
OPTIMIZING RATE-BASED SPIKING
NEURAL NETWORKS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Student id: 10382958

Chen Li
Department of Computer Science, School of Engineering

Contents

Abstract 9

Declaration 10

Copyright 11

Glossary 12

Acknowledgements 13

1 Introduction 14
1.1 Overview of context . 14
1.2 Objectives and contributions . 15
1.3 Publications . 17
1.4 Thesis structure . 18

2 Background 19
2.1 Classical spiking neural networks 19

2.1.1 Anatomy of a neuron . 20
2.1.2 Spikes . 21
2.1.3 Neuronal models . 22
2.1.4 Neuronal dynamics of the LIF model 24
2.1.5 Synaptic model . 32

2.2 Neuromorphic hardware . 34
2.2.1 Categories of neuromorphic hardware 34
2.2.2 Other related hardware . 35

2.3 Deep learning . 36
2.3.1 Network architectures . 36
2.3.2 Objective functions . 37

2

2.3.3 Learning rules . 37
2.3.4 Activation functions . 37

2.4 Deep spiking neural networks . 38
2.4.1 Synaptic models . 38
2.4.2 Neuronal models . 38
2.4.3 Training . 40
2.4.4 ANN-to-SNN conversion . 42
2.4.5 Encoding . 43
2.4.6 Datasets . 45
2.4.7 SNN simulators . 49

2.5 Summary . 53

3 SNNs on neuromorphic hardware 54
3.1 Introduction . 54
3.2 Preliminary . 55

3.2.1 Weights . 55
3.2.2 Weights in hardware . 55
3.2.3 Noisy weights . 56
3.2.4 Related work . 57

3.3 Robustness to noisy weights on MNIST 58
3.3.1 Network architectures . 58
3.3.2 ANN-to-SNN conversion . 58
3.3.3 Metrics for accuracy and latency 60
3.3.4 Experimental setup . 62
3.3.5 Inference accuracy . 63
3.3.6 Inference latency . 64
3.3.7 Different thresholds . 65
3.3.8 Analysis . 67

3.4 Optimizing a skyrmion-based SNN 69
3.4.1 A multi-layer skyrmionic synapse 69
3.4.2 Towards supervised learning 69
3.4.3 Towards edge inference . 70
3.4.4 SNNs with the proposed skyrmionic synapses 71

