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a b s t r a c t

New high-performance computing (HPC) software designed for massively parallel computers with
high-speed interconnects is presented to accelerate research into geometric formulations of solid
mechanics based on discrete exterior calculus (DEC). DEC is a relatively new and entirely discrete
approach being developed to model non-smooth material processes, for which continuum descriptions
fail. Until now, progress has been slowed by limited HPC software. The tool presented herein inte-
grates the DEC library ParaGEMS into the well-established parallel finite-element (FE) code ParaFEM,
leveraging ParaFEM’s diverse IO routines, optimised solvers, and interfaces to third-party libraries.
This is accomplished by interpreting FE elements, or their subdivision, as independent DEC simplicial
complexes. The element-wise contribution to the global system matrix is then replaced with the DEC
formalism, superimposing contributions from the dual mesh at element boundaries. The integrated tool
is validated using five miniApps for scalar diffusion and linear elasticity on synthetic microstructures
with emerging discontinuities, showing the performance for both continuum and discrete problems.
Profiling indicates DEC calculations have excellent scaling and the solver achieves approximately
80% parallel efficiency using naïve partitioning on ∼8000 cores with >135 million unknowns. The
tool is now being used to develop DEC formulations of more complex phenomena, such as material
nonlinearity and fracture.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version ParaGEMS (2022.02.28); ParaFEM (5.0.3)
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00181
Permanent link to reproducible capsule
Legal code license BSD 2-clause
Code versioning system used git
Software code languages, tools and services used Fortran, MPI, BLAS, LAPACK
Compilation requirements, operating environments and dependencies Fortran90; MacOS, Linux, Windows Subsystem for Linux (WSL)
If available, link to developer documentation/manual https://github.com/ParaFEM/ParaGEMS/README.md;

https://github.com/ParaFEM/ParaGEMS/lib_paragems/docs
Support email for questions pieter.boom@kfupm.edu.sa, lee.margetts@manchester.ac.uk

1. Motivation and significance

Traditional engineering scale simulation in solid mechanics is
uilt on a continuum assumption: that properties and processes
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1 Currently an assistant professor at King Fahad University of Petroleum and
inerals and an affiliate of the Interdisciplinary Research Center for Construction
nd Building Materials (pieter.boom@kfupm.edu.sa).

within a material vary continuously in space. This works well
for modelling smooth macroscopic behaviours; however, by def-
inition, continuum approaches cannot fundamentally represent
discrete or discontinuous features. Many materials have a dis-
crete structure, even above the atomic level. This is obvious in
some cases, like for fibre-reinforced plastics or concrete, but still
exist in other materials like polycrystalline metals. For example,
observe the discrete cellular grain structure of an iron-carbon
alloy at the mesoscale; Fig. 1 (left) [1]. These structures influence
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Fig. 1. Grain structure of an iron-carbon alloy (left); synthetic grain struc-
ture (right). Source (left): www.doitpoms.ac.uk/tlplib/atomic-scale-structure/
poly.php?printable=1 [1].

emergent behaviours, like thermal and chemical transport, as
well as non-smooth processes like fracture.

Accurately modelling the discrete structure of materials, and
the non-smooth processes within, is critically important to pre-
dict how they will ultimately degrade and fail. As materials are
the building blocks of both common and critical high-valued in-
frastructure, failure to accurately predict non-smooth behaviours
in solid mechanics leads to over engineering, early replacement,
and unexpected failure. The consequence is potential injury and
loss of life, as well as costing the global economy billions of
pounds annually.

In contrast to continuum approaches, discrete exterior calcu-
lus (DEC) is built on a fundamentally discrete view of the world
and can mimic the discrete structures in nature; Fig. 1 (right).
It assigns physical properties to different geometric elements —
vertices, edges, faces and volumes, which are intrinsically linked
to their geometry. For example, in solid mechanics: displace-
ments are defined at vertices [m/m0], strain occurs along edges
[m/m1], stress acts through faces [N/m2], and force densities
are in volumes [N/m3] [2]. The evolution of these properties
is defined by the interaction of adjacent entities, described by
the topology (connectivity) of the representative mesh [3]. The
connections form maps, interpreted as exterior derivatives, that
enables common vector calculus operations to be mimicked [3].
This makes DEC appealing for simulating discrete structure and
non-smooth physical processes across length scales from the
molecular (micro) through to the engineering (macro).

