally
used acceleration data, required, respectively, a choice of minimum
fixation duration and a choice of low-pass filter to smooth the
speed profile.

The aim of the present work was to exploit some of the more
general distributional properties of eye movements to construct a
simple, completely nonparametric method of classifying fixations.
The method was primarily speed-based, but, by contrast with
existing methods, the optimum speed threshold for classifying sac-
cades—and therefore fixations—was derived automatically from
the data for each observer and stimulus individually. The deriva-
tion was founded on Tibshirani, Walther, and Hastie’s (2001) ‘gap
statistic’ for identifying the optimum number of clusters in a set
of data. Because speed-based methods can generate what appear
to be unphysiologically short fixations (Nyström & Holmqvist,
2010), usually attributed to instrumental noise, the proposed non-
parametric method was extended to include an optimum duration
threshold—also derived automatically from the data—as part of the
classification. The complete method was tested on data recorded
with a video eye-tracker sampling at 250 frames a second from se-
ven experimental observers performing a target-detection task in
each of 20 natural scenes. Since a key feature of the proposed
method was its adaptability to instrumental noise, its classification
accuracy with increasing levels of added noise was verified in a
separate simulation. The method was then applied to the recorded
data to reveal how fixation durations and saccade amplitudes var-
ied across observers and scenes, a variation that with some ap-
proaches might have been difficult to detect.
2. Experimental data

The data for analysis were obtained as part of a larger experi-
ment examining the effects of scene structure on target detection
and on eye movements in natural scenes (Amano et al., 2012). Only
relevant detail is reproduced here.

2.1. Apparatus

Observers’ PoG was recorded with an infra-red monocular video
eye-tracker (High Speed Video Eyetracker Toolbox Mk 2, Cam-
bridge Research Systems Ltd, Kent, UK), sampling at 250 frames a
second, connected to a computer which stored and analyzed the
output signals. Head movement was minimized with a forehead
rest and a chinrest. Images were displayed on a 20-in. RGB CRT col-
or monitor (GDM-F520, Sony Corp., Tokyo, Japan) controlled by a
graphics workstation (Fuel V12, Silicon Graphics Inc., Mountain
View, CA). The spatial resolution of the display was 1600 � 1200
pixels; the intensity resolution on each RGB gun was 10 bits; and
the refresh rate was approximately 60 Hz. The display subtended
approximately 17 � 13 deg at a viewing distance of 1 m.

2.2. Stimuli

In all, 20 static images of natural scenes, taken from Foster et al.
(2006), were used in the experiment. They represented urban and
rural settings, from near and far views. The target was a spectrally
neutral shaded sphere subtending approximately 0.3 deg of visual
angle at the viewing distance of 1 m and was matched in average
luminance to its local surround (approximately 1 deg). In each
trial, the target appeared with probability 0.5, and over successive
trials, once in each of 130 possible locations, which were distrib-
uted uniformly over the scene. Repeated presentations were used
to test for scene-specific effects (Amano et al., 2012; Kaspar &
König, 2011). The mean luminance of the display was 3.6 cd m�2

(range 0–61.4 cd m�2).

2.3. Observers

Seven observers, three male and four female, aged 21–31 years,
took part in the experiment. All had normal color vision and nor-
mal binocular visual acuity. All except one of the observers (author
MM) were unaware of the purpose of the experiment. The experi-
mental procedure was approved by the University of Manchester
Committee on the Ethics of Research on Human Beings, which
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operated in accord with the principles of the Declaration of
Helsinki.

2.4. Procedure

In each trial, an image with or without the target was presented
for 1 s, and the observer then indicated by clicking a mouse button
whether or not the target was there. Trials were performed in
blocks of 260, all containing the same scene, but divided into four
sub-blocks of 65 trials separated by a short break. Each sub-block
lasted 5–10 min and not more than one block was performed in
each experimental session of approximately 1 h.

