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A B S T R A C T

Near-wall turbulence modeling represents one of challengers in the computational fluid dynamics. To
tackle this problem, the near-wall non-overlapping domain decomposition (NDD) method proved to be very
efficient. It has been successfully used with different Reynolds-averaged Navier–Stokes models. In NDD the
computational domain is split into two non-overlapping sub-domains: an inner region near the wall, which is
characterized by high gradients, and the outer region. To simplify the solution, in the inner region the thin-layer
model can be used. In this case, NDD represents a trade-off between the accuracy and computational time.
It has been demonstrated on numerous test cases that NDD is able to save up to one order of computational
time while retaining practically high accuracy. A practical drawback of the algorithm is a need to split the
computational domain into two regions. In the present paper, for the first time the NDD is realized implicitly.
For this purpose, specific boundary conditions of Robin type are derived at the wall. Such boundary conditions
reduce the gradients of the solution near the wall. The key property is that the solution can be obtained on
a relatively coarse grid and then be recalculated in the inner region. In the approach it is guaranteed that
the original outer and updated inner solutions are linked smoothly. The algorithm with the new boundary
conditions can be easily implemented in standard codes. This is demonstrated with the code OpenFOAM. In
addition, in the paper a more accurate approach to obtain the solution in the inner region is realized. The
efficiency of the entire technique is demonstrated on test cases with modeling turbulent flows in a channel
and asymmetric diffuser.
1. Introduction

The problem of modeling near-wall turbulent flows represents one
of the major challenges in fluid dynamics for many years. In the
numerical simulation, the major part of the computational time is
taken by the resolution of a thin layer, which includes a laminar
sublayer adjacent to the wall. The thickness of this layer is usually very
small and no more than about 1% of the typical size of the flow in
the normal direction [1]. The use of Large Eddy Simulation (LES) in
industrial design is still prohibitively expensive if solid boundaries are
present. In this case the problem becomes more complicated since it is
problematic to extend the LES approach immediately to the wall. At the
same time, the engineering approaches based on the Reynolds-averaged
Navier–Stokes equations (RANS) closed with the use of high-Reynolds
number (HRN) models often do not satisfy modern requirements to the
accuracy. The problem is that in these models the effect of the wall
is only counted via semi-empirical boundary conditions of Dirichlet
type called the wall functions [2]. The use of low-Reynolds number
(LRN) models improves the accuracy since such models resolve the
structure of the entire turbulent boundary layer. However, this leads
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to a multiscale problem with high gradients of the solution in a very
thin layer that always exists due to the no-slip boundary condition and
damping effect of the wall. It is to be noted that its resolution has a
significant influence on the prediction of the entire flow. As a result,
an accurate enough resolution of the near-wall region requires a very
fine mesh and takes up to 90% of the total computing time [3] and
even more [1].

HRN models are still widely used in the industrial community. The
drawbacks of this approach are well-known. The governing equations
do not describe the transition region from laminar flow in the sublayer
to the fully turbulent regime. Thus, HRN models do not resolve the sub-
layer region. The numerical solution can be essentially mesh sensitive.
The standard wall functions are semi-empirical and only applicable
to very simple near-wall flows [1]. Attempts to extend their appli-
cability lead to some free parameters to be tuned. It is to be noted
that there are some advanced approaches such as the scalable wall
functions [4], analytical and numerical wall functions [5], and adaptive
wall functions [6]. In these models, the sub-layer region is partially
resolved in the near-wall cell. However, the advanced wall functions
vailable online 12 August 2022
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mentioned above only partially improve the entire approach which
has a relatively small basis due to the assumptions behind the HRN
models. In particular, the sensitivity of the solution to the size of the
near-wall cell retains although it is essentially weaker than that for the
conventional wall functions (see, e.g., [1,4,7]).

The near-wall domain decomposition (NDD) approach first pro-
posed in [8,9] for HRN models can also be applied to LRN models [10]
straightforward. The main idea of the approach is based on the transfer
of the boundary conditions from the wall to the interface boundary
between the inner and outer regions to be set. It turns out the boundary
condition can be transferred exactly under some general conditions.
If a locally one-dimensional model is used in the inner region, then
any Dirichlet condition at the wall is exactly mapped onto a Robin
boundary condition at the interface boundary [11]. As noted in [8],
this boundary condition represents a slip boundary condition from the
physical point of view. In a multidimensional case, it turns out that
in a strict formulation the interface boundary condition (IBC) must be
nonlocal [12]. The IBCs are always formulated in a mesh-independent
form and do not contain free parameters. As was demonstrated on
numerous test cases [13,14], the NDD allows the computational time to
be reduced by one order of magnitude while retaining a good enough
accuracy even for quite complex geometries [15,16]. Recently, the
approach was successfully extended to essentially unsteady problems
in [17]. It turns out that for essentially unsteady problems the IBCs
should be nonlocal over time. It is to be noted that the original NDD
approach implies the use of the thin boundary layer equations (TBLE)
near the wall. For this reason, it is also called the approximate NDD
(ANDD) approach in contrast to the exact NDD proposed in [16]. It is
worth noting here that the TBLE model is also used in Wall-Modeled
LES [18–20].