Interest in DEC is growing internationally to describe vari-
ous phenomena in science and engineering [4–6]. The potential
advantages for solid mechanics were observed early-on [7]; how-
ever, the first complete formulation of linear elasticity was only
presented this year [2]. With a strong emphasis on mesoscale
modelling, sufficiently large meshes are required to verify and
validate new theory. Recently the authors developed the first
parallelised DEC math library, ParaGEMS, tested for problems
involving scalar transport in cracked media [8]. In the present
article, ParaGEMS is integrated into the more well-established
finite-element library ParaFEM [9]. The aim is to accelerate the-
oretical development and practical application of DEC by reusing
ParaFEM’s optimised parallel code for: I/O in various formats,
inter-process communication patterns and scalable solvers. Fur-
thermore, it will enable reuse of existing ParaFEM frameworks for
multiscale and multiphysics problems. For example, DEC can be
used in place of cellular automata [10] or microFE for grainscale
modelling. With a sustainable, robust and efficient HPC research
platform designed for massively parallel computers with high-
speed interconnects, there is a unique opportunity to further
develop DEC as a disruptive new approach.

The source code for this project, as well as installation in-
structions, documentation and tutorials is available from https:
//github.com/ParaFEM/ParaFEM and https://github.com/ParaFEM/
ParaGEMS.

2. Software description

The DEC library ParaGEMS is an open-source software project
with a BSD license developed as part of the EPSRC Fellowship
EP/N026136/1. The library is written in modern Fortran with MPI
parallelism and interfaces to BLAS, LAPACK, and PETSc. ParaGEMS
has been shown to have excellent scaling for problems with >10
million simplices on up to ∼1000 cores [8].

The FE library ParaFEM is also open-source with BSD license
developed for parallel solution of various types of problems,
including stress analysis of linear and nonlinear (thermo, elastic,
plastic) materials, heat flow, fluid flow, eigenvalue and forced
vibrations. These analyses are implemented in dozens miniapps
distributed with the code and described in the textbook ‘‘Pro-
gramming the Finite Element Method’’ [9]. Like ParaGEMS, it is
written in modern Fortran with MPI parallelism and includes
interfaces to BLAS, LAPACK, METIS and PETSc [11]. ParaFEM has
been ported to many HPC systems and has excellent scaling for
problems with >100 million finite elements solved on around
1,000 compute nodes [9,12]. Built-in solvers have been shown
to have excellent performance compared with popular packages
such as PETSc, and with lower memory usage [13]. ParaFEM has
an exemplary track record of sustainability and has been peer
reviewed by both the Software Sustainability Institute and the
H2020 PoP project. It has also created many opportunities for
cross-institutional and international collaborations for multiscale
and multiphysics research, such as fracture [10], material in-
terface joining [12], fluid–structure interaction [14], and more
[15–18].

2.1. Library integration

Both FE and DEC operate on meshes of connected and con-
formal elements; therefore, input and output data are in similar
formats and similar partitioning and load balancing approaches
work well. Ultimately both methods require efficient solution of
large systems of (potentially nonlinear) equations. Therefore, the
approach taken to integrate DEC into ParaFEM was to modify
only the mathematical contribution from each element to the
global system in existing ParaFEM miniApps. This is significant
in two ways: (1) nearly all the development and optimisation
efforts invested in ParaFEM can be directly leveraged for DEC
based simulation; and (2) this creates future opportunities for
coupled FE-DEC simulation within the same code.

2.2. Element decomposition

While both FE and DEC operate on connected and conformal
elements, DEC principally uses simplicial complexes and their
Voronoi duals [4]. More complex element must therefore be
decomposed into simplices. Common element types in FE include
both triangles and tetrahedrons, as well as quadrilaterals and
hexahedrons, in two and three dimensions, respectively. First
order triangles and tetrahedrons are simplices and can therefore
be used directly with DEC. To facilitate existing ParaFEM work-
flows, a built-in element converter between linear quadrilaterals
and hexahedrons to triangles and tetrahedrons, respectively, is
developed. The code operates independently on each element
(embarrassingly parallel) with appropriate logic in the three-
dimensional case to ensure that the decomposition is consistent
with adjacent elements. This is done by first decomposing each
2
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Fig. 2. The superposition of independent DEC simplexes/micro-complexes converted from FE elements used in the integrated ParaGEMS-ParaFEM miniApps.

ace of the hexahedron relative to its minimum diagonal, then
plitting the rest of the hexahedron accordingly. Note that in
he case of equal diagonals, the inconsistency is not important
ecause the associated terms in the formulation will be zero.