Calibration data for the eye-tracker were collected at the start,
middle, and end of each sub-block, as follows. Twenty calibration
targets, arranged in a 5 � 4 grid, were presented on the screen at
known positions. Observers were asked to click a mouse button
as they fixated each target, and the corresponding PoG signals were
recorded by the eye-tracker. Three sequences of 20 measured (x,y)
gaze positions were obtained in each sub-block: ((x1,1,y1,1),. . .,
(x1,20,y1,20)), ((x2,1,y2,1),. . ., (x2,20,y2,20)), and ((x3,1,y3,1),. . .,
(x3,20,y3,20)). If for any of the three sequences a valid gaze-position
signal for a target was unavailable owing to a loss in tracking, it
was replaced by the corresponding gaze-position signal from an-
other sequence (at least one replacement was necessary in 55%
of sub-blocks). To transform to screen coordinates all the experi-
mental gaze-position signals obtained between the first and sec-
ond calibration measurements, the sequences ((x1,1,y1,1),. . .,
(x1,20,y1,20)) and ((x2,1,y2,1),. . ., (x2,20,y2,20)) were averaged point-
wise and fitted to the target positions, expressed in screen coordi-
nates, by a linear (affine) transformation to give least-squares er-
ror. An analogous procedure was used to transform to screen
coordinates all the experimental gaze-position signals obtained be-
tween the second and third calibration measurements.

For each of these calibration transformations, the RMS differ-
ence between the calibration targets and the positions of the ob-
server’s gaze on the screen provided an estimate of the
calibration error (yielding two such error estimates for each sub-
block). The mean value of the calibration error over observers
and scenes was 0.26 deg and individual estimates did not exceed
0.51 deg. Similar levels of accuracy have been reported by Le Meur,
Le Callet, and Barba (2007) and Kienzle et al. (2006). In total, data
were collected from 5200 trials for each of the seven observers. The
classification method was applied only to data from the 86% of tri-
als in which there was no loss in tracking.
Fig. 2. Distribution of local maxima in point-of-gaze speeds. The light-gray
histogram shows the frequency of local speed maxima exceeding a variable
threshold that ranged between the lowest and highest recorded local speed maxima
(bin width �2.5 deg s�1). The dashed line shows the frequency of local speed
maxima exceeding threshold under the null distribution, according to which
maxima are uniformly distributed. A dotted curve traces the gap between the two,
but it is largely hidden by the solid curve, which shows the loess smooth of the gap
statistic (Tibshirani et al., 2001). The vertical line marks the optimum speed
threshold vopt. Data were based on 223 trials by one observer viewing one scene.
3. Classification method

The rationale for the proposed method of classification was that
the eye reaches much higher speeds during saccades than during
fixational eye movements—such as microsaccades and tremor—
and that there are far fewer peaks in speed due to saccades than
to fixational eye movements. These two properties of the data
made possible the derivation of an optimum speed threshold that
best separated the speed distributions of saccades and of fixational
eye movements and instrumental noise. An optimum duration
threshold was then derived that best separated the duration distri-
butions of fixational eye movements and of instrumental noise.

3.1. Classification of saccades

Let pi = (xi,yi) be the PoG in screen coordinates for the ith video
frame Fi. The PoG speed vi for Fi was defined as the Euclidean dis-
tance |pi+1 � pi�1| = [(xi+1 � xi�1)2 + (yi+1 � yi�1)2]1/2 between the
PoGs in the immediately preceding and following frames divided
by the corresponding difference in time |ti+1 � ti�1|; that is,
vi = |pi+1 � pi�1|/|ti+1 � ti�1|. This estimate is equivalent to averaging
estimates based on the preceding and following successive
differences.

A local maximum vmax in PoG speed was defined as a PoG speed
that was greater than that in the immediately preceding and fol-
lowing frames. Some of these local maxima were due to saccades
whereas others were due to fixational eye movements and instru-
mental noise. To find the optimum speed threshold for separating
them, a variable speed threshold was introduced that was allowed
to range between the lowest and highest recorded local speed
maxima in the data set in 250 equal steps. The number of steps
used was chosen to reflect the constraints imposed by the tempo-
ral resolution of the eye-tracker.

The light-gray histogram in Fig. 2 shows, for one observer view-
ing one scene over one block of 223 trials, the frequency of local
maxima in PoG speed exceeding a variable speed threshold that
ranged between the lowest and highest recorded local maxima
(in this block 37 trials were excluded because of lost tracking). Lo-
cal maxima exceeding high values of the threshold were attributed
to saccades and those not exceeding low values of the threshold
mainly to fixational eye movements. The much greater number
of the latter was reflected in Fig. 2 by the sharp peak in the number
exceeding threshold values near zero. The location of the elbow in
the histogram was assumed to provide the speed threshold vopt

that optimally separated the distribution of saccades from the dis-
tribution of fixational eye movements and instrumental noise, that
is, where the probability of misclassification was the least and the
same for each.