A practical drawback of the NDD approach is related to its relative
algorithmic complexity. It is necessary to split the domain into two
regions. Then, IBCs are set at the interface boundary. The solution
should be obtained first in the outer region. Then, the solution in the
inner region can be achieved with the boundary conditions determined
from the solution in the outer region. This algorithm is essentially sim-
plified in the present paper. The idea is the following. The IBC for the
tangential velocity is transferred back to the wall in the framework of a
simplified model with frozen coefficients. The new boundary condition
at the wall is of Robin type and do not coincide with the original
boundary condition. It represents a slip boundary condition at the wall
which leads to smaller gradients of the solution near the wall. Next,
the solution in the entire region can first be obtained on a relatively
coarse mesh with the new boundary condition at the wall. Then, the
solution in the inner region can be recalculated immediately with the
TBLE model and original boundary condition at the wall and Robin-
type IBCs at the interface boundary. It turns out that the solution in the
inner and outer regions are always smoothly merged. In this approach
there is no need in an explicit decomposition with the split of the
computational domain into two sub-domains. The solution is obtained
in the entire region and updated in the inner region. The last procedure
can be realized in quadratures. In contrast to the standard ANDD, in the
present paper the turbulent viscosity coefficient is calculated from the
turbulent model used rather than approximated in advance. This allows
us to enhance the accuracy of prediction in the inner region by the cost
of some extra computational time.

The paper is organized as follows. In the next section, the original
NDD method is described. Then, the new slip boundary condition is
derived in Section 3. In this section the modified NDD algorithm is also
introduced. It does not require implementation of domain decomposi-
tion explicitly. Next, Section 4 presents the derivation of the interface
boundary conditions for the key variables, including the velocity, tur-
bulent kinetic energy and its dissipation in the LRN 𝑘 − 𝜀 turbulence
model, followed by the detailed implementation of the ANDD and slip
boundary condition algorithms into the OpenFOAM. The efficiency of
the new approach is demonstrated on a one-dimensional channel flow
and two-dimensional diffuser flow in Section 5, where the numerical
results of the test cases are discussed in detail. This is followed by the
conclusion in Section 6.
2

Fig. 1. Sketch of domain decomposition. Domain 0 < 𝑦 < 𝑦∗ corresponds to the inner
region.

2. Near-wall domain decomposition

Consider the key idea of NDD approach in application to a Dirichlet
boundary value problem (BVP) for a 1D equation defined in interval
𝛺 ∶=

[

0, 𝑦𝑒
]

:

𝑦(𝑈 ) = 𝑅𝑈 , (1)

𝑈 (0) = 𝑈0, (2)

𝑈
(

𝑦𝑒
)

= 𝑈1,

where 𝑦 is a differential operator of second order: 𝑦 ∶=
𝜕
𝜕𝑦𝜇

𝜕
𝜕𝑦 .

Let split interval 𝛺 into two subintervals 𝛺− ∶= [0, 𝑦∗] and 𝛺+ ∶=
[

𝑦∗, 𝑦𝑒
]

with the interface at 𝑦 = 𝑦∗ as shown in Fig. 1. The boundary
condition from the wall (𝑦 = 0) can be exactly transferred to the
interface boundary 𝑦 = 𝑦∗ via the Dirichlet-to-Neumann map [10]:
𝑑𝑈
𝑑𝑦

= 𝛹 (𝑈,𝑅𝑈 ). (3)

Here, 𝛹 is a pseudo-differential operator which is nonlocal. It is worth
noting that this statement is valid even in a multi-dimensional formu-
lation. In 1D case, IBC (3) can be presented explicitly in the form of a
Robin boundary condition [11,16]:

𝑈 (𝑦∗) = 𝑓1
𝑑𝑈
𝑑𝑦

(𝑦∗) + 𝑓2 + 𝑈0, (4)

where 𝑓1 = ∫ 𝑦∗
0

𝜇∗

𝜇 𝑑𝑦, 𝑓2 = 1
𝜇∗ (𝐼𝑆2

− 𝑓1𝐼𝑆1
), 𝐼𝑆1 = ∫ 𝑦∗

0 𝑅𝑈𝑑𝑦, 𝐼𝑆2 =

∫ 𝑦∗
0

𝜇∗

𝜇 ∫ 𝑦′
0 𝑅𝑈𝑑𝑦𝑑𝑦′. Here and further below, the asterisk corresponds

to the value of a function at 𝑦 = 𝑦∗: 𝜇∗ = 𝜇(𝑦∗).
IBC (4) fully replaces the solution of the problem in the inner region

𝛺− for the outer region 𝛺+. This means the solution of BVP (1), (2)
must satisfy Eq. (4). In turn, one can prove that condition (4) is unique.
In the linear case, Eq. (4) is totally independent from the solution
in the outer region. This means the statements above are valid even
if the operator 𝐿𝑦 is both multidimensional and nonlinear in 𝛺+. In
particular, all these statements can be applied to RANS equations under
the assumption of known coefficient 𝜇 in 𝛺−.

It is to be noted that it is obviously impossible to obtain the solution
in the outer region, 𝛺+, without the solution in the inner region, 𝛺−.
However, one can transfer the boundary condition from the wall (𝑦 = 0)
to the interface boundary without knowledge of the solution in the
outer region. It is worth noting that the solution in 𝛺− with boundary
condition (4) is not unique since this condition is exactly derived from
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the governing equation and boundary condition at the opposite end. It
is clear that the solution of BVP in the inner region becomes unique
once the external boundary condition is based on the solution of BVP
in the outer region.