3.5 Deploying on SpiNNaker . 74
3.5.1 SpiNNaker . 75
3.5.2 Implementation details . 76

3

3.5.3 Results . 77

3.6 Summary . 78

4 Biological plausibility of SNNs 80

4.1 Introduction . 80

4.2 Related work . 81

4.3 Current methods and gaps . 82

4.4 Firing rate degeneration and weight-bias imbalance 83

4.5 Proposed methods . 85

4.5.1 Ef�cient calculation ofgn 87

4.5.2 Input normalization . 87

4.5.3 Further improvements and compatibility 88

4.6 Considerations behind the proposed methods 88

4.6.1 Inspirations . 88

4.6.2 Normalizing weights vs normalizing biases 89

4.6.3 Low �ring rates vs high �ring rates 89

4.6.4 Comparison to other normalization methods 91

4.7 Benchmarks . 91

4.7.1 Experimental setup . 91

4.7.2 Inference accuracy . 92

4.7.3 Inference latency . 92

4.8 Summary . 93

5 A quantization framework for fast SNNs 95

5.1 Introduction . 95

5.2 Related work . 96

5.3 Motivation . 98

5.4 Materials and methods . 99

5.4.1 Information compression during training 101

5.4.2 Occasional noise . 103

5.4.3 Handling occasional noise and the other three noise types . . . 104

5.4.4 Event-based max pooling . 107

5.4.5 Quantization meets ANN-to-SNN conversion 109

5.5 Experiments . 112

5.5.1 Experimental setup . 112

5.5.2 Benchmark results . 113

4

5.5.3 Bit precision during quantization training 115

5.5.4 Bit precision in the output layer 116

5.5.5 Ablation studies . 117

5.5.6 Results on VGG-16 . 117

5.6 Comparison with other fast SNN approaches 118

5.7 Further improvements . 120

5.8 Summary . 120

6 Summary and future work 122

6.1 Summary . 122

6.2 Future work . 123

Bibliography 125

Word Count: 31821

5

List of Tables

3.1 Training parameters for FCNs and CNNs. 62

3.2 The inference latency of the spiking FCNs for different noise levels. . 65

3.3 The inference latency of the spiking CNNs for different noise levels. . 65

4.1 Network structures for MNIST and CIFAR-10 91

4.2 Training parameters and hyperparameters of neural networks for MNIST

and CIFAR-10. 92

4.3 Accuracy loss on MNIST and CIFAR-10 with ANN-to-SNN conversion

techniques. 93

5.1 The main differences between general quantization techniques and the

quantization techniques for fast spiking neural networks (SNN)s. . . . 102

5.2 Hyper-parameters of arti�cial neural network (ANN) quantization train-

ing. 112

5.3 Benchmarking SNNs built by ANN-to-SNN conversion on CIFAR-10

and ImageNet. 113

5.4 Ablation studies on ImageNet . 117

6

List of Figures

2.1 The anatomy of a neuron. 20

2.2 The waveform of action potentials 21

2.3 Neuronal models with different computational complexity and biologi-

cal plausibility. 23

2.4 An LIF neuron and its RC circuit model. 25

2.5 The response curve of an LIF neuron. 29

2.6 The response curve of an LIF neuron with noisy input current injections. 30

3.1 The architecture of FCNs and CNNs, and the diagram of the IF neural

model . 59

3.2 Accuracy comparison of the ANNs and the SNNs in the architecture of

FCNs for different noise levels. 63

3.3 Accuracy comparison of the ANNs and the SNNs in the architecture of

CNNs for different noise levels. 64

3.4 The relationship of inference accuracy for differents. 66

3.5 The ratio of convergence time of 100% noise and 0% noise on FCNs

and CNNs. 67

3.6 The proposed skyrmionic synaptic device. 69

3.7 Skyrmionic deep SNNs for edge computing. 72

3.8 The supervised skyrmionic deep SNN. 73

3.9 Different scales of SpiNNaker neuromorphic hardware. 76

4.1 The response curves of the IF model and ReLU. 83

4.2 The �ring rate degeneration phenomenon on deep SNNs. 84

4.3 Inference accuracy loss after ANN-to-SNN conversion and inference

latency for different �ring rates. 90

4.4 The response curves of spiking neurons under different parameter nor-

malization methods. 90

7

4.5 The convergence time of the SNN on CIFAR-10. 94

5.1 The accuracy and latency of SNNs built by different methods. 98

5.2 The general ANN-to-SNN conversion diagram and the proposed ap-

proach to achieve fast SNNs. 100

5.3 ANN accuracy after quantization training with different bit precisions,

and SNN accuracy without handling the occasional noise. 104

5.4 Compensating for the sub-threshold noise 105

5.5 The relationship between ANN-to-SNN conversion loss and SNN infer-

ence latency on ImageNet. 114

5.6 The impact of the activation precision during the quantization training

of ResNet-50 on the performance of SNNs on ImageNet. 115

5.7 The impact of the activation precision in hidden layers during the

quantization training of ResNet-50 on the performance of SNNs on

ImageNet. 116

5.8 The impact of the activation precision in the output layer during ANN

quantization on the performance of SNNs on ImageNet. 117

5.9 The impact of the bit precision in all layers, all hidden layers, and the

output layer on SNN accuracy and latency VGG-16. 118

8

Abstract

OPTIMIZING RATE-BASED SPIKING NEURAL NETWORKS

Chen Li
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

A notable trend in recent years is the transition of the prevalent deep learning
algorithms to edge devices, and a primary concern is unsustainable energy dissipa-
tion. Deep SNN, bene�ting from their event-based nature and ef�cient information
communication by spikes, can serve as a competitive candidate for achieving a more
power-ef�cient computing paradigm. A practical way to train an SNN is to �rst train
an ANN and then convert it into a rate-coded SNN, a method called ANN-to-SNN
conversion. This method enables building functional SNNs at a low cost and validating
various optimization strategies in SNNs.