To locate the elbow, the histogram was compared with a null
distribution of local speed maxima. This null distribution (Tibshira-
ni, Walther, & Hastie, 2001) had the property that values were uni-
formly distributed between the lowest and highest recorded local
speed maxima. The dashed line in Fig. 2 shows for this null distri-
bution the frequency of local speed maxima exceeding threshold as
a function of threshold (since values were distributed uniformly,
this frequency declined linearly). The gap between the frequency
of local speed maxima exceeding threshold and the frequency of
null-distribution local speed maxima exceeding threshold is actu-
ally traced by a dotted curve in Fig. 2, but it is largely hidden by
the solid curve, which is explained shortly. The maximum in this



Fig. 3. Distribution of non-saccadic durations. The light-gray histogram shows the
frequency of fixational durations and, at very short durations, instrumental noise
events (bin width 4 ms). The solid curve shows the loess smooth of the histogram.
The vertical line marks the optimum duration threshold dopt. Data were based on
the same trials as in Fig. 2.

Fig. 4. Distribution of optimum thresholds. The light-gray histograms show the
frequency of optimum speed thresholds vopt (upper panel, bin width 2 deg s�1) and
optimum duration thresholds dopt (lower panel, bin width 15 ms). Data were based
on 140 blocks of 31,409 trials by seven observers viewing 20 scenes. The dark-gray
histograms show the corresponding frequencies for blocks from which subsamples
of 3–21 trials were taken for expert classification.
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gap statistic defined the location of the elbow and therefore the
optimum speed vopt for classifying saccades.

The precise location of the maximum in the gap statistic was
estimated from the data by applying a locally weighted quadratic
regression (loess) (Cleveland, 1979; Fan & Gijbels, 1996) to smooth
the gap statistic. The closeness of the fit was determined by a band-
width h which controlled the size of the local neighborhood and
consequently the proportion of data included in each local fit
(Fan & Gijbels, 1996). In general, if the bandwidth is too large,
the loess fit is likely to be biased, and with it the location of the
maximum; if the bandwidth is too small, the loess fit is likely to
incorporate random fluctuations in the data, and therefore produce
multiple local maxima. Accordingly, the optimum bandwidth hopt

was defined as the smallest value of h for which the number of lo-
cal maxima in the smoothed curve was one.1 To accommodate the
high gradient at low speed thresholds, speeds were log-transformed
before the fit was made.

The solid curve in Fig. 2 shows the loess smooth of the gap sta-
tistic and the vertical line marks the optimum speed threshold vopt.
Local speed maxima greater than vopt were classified as being due
to saccades; all other local maxima were classified as fixational or
the result of instrumental noise.
3.2. Classification of noise

Fig. 3 shows for the same set of data as in Fig. 2 the frequency of
durations classified as non-saccadic, that is, for which speed re-
mained continuously less than or equal to the optimum speed
threshold vopt.

There is a local duration maximum at about 250 ms, a value that
is broadly consistent with other estimates of fixation duration (e.g.
Castelhano, Mack, & Henderson, 2009; Henderson, 2003; Rayner,
2009). There is also another local duration maximum, which is also
a global maximum, at very short durations (a few ms). As indicated
earlier, this maximum was taken to be due to instrumental noise
events (Nyström & Holmqvist, 2010). These unphysiological dura-
tions have, in other studies, been eliminated by imposing a mini-
mum duration threshold (Nyström & Holmqvist, 2010; Tatler,
Baddeley, & Gilchrist, 2005). In keeping with the present nonpara-
1 This method should be contrasted with those methods based on estimating a
bandwidth that makes the observed number of maxima the most probable
(Silverman, 1986; Foster, 2002). The concern here was with the smallest bandwidth
that satisfied this constraint.
metric approach, the frequency of durations classified as non-sacc-
adic was assumed to reach its minimum at the duration dopt that
optimally separated the noise distribution from the distribution
of fixational eye movements, that is, where the probability of mis-
classification was the least and the same for each.