Finally, one can prove that the composite solution must be smooth.
This means both solutions, the inner and outer, coincide at the interface
boundary up to the first derivative. The proof immediately follows from
the fact that the IBC is fully equivalent to the governing equation in the
inner region and the boundary condition at the wall. In addition, the
solution in the outer region is unique.

In application to the RANS equations, the TBLE are considered in
the inner region. As such, the turbulent viscosity coefficient depends on
the solution in 𝛺+, so does the IBC. In the formulation described above,
the IBCs for BVP in the outer region can be formulated in a universal
form (4) for all variables but the normal to the wall velocity. With the
latter variable the problem is that for it there is no leading equation
of the second order. In [16], a Robin boundary condition is derived for
the normal velocity from the continuity equation and no-flux boundary
condition. In contrast to (4), this boundary condition is local.

Thus, we arrive at the following procedure to realize the NDD. First,
the solution in the outer region 𝛺+ with boundary condition (4) at the
left-hand end should be obtained. Then, a BVP should be solved in the
inner region with the Dirichlet (or Neumann/ Robin) boundary condi-
tion at the right-hand end. This boundary condition can be immediately
obtained from the solution of BVP in the outer region. It is to be noted
that the solution in the inner region can be easily obtained even in
quadratures since this problem is locally one-dimensional. Moreover, if
only a flux to the wall is needed, then it can be obtained immediately
from the governing equation:

𝜏𝑤 = 𝜇∗ 𝑑𝑈
𝑑𝑦

(𝑦∗) − ∫

𝑦∗

0
𝑅𝑈𝑑𝑦, (5)

where 𝜏𝑤 is the friction at the wall.
In the governing equations 𝜇 = 𝜇𝑙 + 𝜇𝑡 is the efficient viscosity

coefficient which is the sum of the laminar and turbulent coefficients,
respectively. Thereby, it depends on the solution. To simplify the use of
boundary condition (4), one can implement available approximations
for the turbulent viscosity 𝜇𝑡 near the wall such as the Van-Driest
profile [21]. Some examples of approximation for 𝜇𝑡 are provided
in [13]. In all of them 𝜇𝑡 = 𝜇𝑡(𝜏𝑤). Thus, the IBC retains to be non-
linear, although the nonlinear dependence, which requires an iterative
procedure, is weak.

As a result, the entire algorithm reads:
10. Select an approximation for the near-wall turbulent viscosity

coefficient 𝜇𝑡.
20. Select an initial approximation for 𝜏𝑤.
30. Calculate IBC (4).
40. Solve BVP in the outer region with IBC (4).
50. Update 𝜏𝑤 via (5).
60. Update the near-wall turbulent viscosity profile.
70. Repeat the procedure from step 3.
De facto, the problem is numerically solved in the outer region since

in the inner region the solution is then obtained straightforward:

𝑈 (𝑦) = ∫

𝑦

0

𝜇∗

𝜇(𝜂)
𝑑𝜂 𝑑𝑈

𝑑𝑦
(𝑦∗) − ∫

𝑦

0

∫ 𝑦∗
𝜂 𝑅𝑈𝑑𝜂′

𝜇(𝜂)
𝑑𝜂 + 𝑈0. (6)

Thus, in the inner region a special mesh generation is not required since
the quadratures can be calculated on a local sub-grid.

A drawback of this algorithm is related to some complexity with its
implementation in existing computer codes. It is necessary to split the
computational domain into two non-overlapping sub-domains. Then,
the problem is effectively solved only in the outer region.

The entire algorithm can be essentially simplified with the develop-
ment of effective boundary conditions at the wall such that the problem
can be solved in the outer computational domain on a relatively coarse
mesh and then recalculated only in the inner region. For that we
3

Fig. 2. Sketch of coupling in the near-wall region: black nodes and solid lines
correspond to main grid; blue circles and dot lines, fine sub-grid for recalculation;
red cross, information exchange point at the interface.

Fig. 3. Sketch of velocity profile obtained in two stages. The dashed line corresponds
to the profile corrected at the first stage.

transfer the IBC for the tangential velocity back to the wall with the
use of a truncated TBLE model with frozen coefficients. The objective
of the new boundary conditions is the following. In the outer region
the solution of BVP obtained in the entire region with these boundary
conditions should coincide with the solution of the original problem
in the framework of NDD. Since the IBCs are derived with the use of
LRN model, while the new boundary conditions at the wall are based
on the model with frozen coefficients, the original and new boundary
conditions at the wall do not coincide. Inevitably, we should obtain a
slip boundary condition. In addition, since the slip boundary condition
can essentially reduce the gradients of the solution, a relatively coarse
mesh might be used at that stage. It is worth noting here that in [22,23]
the dynamic slip boundary conditions are derived for LES but they are
obtained on different principles, from the LES filtering procedure.

3. Slip boundary condition and implicit NDD

To derive the new boundary condition at the wall, let fix the
coefficient 𝜇 and the right-hand side 𝑅𝑈 at 𝑦∗ in (1). Such a model
is further called the truncated TBLE model.

Next, for the solution 𝑈 with the slip boundary condition in the
inner region we have

𝑈 (𝑦) ≈ 𝑈 (0) + 𝑦𝑈 ′(0) +
𝑦2

𝑈 ′′(0).