Based on ANN-to-SNN conversion, this thesis explores the rationale behind SNNs
and the optimization of SNNs from various aspects. First, it clari�es the fundamental
question of why to use SNNs. Few advantages of SNNs compared with conventional
ANN have been found up to now. The presented results show that SNNs can render
better robustness to noisy synaptic weights. This research paves the way for applying
memristors, a cutting-edge component with intrinsic noise, to spike-based in-memory
computing. Second, it focuses on retaining the biological plausibility of state-of-the-art
SNNs. In the presented study, the neuronal dynamics of the standard integrate-and-�re
model are analyzed, and the dif�culty of weight-bias imbalance when using this model is
relieved. Better accuracy is achieved than the state-of-the-art SNNs. Third, the accuracy-
latency trade-off, one of the essential challenges in rate-coded SNNs, is alleviated in
the presented study. It elaborates on the role of noise in fast SNNs and the necessity of
information compression in achieving low-latency SNNs. The SNNs optimized by this
approach achieved an accuracy of 70.18% in 8 times steps on ImageNet. Finally, SNNs
need to be deployed to neuromorphic hardware or neuromorphic chips for real-world
applications. An SNN deployment on SpiNNaker is described in this thesis, featuring
high accuracy (98.63% on MNIST), structural plasticity, and low �ring rates.

9

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree or

quali�cation of this or any other university or other institute

of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be madeonly in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (seehttp://documents.manchester.ac.uk/DocuInfo.aspx?

DocID=24420), in any relevant Thesis restriction declarations deposited in the

University Library, The University Library's regulations (seehttp://www.library.

manchester.ac.uk/about/regulations/) and in The University's policy on

presentation of Theses

11

Glossary

ANN Arti�cial neural network (ANN) is a deep neural network model, the dominant

model in deep learning. 6–9, 14–17, 33, 36–38, 40, 42, 43, 50, 51, 53, 54, 57–60,

62–64, 67, 68, 71, 73, 75, 77–85, 87–89, 92, 93, 95–97, 99–105, 107, 109–121,

123

ANN-to-SNN conversion ANN-to-SNN conversion is a method to build a spiking

neural network by converting an arti�cial neural network. 6–9, 16, 38–42, 51, 53,

57–60, 64, 77, 78, 81–83, 87, 89, 90, 92, 93, 95, 96, 98–101, 103, 104, 109–114,

118–120, 122–124

API Application programming interface (API) is a way for two or more computer

programs to communicate with each other. 15, 50, 101

CPU Central processing unit (CPU) is the electronic circuitry that executes instructions

comprising a computer program. 14, 50, 52, 55, 92

GPU Graphics processing unit (GPU) is a specialized electronic circuit designed to

accelerate certain computations such as the creation of images. 14, 15, 50–52, 55,

92

SNN Spiking neural network (SNN) is a neural network model made up of spiking

neurons. 6–9, 14–20, 22, 24, 28, 31–36, 38, 40–45, 48–89, 92–104, 106–124

12

Acknowledgements

For the chance provided to demonstrate my passion on a PhD, I express the gratitude to

my supervisor Prof. Steve Furber. He gave the maximum freedom as well as appropriate

support during his supervision to me. His outlook and sharp view exempli�ed how a

capable researcher looks like.