The location of the minimum was estimated from the data by
again applying a quadratic loess to smooth the histogram. As with
the speed data, the optimum value hopt of the bandwidth was
determined nonparametrically. Thus, the optimum hopt was de-
fined as the smallest value of h for which the frequency of maxima
in the smoothed curve was two. To accommodate the high gradient
at low durations, durations were also log-transformed before the
fit was made.

The solid curve in Fig. 3 shows the loess smooth of the duration
histogram and the vertical line marks the optimum duration
threshold dopt. Durations greater than dopt were classified as being
due to fixations; the rest were classified as being due to instrumen-
tal noise.
4. Comparison with expert visual classifications

To test its classification performance, the proposed method was
applied to the sets of data described in Section 2. Estimates of the
optimum speed threshold vopt and optimum duration threshold
dopt were estimated independently and automatically for each ob-
server viewing each image over each block of 260 trials (excluding,
as noted earlier, trials with any lost tracking). The method could
just as well have been applied to trials pooled over observers,
scenes, or blocks. The light-gray histograms in Fig. 4 show the dis-



Table 1
Agreement (%) between fixation classifications by each experimental method and by
three expert classifiers across 21 sample traces. RA classified all 21 traces (5271
frames); GRB classified three traces (753 frames); and EG classified 18 traces (4518
frames).

Experimental method Expert visual
classifier

RA GRB EG

Proposed nonparametric speed-based method 94 88 94
van der Linde et al. (2009) parametric stability-based

method
92 85 95

Vig et al. (2009) parametric speed-based method 96 85 95

Fig. 5. An example classification of a typical eye-movement trace, sampling
frequency 250 Hz. Vertical and horizontal gaze positions are plotted as a function
of time from the beginning of the sample. Fixations classified by the proposed
nonparametric method (upper panel) and by expert classifier EG (lower panel) are
indicated by darker curves. The classification agreement between these two plots
was 95%.
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tribution of optimum speed and duration thresholds for the 20
scenes and seven observers tested.

A subsample of the resulting fixation classifications was com-
pared with visual classifications made independently by three ex-
pert classifiers, RA, GRB, and EG.2 Twenty-one PoG traces were
selected at random from the 31,409 available (three traces from each
observer, with each trace containing 251 frames over 1 s). All 21
traces were then classified by RA, and, owing to time constraints,
three by GRB and 18 by EG. The agreement between classifications
by the proposed method and those by the three expert classifiers
was summarized by the proportion of frames with common classifi-
cation. The total number of frames available from the 21 traces was
5271. Results are shown in Table 1, with classification accuracy rang-
ing from 88% to 94% (first row of entries). An example of a trace with
fixations classified by the proposed method and by one of the expert
classifiers is shown in Fig. 5.

To help set the performance of the proposed method in context,
classifications by each of two existing parametric methods, the one
based on gaze stability, the other on speed, were also compared
with the classifications by the expert classifiers. The stability-based
method was due to van der Linde et al. (2009), in which a sequence
of PoG positions was defined as fixational if they remained within a
circle of radius 1 deg for 100 ms. These parameters were taken
from recommendations by Applied Science Laboratories (Bedford,
MA). The speed-based method was due to Vig, Dorr, and Barth
(2009), in turn derived from work by Böhme et al. (2006), in which
a sequence of PoG speeds was defined as saccadic with respect to
two speed thresholds. Thus, when PoG speed first exceeded the
higher threshold of 137.5 deg s�1, saccade detection was initiated,
and then the onset and offset of the saccade were defined, respec-
tively, as the first samples where PoG speed rose above and fell be-
low the lower speed threshold of 17.5 deg s�1. These thresholds
differed a little from those used by Böhme et al. (2006) as they
were hand-tuned to match visually classified saccades (Vig, Per-
sonal Communication, 23 February 2010). The use of two speed
thresholds was intended to increase the noise resilience of this
method. The periods between saccades were assumed to contain
only fixations (and possibly noise).

As with the proposed method, the agreement between classifi-
cations by the two parametric methods and by the three expert
classifiers was summarized by the proportion of frames with com-
mon classification. Results are again shown in Table 1, with classi-
fication accuracy ranging from 85% to 96% (second and third rows
of entries).