.3. Parallel decomposition

Here the dual Voronoi complex is assumed to represent the
aterial microstructure of interest, as it can recreate more com-
lex geometries, and the simplicial complex describes the inter-
ction of adjacent Voronoi cells. Each cell in one complex overlaps
ultiple cells in the other, making a clean parallel partitioning
nclear. MiniApps developed for ParaFEM partition FE elements
nd enforce coupling along the element interfaces [9]. In DEC
erms, the ParaFEM partitioning strategy is equivalent to par-
itioning primal simplices (or micro-complexes for quads and
exs; Fig. 2) with coupling through the middle of Voronoi cells.
ortunately, the geometric contributions from different simplices
o a single dual Voronoi cell can be superimposed. Therefore, the
ntegration of ParaGEMS into ParaFEM uses the ParaFEM parti-
ioning, treating each simplex or micro-complex in the mesh as
ts own independent DEC complex for the purpose of computing
he geometry, then superimposes the individual contributions to
btain the coupled result; Fig. 2.

. Illustrative examples

Four miniApps were adapted from the textbook ‘‘Programming
he Finite Element Method’’ [9] to demonstrate the integration of
he libraries, maintaining the same IO, initialisation, and solver,
ut with different formation of the system matrix using DEC. The
iniApps chosen are

• p123 — Three-dimensional steady Laplace equation (im-
plicit solution)

• p124 — Three-dimensional time-dependent heat equation
(implicit solution)

• p125 — Three-dimensional time-dependent heat equation
(explicit solution)

• p121 — Three-dimensional linear elasticity (implicit solu-
tion)

he adapted miniApps using DEC were relabelled with the ‘pg’
refix: pg123, pg124, pg125, and pg121. A fifth miniApp was also
reated, pg123x, by further modifying pg123 to iteratively zero
he diffusivity of dual Voronoi faces where the gradient is above
ome threshold. This enables us to evaluate the performance of
he method on an evolving topology, key to modelling crack initi-
tion and growth in the future. The miniapps created correspond
o problems for which there are existing DEC formulations. It is
ur hope that this tool will facilitate the development and testing
f DEC-based description of more complex phenomena in the
uture.

The newly modified miniApps were evaluated using the
eshes and boundary conditions provided with the standard

ParaFEM distribution. These meshes are all regular and orthog-
onal with hexahedral elements. To ensure that the simple geom-
etry was not hiding any implementation errors, the miniApps for
scalar diffusion were also applied to a series of random tetra-
hedral meshes created with TetGen, converted to a compatible
format with custom scripts. The numerical results from these
simple diffusion problems were compared to analytic solutions
with the expected levels of error for the respective problem,
discretisation, and mesh density.

3.1. Parallel performance

All five miniApps developed are extensions of the Laplace
equation (pg123) with additional parameters for time-
dependence (pg124/pg125), material properties (all except
pg123), evolution of discontinuities (pg123x), and mixed partial
derivatives (pg121). Therefore, in this section we evaluate the
performance of pg123 as both a representative problem and an
ideal case. This is justified because the implicit time-integration
(pg124) is formulated as a steady state problem at each time step
with a source term related to the previous time step; explicit
time-integration requires only evaluation of the system (pg125);
material properties are used to compute a diffusion coefficient
(pg124/pg125); and while the simplicity of introducing discon-
tinuities is a feature of DEC, the solution is equivalent to steady
state with zero flux boundary conditions on the discontinuous
faces. Linear elasticity introduces the most significant difference,
with the addition of mixed partial derivatives representing shear.
Further details are discussed briefly in a subsequent section.

To evaluate the performance of the integrated libraries, pg123
was applied to a series of nested, regular, and orthogonal meshes
ranging from 1283 to 5123 hexahedral elements. Results from one
additional mesh with 6003 hexahedral elements is shown. The
solutions were computed on the ARCHER2 supercomputer (4 cab-
inet system) with between 128 to 32768 cores (1 to 256 nodes).
The implicit miniapps make use of an element-by-element pre-
conditioned conjugate gradient method; however, a naïve par-
titioning strategy is used which assigns contiguous groups of
vertices and elements, sorted by their xyz-coordinates, to suc-
cessive processors. The solution vector is initialised to zero at
the start of each simulation and the convergence tolerance set
to 10−5.

Formation of the global system matrix using DEC show excel-
lent scaling up to 16k cores on the finest meshes with ≥5123

elements (Fig. 3 and Table 1). Communication and serial over-
heads do have a noticeable impact on the scaling of smaller
meshes at higher core counts. However, the simulation with 2563

elements easily fits in memory on a single compute node, mean-
ing that large-scale simulations that densely populate the system
are both possible and recover good performance. Furthermore,
the trends suggest that this good performance may extend for
higher core counts if larger meshes are considered.