I thank my colleagues Edward Jones, Luca Peres, Adam Perrett, Petrut Bogdan,

Gengting Liu, Oliver Rhodes, Jim Garside, John Woods, Andrew Rowley, Minmin

Jiang, Sara Summerton, Tingting Mu.

I would like to express my sincere thanks to my parents Xuejun Li and Lifang Qiao.

My special thanks to Luhui Liu for her emotional supports and companion.

13

Chapter 1

Introduction

1.1 Overview of context

Neuromorphic computing, whose origins can be traced back to the 1980s, is meeting

new challenges and opportunities. In its initial de�nition, neuromorphic computing

is using very-large-scale integration (VLSI) circuits to emulate biological neurons

and neural systems formed by these neurons. The rationale for implementing spiking

neurons on hardware is twofold: promoting a better understanding of the brain by

implementing intelligence in silicon, and exploring bio-inspired computing during this

implementation of silicon neurons. The scope of neuromorphic computing has gradually

expanded, and silicon neurons are implemented on more architectures. In this century,

various projects have received generous funding to build large-scale neuromorphic

machines as well as to validate neuromorphic chips.

At the same time, the third wave of arti�cial intelligence has surged from 2006

[HOT06], featuring the adoption of deep learning techniques. The success of AlexNet

in 2012 [KSH12] and the new ImageNet records that surpass the human level in

2015 [RDS+ 15, HZRS15, HZRS16] are two in�uential landmarks in deep learning.

Nevertheless, these deep learning algorithms are run on CPUs, GPUs, and neural

network accelerators, instead of on neuromorphic hardware.

A pioneering paper was published in 2015 [DNB+ 15], which demonstrates the

conversion of ANNs, a dominant technique in deep learning, to SNNs, a model that

can be simulated on neuromorphic hardware. This research has had a long-term

impact on neuromorphic computing and inspired many following studies. On the one

hand, by converting an ANN to an SNN and then implementing it on neuromorphic

hardware, neuromorphic hardware can implicitly run deep learning algorithms, the

14

1.2. OBJECTIVES AND CONTRIBUTIONS 15

current dominant AI method. On the other hand, considering the reported similarity

between ANNs and SNNs, some deep learning tools that are initially designed for

ANNs can be utilized to simulate SNNs.

A key challenge to be met by neuromorphic machines is the effective and ef�cient

deployment of SNN algorithms. “Effective” refers to the lossless deployment of a

SNN from GPUs to neuromorphic hardware. The accuracy loss can come from the

different neuronal dynamics of SNNs simulated on GPUs and SNNs implemented on

neuromorphic hardware, as well as from different APIs and hardware architectures.

“Ef�cient” refers to the power-ef�cient SNN implementation in real-time. Algorithm

optimization is proven to be a signi�cant method to optimize for these two aspects.

For instance, an SNN can be optimized to adapt to the constraints of neuromorphic

hardware so bringing better accuracy and a lower burden on memory and computing

units.

Simulating SNNs on deep learning tools offers many bene�cial effects such as

accelerating SNN prototyping and validation, and driving faster progress on algorithm

development and optimization. By simulating SNNs on deep learning tools, many

pivotal problems such as why to use SNNs instead of ANNs, how to build noise-robust

SNNs, and how to build fast SNNs can be studied. The knowledge that appears during

this process can be transmitted on neuromorphic hardware to implement functional

SNNs on practical tasks.

In summary, SNNs are promising to bring deep learning techniques to neuromorphic

computing, which provides new opportunities to implement functional spike-based

algorithms on neuromorphic hardware for real-world tasks. There are some challenges

associated with these opportunities along this new journey, which have drawn increased

scholarly attention.