To provide an estimate of the best performance that could be
expected from a fixation–classification method, the pairwise
2 The three classifiers were Dr. R. Ackerley (Sahlgrenska Hospital and Institute for
Neuroscience & Physiology, University of Gothenburg, Sweden), Professor G.R. Barnes
(Faculty of Life Sciences, University of Manchester, UK) and Dr. E. Gowen (Faculty of
Life Sciences, University of Manchester, UK). The lengths of their individual
experience in the design, analysis, and interpretation of eye-movement experiments
were, respectively, five, 40, and 11 years.
agreement between the three expert classifiers was summarized
by the proportion of commonly classified frames. The mean agree-
ment over the 24 comparisons was 93%. Since expert classification
provides the best available estimate of a ground truth, this value
sets an upper limit on average classification accuracy.
5. Robustness to added noise

One of the advantages of a classification method that derives
thresholds automatically from data over a method that uses a fixed
threshold is its adaptability to different levels of instrumental
noise. If data are especially noisy, a speed-based classification
method may misrepresent noise events as saccades. Misclassifica-
tions may be reduced by increasing the value of the speed thresh-
old after visual inspection of the data, but these adjustments can be
uncertain and time consuming, particularly if noise levels vary
across observers.

To demonstrate the robustness of the proposed method to in-
creased noise, a simulation was undertaken in which different lev-
els of Gaussian noise were added to the recorded data before
analysis by the proposed method. Fig. 6 shows for each noise level
r, the automatically generated optimum speed threshold vopt aver-
aged over all 140 blocks (upper panel). The threshold vopt increased
smoothly with increasing r, reaching almost twice its value with-
out added noise. Crucially, the total number of fixations classified
by the method (lower panel) remained almost constant with r.



Fig. 7. An example classification of a typical subsampled eye-movement trace,
sampling frequency 125 Hz. Vertical and horizontal gaze positions are plotted as a
function of time from the beginning of the sample. Fixations classified by the
proposed nonparametric method are indicated by darker curves (compare with
Fig. 5, upper panel).

Fig. 6. Effect of added noise. Optimum speed threshold vopt averaged over all 140
blocks (upper panel) and corresponding total number of fixations classified by the
proposed nonparametric method (lower panel) are plotted against added noise r in
degrees of visual angle. The continuous curves are, respectively, local and global
linear regressions. For clarity, the vertical bars (upper panel) show ±2 SEM.
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6. Robustness to sampling rate

Another advantage of the proposed method is its adaptability to
different sampling rates (Andersson, Nyström, & Holmqvist, 2010).
To demonstrate this robustness, a simulation was undertaken in
which eye-movement traces were subsampled to reduce the sam-
pling rate from 250 Hz to 125 Hz. The frequency of fixations classi-
fied by the method using the subsampled data was 99,063,
compared with 91,907 classified by the method using the data at
full resolution, showing that the frequency of fixations remained
stable to within 8%. A further illustration of the robustness of the
method to sampling rate is shown in the trace of Fig. 7. Data were
subsampled from the eye-movement trace of Fig. 5 with fixations
classified by the proposed method. Despite the reduction in sam-
pling rate, it can be seen by comparison with the upper panel of
Fig. 5 that there is little effect on the classification of fixations.
7. Revealing variation in fixation duration and saccade
amplitude

The distributional properties of the thresholds used to classify
fixations (Fig. 4) should not be confused with the distributional
properties of the fixations themselves, which may vary with obser-
ver, stimulus, and task. Thus, differences have been reported in
mean fixation duration across different observers and stimuli (Har-
ris et al., 1988) and in mean fixation duration and in mean saccade
amplitude across different observers and stimuli (Andrews & Cop-
pola, 1999). But in the former case classifications were based on vi-
sual inspection of the PoG traces (Harris et al., 1988) and in the
latter on a fixed displacement threshold and speed threshold (An-
drews & Coppola, 1999).

A complication in such analyses is that the distributions of fix-
ation durations and of saccade amplitudes are generally long-tailed
(Harris et al., 1988; Velichkovsky et al., 2000), with correspond-
ingly large standard deviations. In this study, SDs of fixation dura-
tions and saccade amplitudes averaged over observers and scenes
were 119 ms and 2.42 deg, respectively. Given these large spreads,
is it possible to reveal reliable differences in the means of the dis-
tributions across individual observers and scenes with the pro-
posed method?