2



�&�R�P�S�X�W�H�U�V �D�Q�G �)�O�X�L�G�V ������ ������������ ������������S. Lyu and S. Utyuzhnikov
Fig. 4. Channel flow, 𝑅𝑒𝜏 = 395. Comparison of explicit NDD (ANDD) results (𝑦∗+ = 20 in red line, 50 in blue line and 80 in green line) with one-block LRN solution.
Then

𝑈 (𝑦∗) = 𝑈 (0) + 𝑦∗𝑈 ′(0) +
𝑦∗2𝑅∗

𝑈
2𝜇(𝑦∗)

.

Here, the second derivative is immediately obtained from the simplified
governing equation where 𝑅∗

𝑈 = 𝑅𝑈 (𝑦∗).
In addition,

𝑈 ′(𝑦∗) = 𝑈 ′(0) +
𝑦∗𝑅∗

𝑈
𝜇∗ . (7)

On the other hand, we require that the new solution must satisfy
IBC (4):

𝑈 (𝑦∗) = 𝑓1𝑈
′(𝑦∗) + 𝑓2, (8)

where 𝑓 = 𝑓 + 𝑈 .
4

2 2 0
Then, immediately we arrive at the boundary condition of Robin
type at the wall for variable 𝑈 :

𝑈 (0) = 𝑓𝑤1𝑈
′(0) + 𝑓𝑤2, (9)

where 𝑓𝑤1 = 𝑓1 − 𝑦∗, 𝑓𝑤2 = 𝑓2 +
𝑦∗𝑅∗

𝑈
𝜇∗ (𝑓1 −

𝑦∗

2 ).
It is easy to prove that 𝑓𝑤1 ≥ 0 since 𝜇𝑡 is a monotonic function

near the wall. Hence, boundary condition (9) is always well-posed. In
addition, as can be seen, if 𝑦∗ tends to zero, then boundary condition (9)
transforms to the no-slip boundary condition. Moreover, it immediately
becomes the no-slip boundary condition as long as 𝑦∗ is situated in the
laminar sub-layer. Indeed, in this case 𝑓1 = 𝑦∗ and 𝑓2 = −

𝑅∗
𝑈

𝜇∗
𝑦∗2

2 as
such 𝑓𝑤1 = 0 and 𝑓𝑤2 = 𝑈0.

From the derivation it follows that IBC (8) (and (4)) is fully equiv-
alent to the simplified governing equation in the inner region and
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Fig. 5. Channel flow, 𝑅𝑒𝜏 = 395. Comparison of implicit NDD results (𝑦∗+ = 20 in red line, 50 in blue line and 80 in green line) with one-block LRN solution. The dashed line
represents the velocity profile after the 1st stage with 𝑦∗+ = 80.
slip boundary condition (9). Thus, at the interface boundary the inner
solutions obtained with the original and truncated TBLE models must
coincide up to the first derivative.

In this way, the computational algorithm becomes straightforward.
First, the solution is obtained in the entire region with the slip boundary
condition. Then, in the inner region the solution is updated according
to (6). If we are interested only in a flux to the wall, then only the flux
is recalculated according to (5).

As can be seen, with the new approach the NDD is realized only
implicitly. There is no need in the split of the computational domain
explicitly. The problem can be solved with a LRN model with the slip
boundary condition at the wall. This solution can be obtained on a
relatively coarse grid since it does not have high gradients. Then, the
solution in the inner region is corrected. It is smoothly adjusted to the
5

solution in the outer region. As the original NDD, the new approach
represents a trade-off between the accuracy and computational time
depending on interface boundary 𝑦∗. In further consideration, the NDD
approach with the slip boundary condition (9) is called the implicit
NDD.

As an additional modification, in contrast to the conventional
ANDD, in the implicit NDD we do not specify the turbulent viscosity
coefficient in the inner region. Instead, it is determined from the RANS
model used. This issue, is discussed in more detail in the next section.
It is to be noted that the suggested latter modification is not inherent
to the implicit algorithm of NDD based on the slip boundary condition
and can be dropped. However, we presume that it is potentially able
to improve the accuracy of the solution by the cost of some extra
computational time.
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Fig. 6. Channel flow, 𝑅𝑒𝜏 = 8000. Comparison of implicit NDD results (𝑦∗+ = 50 in red line, 100 in blue line and 200 in green line) with one-block LRN solution. The dashed line
represents the velocity profile after the 1st stage with 𝑦∗+ = 200. The dotted line corresponds to DNS data [24].
4. Application to LRN turbulence model

The LRN 𝑘−𝜀 model of Launder–Sharma [25] is chosen to close the
governing equations. The TBLE equations utilized in the inner region
can be written as follows:

𝜕
𝜕𝑦

[

(𝜈 + 𝜈𝑡)
𝜕𝑢
𝜕𝑦

]

= 1
𝜌
𝜕𝑝
𝜕𝑥

,

𝜕
𝜕𝑦

[(

𝜈 +
𝜈𝑡
𝜎𝑘

)

𝜕𝑘
𝜕𝑦

]

= 𝜀 − 𝜈𝑡

(

𝜕𝑢
𝜕𝑦

)2
,

𝜕
𝜕𝑦

[(

𝜈 +
𝜈𝑡
𝜎𝜀

)

𝜕�̃�
𝜕𝑦

]

= 𝐶𝜀2𝑓2
�̃�2

𝑘
− 𝐶𝜀1𝑓1

�̃�
𝑘
𝜈𝑡

(

𝜕𝑢
𝜕𝑦

)2
− 𝐸,

(10)

where

𝜈 = 𝐶 𝑓 𝑘2∕�̃�, 𝐶 = 0.09, 𝑓 = 𝑒
−3.4

(1+𝑅𝑒𝑡∕50)2 , 𝜀 = 𝜀 + �̃�,
6

𝑡 𝜇 𝜇 𝜇 𝜇 0
𝜀0 = 2𝜈

(

𝜕
√

𝑘
𝜕𝑦

)2

, 𝑓1 = 1, 𝑓2 = 1 − 0.3𝑒−𝑅𝑒
2
𝑡 , 𝑅𝑒𝑡 =

𝑘2

�̃�𝜈
,

𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1, 𝜎𝜀 = 1.3, 𝐸 = −2𝜈𝜈𝑡

(

𝜕2𝑢
𝜕𝑦2

)2
.