Similarly, the solution of the final linear system achieves ap-
proximately 80% parallel efficiency with 5123 elements on up
to 8k cores before beginning to drop off (Fig. 4 and Table 2).
3
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Table 1
Strong (top) and weak (bottom) parallel efficiency of pg123 for DEC system formation.
Mesh CPUs

128 256 512 1024 2048 4096 8192 16384

1283 100% 93% 81% 59% 35% – – –
2563 100% 99% 95% 87% 68% 51% 35% –
5123 100% 102% 98% 95% 86% 80% 64% 52%
6003 100% 86% 76% 89% 70% 68% 54% 46%

Mesh CPUs

128–1024 256–2048 512–4096 1024–8192 2048–16384

1282–2563 87% 74% 63% 60% –
2562–5123 94% 87% 83% 64% 56%

Table 2
Strong (top) and weak (middle — raw CPU timings; bottom — CPU timings normalised by solver
iterations) parallel efficiency of pg123 solver.
Mesh CPUs

128 256 512 1024 2048 4096 8192 16384

2563 100% 100% 100% 89% 112% 169% – –
5123 100% 90% 110% 112% 110% 97% 83% 48%
6003 100% 110% 102% 106% 113% 133% 109% 67%

Mesh CPUs

128–1024 256–2048 512–4096 1024–8192 2048–16384

1282–2563 35% 32% 23% 15% –
2562–5123 49% 49% 43% 15% 6%

Mesh CPUs

128–1024 256–2048 512–4096 1024–8192 2048–16384

1282–2563 67% 62% 44% 29% –
2562–5123 91% 89% 79% 51% 22%

Fig. 3. Strong and weak scaling of pg123 for DEC system formation.

This is very important as it represents the bulk of the simulation
time. The performance of the solver is also compared between
DEC and FE formulations of the same problem. When scaled by
iterations, very similar results are obtained, indicating that the
DEC formulation is not having and adverse impact on the solver.
Also shown is the weak scaling of the solver, which is poor when
comparing raw timings, but reasonably good per iteration. This
behaviour is also observed for FE simulations (not shown) and
may be influenced by the naïve partitioning strategy used.

3.2. Linear elasticity

The DEC implementation of linear elasticity has some notable
ifferences to the basic diffusion problem. To account for the
ixed partial derivatives associated with shear, mappings must
e introduced to and from classical vector fields, called discrete
usical isomorphisms, rather than operating solely on chain and

cochain complexes. This has been approximated in the past using
local Moore–Penrose pseudo inverses [2]. However, rather than
mapping to and from vector fields evaluated at vertex locations,
the current implementation maps to and from the midpoint
of primal edges. Consider a simplex defined by vertices s1 =

(v1, v2, v3, v4). Now define the augmented coboundary operator
for the edge e1 = (v1, v2)

δ0,e_1,aug =

⎡⎣ BCcc(v2) − BCcc(v1)
BCcc (v1, v2, v3) − BCcc(v1, v2)
BCcc(v1, v2, v4) − BCcc(v1, v2)

⎤⎦ ,

where BCcc denotes the barycentric coordinates of the arguments’
circumcentre with respect to s1. The first row is the standard
coboundary for edge e1. The second and third rows give the
coboundary of the edges between the circumcentre of e1 to the
circumcentres of the faces f1 = (v1, v2, v3) and f2 = (v1, v2, v4),
respectively. These edges are related to the local part of the
Voronoi face dual to edge e1. Next define the projection operator

P = δ0,e1,aug

⎡⎢⎢⎣x

⎛⎜⎜⎝
⎡⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎦
⎞⎟⎟⎠ y

⎛⎜⎜⎝
⎡⎢⎢⎣

v1
v2

v3

v4

⎤⎥⎥⎦
⎞⎟⎟⎠ z

⎛⎜⎜⎝
⎡⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎦
⎞⎟⎟⎠

⎤⎥⎥⎦ ,

whose first row and inverse are discrete flat and sharp musical
isomorphisms, respectively: ♭ = P1, : and ♯ = P−1. Finally,
using the Hooke’s law to define the relationship between the
displacement gradient and stress tensor, C , we can write the local
divergence of stress along the edge e1 as

(δTe1 ⋆1 ♭ ⊗ I3)C(♯δ0,e1,aug ⊗ I3).