The dot plot of Fig. 8, taken from the analysis of Section 4, shows
the ranked values of the mean fixation duration (upper panels) and
mean saccade amplitude (lower panels) for all twenty scenes and
for the three observers with the least, the median, and the greatest
differences across scenes. The horizontal error bars show ±1 SEM.
The variations in mean fixation duration and in mean saccade
amplitude across observers and scenes are evident.

An analysis of variance confirmed the existence of highly signif-
icant effects of observer and scene, and their interaction, for both
fixation duration (respectively, F(6, 91767) = 454, p < 0.001,
g2

p = 0.029; F(19, 91767) = 61.4, p < 0.001, g2
p = 0.013; and

F(114, 91767) = 31.2, p < 0.001, g2
p = 0.037) and saccade amplitude

(respectively F(6, 60662) = 1053, p < 0.001, g2
p = 0.094;

F(19, 60662) = 15.3, p < 0.001, g2
p = 0.005; and F(114, 60662) =

21.1, p < 0.001, g2
p = 0.038). Although the effect sizes represented

by g2
p are modest, there are important differences across observers

and scenes. For three of the 20 scenes, the ratios of largest to small-
est mean duration and mean amplitude over all seven observers
exceeded, respectively, 156% and 285%, and for one of the seven
observers, the ratios of largest to smallest mean duration and mean
amplitude over all 20 scenes were, respectively 181% and 252%.
8. Conclusions

The advantage of a nonparametric data-driven method for clas-
sifying eye fixations—and saccades—is that it automatically adapts
itself to individual differences and to the effects of scene content
and task. Unlike other methods, it requires no subjective hand-tun-
ing of thresholds and therefore no intervention by an independent
eye-movement expert. Because it is automatic, it can be applied to



Fig. 8. Mean fixation durations (upper panels) and saccade amplitudes (lower panels) for each of three observers with the least, median, and greatest differences across
twenty natural scenes. The same abscissae have been used to aid comparisons. Horizontal error bars indicate ±1 SEM where sufficiently large. The SDs of fixation durations
and saccade amplitudes averaged over all observers and scenes were 119 ms and 2.42 deg, respectively.
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large quantities of data, with corresponding gains in classification
rate and subsequent analysis.

Although the approach adopted in this study was based on the
general distributional properties of eye movements, only the exis-
tence of extrema in the distributions was assumed, i.e. a maximum
or a minimum. No particular assumption was made about the
model of the distribution or its parameters. Even so, as with any
data-driven procedure, classification performance necessarily de-
pends on the size of the sample. With the samples of 260 one-sec-
ond trials used in the present analysis, extreme estimates of the
optimum speed and duration thresholds demarcating fixations
were only rarely encountered, as Fig. 4 made clear. Of course,
reducing sample size is likely to lead to greater uncertainty in
these estimates, although the goodness of fit illustrated in Fig. 2
suggests that rather smaller samples might still yield good esti-
mates. As the method requires that examples of saccades and fix-
ations be present in the data, minimum trial durations should be
long enough to contain both.

The proposed method was found to be successful in that it pro-
duced fixation classifications that agreed with 88–94% of the inde-
pendent classifications by the three expert classifiers. This level of
agreement was generally as good as—and for some expert classifi-
cations better than—the level with the parametric methods due to
van der Linde et al. (2009) and to Vig, Dorr, and Barth (2009). Sig-
nificantly, none of the methods of classification agreed perfectly
with the expert classifications, but given the level of agreement be-
tween expert classifiers, some differences were inevitable. From
the simulations with added noise, however, it seems that unlike
methods with fixed thresholds, classifications by the proposed
method should remain stable as the level of instrumental noise in-
creases. This would make the method particularly useful when ap-
plied to eye-movement data obtained from observers who find it
difficult to remain steady (for example, young children).

As noted elsewhere ( _Zychaluk & Foster, 2009), there is a general
understanding that a correct parametric method will always do
better than a nonparametric one. This advantage comes from the
fact that the parametric model is able to assume more about the
data. At present, with uncertainty about the effects on fixations
of scene content, task, and the variation from individual to individ-
ual, as illustrated in Fig. 8, a correct parametric model appears not
to be possible. A nonparametric approach provides an objective
and efficient way of accommodating this uncertainty. As demon-
strated here, eliminating parametric dependence need not degrade
classification performance in practice.

Software for classifying a sequence of PoG coordinates by the
proposed nonparametric method is available from the authors.
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