Here, 𝑥 is the coordinate along the wall; 𝑝, the pressure; 𝑘, the turbulent
kinetic energy, 𝜀, its dissipation; 𝜈, the dynamic viscosity coefficient; 𝜈𝑡,
the eddy viscosity coefficient.

As can be seen, the convective terms are not included in the TBLE
equations. Their possible contribution depends on 𝑦∗ and briefly dis-
cussed in the next subsection.
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Fig. 7. Geometry of asymmetric diffuser.
4.1. Contribution of convective terms to IBC

To estimate the contribution of the convective terms, consider the
momentum equation

𝜕
𝜕𝑦

[

(𝜈 + 𝜈𝑡)
𝜕𝑢
𝜕𝑦

]

= 1
𝜌
𝜕(𝑝 + 𝜌𝑢2)

𝜕𝑥
+ 1

𝜌
𝜕𝜌𝑢𝑣
𝜕𝑦

.

In this case, IBC (4) reads

𝑢(𝑦∗) = 𝑓1
𝑑𝑢
𝑑𝑦

(𝑦∗) + 𝑓 ′
2,

where 𝑓 ′
2 = −(𝑢∗𝑣∗∕𝜈∗)𝑓1 + ∫ 𝑦∗

0 𝑢𝑣∕𝜈𝑑𝑦 − ∫ 𝑦∗
0

1
𝜈 ∫

𝑦∗
𝑦 (𝑝 + 𝜌𝑢2)𝑥𝑑𝑦′𝑑𝑦, 𝑣 is

the normal to the wall component of the velocity.
Next, we introduce the following approximation for the velocity

𝑢 ≈ (𝑦∕𝑦∗)𝑢∗ and 𝑣 ≈ (𝑦∕𝑦∗)2𝑣∗. Then, the second term in 𝑓 ′
2 is estimated

as

∫

𝑦∗

0

𝑢𝑣
𝜈
𝑑𝑦 ≈ 𝑢∗𝑣∗

𝜈∗ ∫

𝑦∗

0

𝜈∗

𝜈
(
𝑦
𝑦∗

)3𝑑𝑦 < 𝑢∗𝑣∗

4𝜈∗
𝑓1.

Thus, the contribution of the convective terms becomes essential if
𝜌∗𝑢∗2 ∼ 𝑝 and 𝑢∗𝑣∗ ∼ 𝑢2𝜏 , where 𝑢𝜏 =

√

𝜏𝑤∕𝜌. The latter estimate is
reduced to 𝑢+∗𝑣+∗ ∼ 1, where 𝑢+ = 𝑢∕𝑢𝜏 and 𝑣+ = 𝑣∕𝑢𝜏 .

4.2. IBCs in ANDD

The right-hand side term 𝑅𝑈 in compliance with (1) can be ex-
pressed for 𝑢, 𝑘 and �̃� equations as

𝑅𝑢 =
1
𝜌
𝜕𝑝
𝜕𝑥

,

𝑅𝑘 = 𝜀 − 𝜈𝑡

(

𝜕𝑢
𝜕𝑦

)2
,

𝑅�̃� = 𝐶𝜀2𝑓2
�̃�2

𝑘
− 𝐶𝜀1𝑓1

�̃�
𝑘
𝜈𝑡

(

𝜕𝑢
𝜕𝑦

)2
− 𝐸.

(11)

The IBCs for variables 𝑢, 𝑘, and �̃� are used in Robin-type form
(4). Term 𝑅𝑈 is essential for the calculation of coefficient 𝑓2. For the
tangential velocity 𝑢, the stream-wise pressure gradient is assumed to
be constant and evaluated immediately at the interface position 𝑦∗ from
the outer region, such that 𝑅𝑢 = 𝑑𝑝∕𝑑𝑥(𝑦∗)∕𝜌.

In a finite volume code, IBC (4) can be approximated in the outer
region via the value of 𝑈 at the interface boundary 𝑈∗ and at the center
of the cell adjoint to the interface boundary 𝑈𝑐 . Then, we arrive at a
discrete IBC:

𝑈∗ =
𝑓1𝑈𝑐 + 𝛿𝑓2

𝛿 + 𝑓1
. (12)

Here, 𝛿 is the distance between the center of the cell and interface
boundary.

In contrast to the tangential velocity, the IBC for the normal com-
ponent of velocity can be derived from the no-flux boundary condition
and continuity equation using the Taylor expansion [16]. It is also
formulated as a Robin-type boundary condition:

𝑣∗ =
𝑦∗ 𝑑𝑣 (𝑦∗). (13)
7

3 𝑑𝑦
In turn, in the discrete form it reads

𝑣∗ =
𝑦∗

3𝛿 + 𝑦∗
𝑣∗𝑐 , (14)

where 𝑣∗ and 𝑣𝑐 are the values of normal velocity at the interface
boundary and interface-adjacent cell center in the outer region, respec-
tively.