1.2 Objectives and contributions

As described in the section above, the new trend, leveraging the techniques and tools

from deep learning to improve SNN performance and expand SNN scope, provides

new opportunities and challenges. To capture these opportunities and overcome the

challenges met by current SNNs, this thesis presents several original research that

contributes to the development of SNNs. The presented research in this thesis covers

several key aspects of SNNs, including deploying SNN on neuromorphic hardware (

Section 3.5) and cutting-edge materials (Section 3.4), the advantages of using SNNs

16 CHAPTER 1. INTRODUCTION

over traditional ANNs (Section 3.1 to Section 3.3), the biological plausibility of SNNs

(Section 4), and the inference latency of SNNs (Section 5). The works covered in

this thesis are not independent but closely related to each other. By combing them

together, a complete work�ow to apply SNNs to real-world applications with high

biological plausibility and performance is presented: from why to use SNNs to how to

improve their performance; from SNN simulation and optimization on simulators, to

SNN deployment on current neuromorphic hardware and neuromorphic hardware that

contains noisy but energy-ef�cient components.

Central to this thesis is the optimization of rate-based deep spiking neural networks.

The studies presented in this thesis close the gap between ANNs and SNNs with regard

to inference performance, and reveal the merits of SNNs such as its noise robustness

and biological plausibility. The main contributions are:

• A quantization framework for fast SNNs (Chapter 5): The performance of

SNNs, and speci�cally their inference accuracy, has improved signi�cantly over

recent years, which can be attributed to the bridge built by pioneer researchers

to carry knowledge from ANNs over to SNNs, a method called ANN-to-SNN

conversion. In this study, a second bridge from ANNs to SNNs is built, with

the primary goal to reduce the inference latency of SNNs. This study provides

a comprehensive quantization framework for fast SNNs, and investigates the

challenges of information compression and noise suppression. The results show

this approach achieves state-of-the-art accuracy and latency (70.18% in 8 time

steps on ImageNet) compared with other low-latency SNNs built by ANN-to-SNN

conversion. In summary, the accuracy-latency trade-off in SNNs is alleviated by

this study.

• An SNN normalization method to balance network performance and biologi-

cal �delity (Chapter 4): Except for the well-known accuracy-latency trade-off

in SNNs, a trade-off between network performance and biological plausibility

exists in the current SNN research. The recent trend in SNN research is trading

biological plausibility for better performance. This study demonstrates that state-

of-the-art SNN accuracy can also be achieved with more biologically-plausible

neuronal models and input coding schemes. The main challenge solved in this

study is the modeling of bias and batch normalization, two key elements in ANNs,

by the standard spiking neurons, which enables converting more powerful ANN

model to build SNNs with higher accuracy. The SNNs achieved 99.71% accuracy

on MNIST and 93.6% accuracy on CIFAR-10.

1.3. PUBLICATIONS 17

• Noisy weights(Chapter 3): After the proposal of the �rst method to build func-

tional SNNs, there is considerable scholarly attention attached to the advantages

of SNNs compared to ANNs. This study suggests that SNNs are more robust

to noisy synaptic weights than ANNs. This research contributes to our under-

standing of the dynamics of spiking neurons, speci�cally, their characteristics

on noise robustness. This research may also be of value to memristor-based

neuromorphic computing where the memristor, a noisy cutting-edge device, is

adopted as non-volatile memory to store weights ef�ciently.

• SNN implementation on SpiNNaker(Chapter 3): Ultimately, an SNN algo-

rithm will be deployed to neuromorphic hardware for real-world applications.

This study reports the deployment of a deep SNN algorithm on SpiNNaker, a

digital neuromorphic hardware. The reported results outperform other SNN

implementations on SpiNNaker (0.43% higher accuracy on MNIST).

1.3 Publications

There are several published peer-reviewed papers to support the contributions of this

thesis.

• C. Li , S. Furber,Towards Biologically-Plausible Neuron Models and Firing

Rates in High-Performance Deep Spiking Neural Networks, International Con-

ference on Neuromorphic Systems (ICONS 2021). This paper [LF21] provides a

method to model bias and batch normalization by the standard integrate-and-�re

model in SNNs, which obviously improves the SNN accuracy on MNIST and

CIFAR-10. Meanwhile, biological plausibility is retained. The contents of this

paper are presented in Chapter 4.