This procedure allows calculations of the contribution from the
current primal element to stay entirely local, and then be summed
with adjacent elements as described earlier. Another benefit is
4
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Fig. 4. Strong and weak scaling of pg123 solver using raw CPU time (top left); CPU time normalised by solver iterations (top right); parallel efficiency (bottom left);
and compared to p123 (ParaFEM-FE) normalised by solver iterations (bottom right).

that components parallel to the primal edge remain unchanged
by the mapping sequence flat-sharp. As a result, this new map-
ping makes the alternate decompositions of the constitutive
relation for linear elasticity presented in Ref. [2] become mathe-
matically identical.

3.3. Heterogeneous properties and evolving topologies

Relative to continuum approaches like FE, it is straight forward
ith DEC to both introduce discrete heterogeneity cell-by-cell
nd change the topology of the mesh. Fig. 5 shows the solution of
he Laplace equation (left) and its gradient (right) with a random
iffusion coefficient in each cell. This is shown for both the initial
esh (top) and after new discontinuities are introduced (bottom).
his is a small sample of the types of simulations made possible
ith the integrated libraries.

. Impact

Operations in DEC are extremely local and sparse, making it
n attractive option for efficient computing: an early application
f DEC was the efficient simulation of viscous fluid flows in
omputer graphics [19]. In high-performance computing these
eatures can increase problem density on individual compute
odes and minimise communication overhead leading to po-
entially improved performance and parallel scaling. The simple
atrix structure of DEC operators also facilitates the introduction
f new and evolving discontinuities with minimal modification
f system matrices [8]. In FE, for example, the entire system
atrix needs to be reformed to account for a change in topology,
hereas with DEC only a single row and column of the sparse
ystem matrix needs to be modified in the scalar case.
While the focus of this paper is on the integration of DEC into

araFEM, many of the functions can also be adapted to implement

other discrete forms of exterior calculus, such as recent work of
Barbetov et al. [20] based on Forman’s combinatorial differential
forms [21,22]. Therefore, the integration presented in this paper
may have impact in broader theoretical research.

ParaFEM has been shown to be a highly efficient and scalable
library with a broad user and developer base. It has created many
opportunities for cross-institutional and international collabora-
tions for multiscale and multiphysics research. The integration of
ParaGEMS is expected to broaden and extend these opportunities.
For example, the outputs will support new innovations promised
by the authors in the UK Collaborative Computational Project:
CCP-WSI+ (wave–structure interaction plus) which is focused
on advancing offshore energy generation. Assessing the evolving
structural performance of offshore structures is vitally important
as they must be lightweight to facilitate shipping and installation,
while also withstanding constant wave and wind action, seasonal
heat cycles, and corrosion in-service.

Finally, this work can be used as a template for integrating DEC
into other scalable libraries, such as FEniCS [23], Firedrake [24]
or deal.II [25], and their associated workflows. This could lead to
broad impact across many different fields.

5. Conclusions

Discrete Exterior Calculus (DEC) is a promising new approach
for modelling the proprieties of materials according to their dis-
crete microstructure at the mesoscale, especially those with het-
erogeneities and emerging or evolving discontinuities. To support
continued development and application of DEC in solid mechan-
ics, this paper presents a high-performance computational (HPC)
research platform created by integrating the DEC library Par-
aGEMS into the well-established parallel finite element (FE) li-
brary ParaFEM. Existing ParaFEM miniApps for scalar diffusion
5
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Fig. 5. Solution of Laplace equation (left) and gradient (right) for material with discretely heterogeneous diffusion coefficient before (top) and after (bottom) the
introduction of discontinuities. (Note: the linear and log axes for the gradient).

and linear elasticity are adapted by simply replacing the individ-
ual contributions from FE elements with DEC formalism. FE ele-
ments are first independently decomposed into micro-complexes
of one or more simplices and processed using local information.
A new and local discrete musical isomorphisms is implemented
to support the formulation of linear elasticity within this frame-
work. Geometric information of the Dual Voronoi cells partitioned
across multiple micro-complexes are finally superimposed, but
only during assembly of the global system matrix. The integrated
libraries make use of the same IO, communication patterns, parti-
tioning and scalable solver native to ParaFEM. The DEC miniApps
presented in this article are all variations on the Laplace equa-
tion, which achieved 80% strong parallel efficiency on ARCHER2
with over 8000 cores. Furthermore, trends indicate that this may
extend to higher core counts with larger meshes. Finally, simula-
tions of discretely heterogeneous and discontinuous materials are
also presented, highlighting the benefits of DEC-based simulation
enabled by the framework.
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