4.3. Determination of turbulent viscosity coefficient in the inner region

The only parameter required to implement IBCs (4) is the turbu-
lent viscosity profile in the inner region. In the conventional ANDD
approach, it can be specified in one way or another from existing near-
wall approximations. For example, the non-linear profile of Duprat
et al. [26] can be used, which takes into account the stream-wise
pressure gradient:

𝜈𝑡(𝜉) = 𝜈𝜅𝜉+
[

𝛼 + 𝜉+(1 − 𝛼)3∕2
]𝛽

[

1 − exp
(

−𝜉+

1 + 𝐴𝛼3

)]2
, (15)

where 𝜅 = 0.41, 𝐴 = 17, 𝛽 = 0.78, 𝛼 = 𝑢2𝜏∕𝑢
2
𝜏𝑝, 𝜉+ = 𝑦𝑢𝜏𝑝∕𝜈, 𝑢𝜏𝑝 =

√

𝑢2𝜏 + 𝑢2𝑝, 𝑢𝜏 =
√

|𝜏𝑤|∕𝜌, 𝑢𝑝 = |𝜈𝜕𝑝∕𝜕𝑥∕𝜌|.
The turbulent viscosity profile (15) depends on the surface friction

and stream-wise pressure gradient. It allows us to predict flows with a
boundary layer separation [17]. In the algorithm, 𝜏𝑤 can be updated
each iteration by (5). The stream-wise pressure gradient 𝜕𝑝∕𝜕𝑥 can
be taken at the interface boundary from the outer region. Discussion
of other possible approximations in application to NDD can be found
in [14,27].

In contrast to this approach, in the implicit NDD we determine the
turbulent viscosity from TBLE (10) for 𝑘 and �̃� with Dirichlet bound-
ary conditions at the interface boundary and original homogeneous
boundary conditions for 𝑘 and �̃� at the wall.

4.4. Implementation of implicit NDD

As described in Section 3, the implicit NDD effectively presumes two
stages. At the first stage, the solution is obtained on a relatively coarse
grid in the entire region. Then, at the next stage, the solution in the
inner region is recalculated on a sub-grid depicted in Fig. 2. It is to be
noted that the sub-grids for any fixed coordinate 𝑥 along the wall are
entirely local and can be not related to each other.

At the first stage, the slip boundary condition (9) is implied to the
tangential velocity at the wall boundary. The no-flux boundary condi-
tion is set for the normal velocity component. At the second stage, for
the sub-domain recalculation, the Dirichlet boundary condition is used
at the interface boundary and no-slip boundary condition is used at the
wall. The calculations are used on a local fine sub-grid. Computing the
tangential velocity profile is illustrated by the sketch presented in Fig. 3
where the dashed line corresponds to the preliminary velocity profile
in the inner region obtained with the slip boundary condition.

The implicit NDD algorithm can be summarized as follows:
10. Initialize the flow fields for both the main (coarse) grid and

sub-grid.
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Fig. 8. Comparison of mean stream-wise velocities between the results from experiment [28], one-block solution, explicit and implicit NDD. Subfigure (a) shows profiles of 𝑣𝑥 at
different sampling positions in asymmetric diffuser; plot (b), enlargement of profiles within near-wall region up to 𝑦∕𝐻 = 0.06; plot (c), enlargement of the box region in subfigure
(a).
20. Calculate the coefficients 𝑓𝑤1 and 𝑓𝑤2 based on the sub-grid
solution to impose the slip boundary condition at the wall.

30. Solve the governing equations on the main grid with the slip
boundary condition.

40. Recalculate the solution in the inner region on the sub-grid
region with the interface value obtained on the main grid.

50. Recalculate the turbulent viscosity based on the corrected veloc-
ity profile.

60. Repeat the procedure from step 2.
The entire algorithm can be easily implemented in the existing

codes. For this purpose, the slip boundary conditions should be set
at the wall followed by the re-calculation procedure in the inner
region that is entirely local for any fixed coordinate 𝑥. The described
approach has been realized in the OpenFOAM [29], an advanced open-
source toolbox based on the finite-volume method. With the help of
multi-region functionality in the OpenFOAM, the separate governing
equations, incorporated with the corresponding IBCs, are effectively
solved in different regions.
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5. Test cases

Next, the proposed algorithm is tested on the one-dimensional
channel flow and two-dimensional flow in an asymmetric diffuser.

In each simulation, mesh-independence is firstly reached on a grid
for the LRN one-block solution to verify the numerical results. In the
outer region, the grid retains the same for both the explicit (ANDD)
and implicit NDD. In turn, in the inner region a very coarse mesh is
used at the first stage of the implicit NDD. Then, at the second stage,
a fine local mesh is used to recalculate the solution in the inner region
according to (6). The same mesh is used for the explicit NDD.

Finally, we compare the results obtained with the use of thee
approaches: one-block solution on a fine mesh, explicit and implicit
NDD.
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Fig. 9. Comparison of velocity component 𝑣𝑦 between the results from one-block solution, explicit and implicit NDD for different 𝑦∗+.
5.1. Plane channel flow

A fully developed channel flow with the friction Reynolds number
𝑅𝑒𝜏 = 395 is considered as the first test case. Here, 𝑅𝑒𝜏 is defined in
terms of the friction velocity 𝑢𝜏 and the half of the channel height ℎ:
𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈.

The periodic boundary conditions are used in the OpenFOAM for the
inlet and outlet boundaries to exactly map the variations at the outlet
back to the inlet, eventually reaching a fully-developed flow. The front
and back boundary conditions are set as empty that means no solution
is required in that direction for the one- or two-dimensional case. The
pressure gradient along the stream-wise direction is fixed as a constant
driving force.

Different cases are simulated with the interface located at 𝑦∗∕ℎ =
0.05, 0.126 and 0.20, which correspond to the 𝑦∗+ varied from 20
to 80. As portrayed in Fig. 4, the predicted profile of 𝑢+ (defined as
𝑢∕𝑢𝜏 ) with the explicit ANDD method is agreed well enough with the
one-block LRN solution for different 𝑦∗+. Both 𝑘 and �̃� profiles remain
continuous at the interface positions that is a property of the Robin
boundary condition. However, there is a notable discrepancy for the
turbulent kinetic energy 𝑘 when compared with the one-block solution
as shown in Fig. 4(b). In addition, in subfigure (c), ANDD method
largely overpredicts �̃� around the peak area, especially at 𝑦∗+ = 80. This
is mainly due to the error introduced by the approximated turbulent
viscosity in the inner region.

As can be seen from Fig. 5(a), with the implicit NDD method the
dimensionless velocity 𝑢+ for each interface position almost perfectly
matches with the benchmark solution. The velocity profile after the first
stage of implicit NDD is also shown for 𝑦+ = 80. It is noticeably shifted
up because of the slip boundary condition implied. Then, the solution
is refined in the inner region at the second stage. Besides, Fig. 5(b)
and 5(c) clearly demonstrate that 𝑘 and �̃� profiles with the inner-layer
correction are much closer to the benchmark solutions when compared
with the corresponding ANDD results. The disagreement that appeared
in the ANDD is effectively resolved, due to the fact that the turbulent
viscosity in the inner region is reconstructed immediately from the
original turbulence model instead of an analytical approximation. The
overall near-wall solution is determined by the original model reduced
to the TBLE. Thus, the facilitation of the original governing equations in
the inner region does not cause any essential error. The same tendency
retains for higher Reynolds numbers. Fig. 6 demonstrates the results
for the test case from [24] with 𝑅𝑒 = 8000. These results correspond to
greater values of 𝑦∗+ ∶= 50, 100, 200. However, the obtained solutions
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are also low sensitive to the variation of 𝑦∗ and well coincide with
the benchmark one-block solution. Similar to the previous example, the
velocity profile is essentially corrected in the inner region after the first
stage as can be seen in Fig. 6(a). It is worth noting that the combined
velocity profile coincides well enough with the DNS data from [24].

5.2. Two-dimensional asymmetric diffuser

Now, consider the 2D asymmetric diffuser test case. The geometry of
the 2-D asymmetric diffuser, according the layout in [28], is shown in
Fig. 7. The inlet is located at 𝑥∕𝐻 = −10 and the outlet, at 𝑥∕𝐻 = 75.
The corners of the diffuser situated at 𝑥∕𝐻 = 0 and 𝑥∕𝐻 = 21 are
smoothed with the radius of curvature equal to 9.7𝐻 . The diffuser angle
is 10◦. The inlet boundary condition is imposed as the fully developed
channel flow corresponding to Reynolds number 𝑅𝑒 = 1.8 × 104 which
is based on the bulk velocity 𝑈𝑏 and channel height 𝑅𝑒 = 𝑈𝑏𝐻∕𝜈.

In Fig. 8, the predictions of the stream-wise velocity component 𝑣𝑥
with the explicit and implicit NDD are compared with the one-block
LRN results and experimental data [28] at 𝑥∕𝐻 = −5.87, 2.59, 5.98,
13.56, 16.93 and 20.32. Different simulations with the explicit and
implicit NDD are carried out at the interface positions 𝑦∗ = 0.01, 0.03
and 0.05, which correspond to 𝑦∗+ = 10, 30 and 50, respectively. As can
be seen, there is a growing discrepancy of the velocity profiles between
ANDD predictions and one-block LRN solutions as 𝑦∗+ increases that is
caused by the approximate viscosity profile and TBLE model used in
the inner region. The velocity profiles obtained with the implicit NDD
are in much better agreement with the benchmark LRN solutions. This
is basically because with the implicit NDD the turbulent viscosity is
determined from the TBLE model. It can also be seen that with the
implicit NDD the velocity profiles with 𝑦∗+ = 50 become noticeably
different than the profiles with 𝑦∗+ = 10 and 30. This is caused by the
error of the TBLE model that is more essential in the two-dimensional
case considered.

The near-wall regions nearby the straight and inclined walls with
the interface located at 𝑦∗∕𝐻 = 0.03 are enlarged in Fig. 8(b) and
Fig. 8(c), respectively. The velocity curves located at 𝑥∕𝐻 = 14
and 17 are chosen to represent the velocity profiles near the inclined
wall. The results with the explicit and implicit NDD approaches are
demonstrated in the outer and inner regions. Subfigures (b) and (c)
clearly demonstrate that the velocity profiles obtained with the implicit
NDD provide notably more accurate results than the ANDD prediction.

The velocity component along the 𝑦-axis 𝑣𝑦 is plotted in Fig. 9 at
the same sampling positions as 𝑣 . The profiles are scaled up five times
𝑥
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Fig. 10. Comparison of friction coefficients 𝐶𝑓 along the straight and inclined walls of the diffuser, obtained from experiment [28], one-block solution, explicit and implicit NDD.
larger than the steam-wise velocity in the previous figure. It can be seen
that the velocity 𝑣𝑦 obtained with the implicit NDD is less sensitive to 𝑦∗

and better matches with the one-block solution compared to the ANDD
results.

The skin friction coefficient 𝐶𝑓 = 2𝜏𝑤∕(𝜌𝑈2
𝑏 ) is shown along the

straight wall in Fig. 10(a) and along the inclined wall in Fig. 10(b).
𝐶𝑓 curves obtained with ANDD show progressively worse agreement
along both the straight and inclined walls as 𝑦∗ increased. The plots
of 𝐶𝑓 demonstrate that the results obtained with the implicit NDD are
less sensitive to the interface locations 𝑦∗ than the solutions obtained
with ANDD. Only the case of 𝑦∗+ = 50 deviates noticeably from the
LRN one-block solution. The surface friction curves obtained with the
implicit NDD are well improved in comparison with the predictions
based on ANDD. The reason of the improvement is that 𝜏 in the
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𝑤

slip boundary condition is obtained from a good enough prediction in
the inner region. In turn, this provides more accurate mean velocity
profiles. However, in subfigure (a) the secondary peak of 𝐶𝑓 along the
straight wall located around 𝑥∕𝐻 = 15 is observed in the experimental
data, whereas both the explicit and implicit NDD based on the LRN
𝑘 − 𝜀 model fail to predict it. In addition, it should be noted from
subfigure (b) that the ANDD and implicit NDD with the LRN 𝑘 − 𝜀
model fail to predict the recirculation region. This is caused by the
drawback of the original LRN 𝑘− 𝜀 model which is unable to correctly
capture any recirculation region in the diffuser flow [30]. However, it is
worth noting here that as shown in [14], the recirculation bubble can
be effectively predicted with the ANDD in case the Spalart–Allmaras
model is used.



�&�R�P�S�X�W�H�U�V �D�Q�G �)�O�X�L�G�V ������ ������������ ������������S. Lyu and S. Utyuzhnikov
Fig. 11. Comparison of pressure coefficients 𝐶𝑝 along the straight and inclined walls of the diffuser, experiment [28], one-block solution, explicit and implicit NDD.
The pressure coefficient is computed as 𝐶𝑝 = 2(𝑝−𝑝𝑟𝑒𝑓 )∕(𝜌𝑈2
𝑏 ). Here,

the reference pressure 𝑝𝑟𝑒𝑓 is evaluated at the mid-point of the inlet
channel. The 𝐶𝑝 predictions with both the explicit and implicit NDD are
close to the one-block LRN solution, as can be seen in Fig. 11. Similarly
to 𝐶𝑓 , the pressure coefficient profiles across the diffuser obtained with
the implicit NDD are essentially more accurate than those for the ANDD
thanks to more accurate prediction of the wall shear stress 𝜏𝑤.

Fig. 12 shows the computational times for ANDD and implicit
NDD with 𝑦∗+ between 10 to 50. The computational times are nor-
malized by the time needed for the one-block simulation. It can be
seen that the computational cost of both ANDD and implicit NDD is
significantly lower than that of the one-block solution. The reason of
that is threefold. With an adaptive to the wall mesh the condition
number drastically decreases in both regions. Thus, the algorithm
works as a preconditioner. In the inner region, the computing time
11
is almost negligible since the solution can be obtained analytically in
quadrature. Finally, in the outer region the time-relaxation parameter
might be significantly increased since the minimal space step can be
essentially larger than that in the one-block approach. As 𝑦∗+ increases
the computational time decreases for both ANDD and implicit NDD.
The maximum time occurs in the case of 𝑦∗+ = 10 with the implicit
NDD, which is roughly one-third of the time for the one-block solution.
As mentioned above, the accuracy of the ANDD and implicit NDD is
reduced as the interface is far away from the wall. Thus, there is a
trade-off between the accuracy and computational time for both the
explicit and implicit NDD approaches. As can be expected, the implicit
NDD needs slightly more time that the conventional NDD because in the
former approach the viscosity coefficient is calculated from the RANS
model used.



�&�R�P�S�X�W�H�U�V �D�Q�G �)�O�X�L�G�V ������ ������������ ������������S. Lyu and S. Utyuzhnikov
Fig. 12. Relative computational times with the one-block solution, explicit and implicit NDD. The times are normalized by that of one-block solution.
6. Conclusions

An implicit near-wall domain decomposition approach has been
proposed for the first time. It is based on a specially constructed
slip boundary condition for the velocity. The algorithm allows us to
calculate a solution in the entire region on a relatively coarse grid.
Then, the solution is locally recalculated in the inner region. As a result,
the composite solution is smooth up to the first derivative. For the first
time, in the inner region the turbulent viscosity is calculated from the
RANS model rather than prescribed by an analytical formulae. This
allows us to enhance the accuracy of prediction. The entire algorithm
along with the conventional ANDD approach has been successfully
implemented in the OpenFOAM code and applied to test cases. The
considered test cases contain a 1D channel flow and 2D flow in an
asymmetric diffuser flow. The obtained results demonstrated the ef-
ficiency of the developed algorithm. It can be easily implemented in
the existing codes for different turbulence models and has essentially
higher accuracy than the original approach to the near-wall domain
decomposition.
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