• C. Li , R. Chen, C. Mouta�s, S. Furber,Robustness to noisy synaptic weights in

spiking neural networks, International Joint Conference on Neural Networks

(IJCNN 2020). This study [LCMF20] shows that SNNs are more robust to

Gaussian noise in synaptic weights than ANNs under some conditions. This

�nding will enhance our understanding of the merits of SNNs compared with

ANNs. Also, these results imply the possibility of using high-performance cutting-

edge materials with intrinsic noise as an information storage medium in SNNs.

This study is shown in Chapter 3.

18 CHAPTER 1. INTRODUCTION

• R. Chen,C. Li , C. Mouta�s, S. Furber,Nanoscale room-temperature multi-

layer skyrmionic synapse for deep spiking neural Networks, Physical Review

Applied. This research [CLL+ 20] proposes a nanoscale skyrmionic synapse com-

posed of magnetic multilayers that enables room-temperature device operations

tailored for optimal synaptic resolution. A method to embed such multilayer

skyrmionic synapses in spiking neural networks is provided, and results show

that an accuracy of 98.61% is achieved on MNIST. This research illustrates that

the proposed skyrmionic synapse can be a potential candidate for future energy-

ef�cient neuromorphic edge computing. Chapter 3 includes a part of the contents

of this study.

• C. Li , L. Ma, S. Furber,Quantization Framework for Fast Spiking Neural

Networks, Frontiers in Neuroscience. This study elaborates a comprehensive

quantization framework to build SNNs with ultra-low latency. The signi�cance

of information compression and noise suppression is emphasized in this paper,

with an in-depth analysis and corresponding practical solutions. State-of-the-art

SNN latency is achieved on ImageNet. This study is introduced in Chapter 5.

1.4 Thesis structure

The rest of this thesis is composed of the following chapters:

Chapter 2 introduces the fundamental elements in both classical spiking neural

networks and deep spiking neural networks, and the overview of neuromorphic hardware

and deep learning.

Chapter 3 investigates the robustness of noisy weights in spiking and non-spiking

neural networks, as well as the architecture design and optimizations of an SNN built

with skyrmionic synapses. Also, a demonstration of an SNN on SpiNNaker is provided.

Chapter 4 discusses the imbalance between weights and biases in SNNs when

applying the standard integrate-and-�re model, and provides a feasible solution to

overcome this challenge.

Chapter 5 proposes a quantization framework for achieving low-latency SNNs, and

highlights the role of information compression and noise suppression.

Chapter 6 summarizes the research presented in this thesis and suggests future

directions.

Chapter 2

Background

This chapter provides background information on deep spiking neural networks. In the

�rst two sections, classical spiking neural networks and neuromorphic hardware are

introduced. After the surge of deep learning in 2012, spiking neural networks gradually

go deeper and transition to deep spiking neural networks. Section 2.3 gives a brief

overview of deep learning. The related elements and techniques about deep spiking

neural networks are introduced in Section 2.4. Section 2.5 summarizes the contents

covered in this chapter.

2.1 Classical spiking neural networks

SNNs are neural networks that contain structured biologically-inspired spiking neuronal

models which are connected by synapses. In SNNs, the information is processed in

spiking neurons, carried by “all-or-none” spikes, and propagated through synapses.

These information processing systems are researched intensively to explore the reasons

behind the astonishing spatiotemporal data processing ability in the brain, and to

mimic these brain merits and duplicate them in other platforms by reverse engineering.

Spiking neurons are sparsely activated and their �ring time is usually not synchronized.

These features allow SNNs to be ef�ciently implemented on neuromorphic machines

[FGTP14, MAAI+ 14, DSL+ 18, SBG+ 10] which are often event-based, asynchronous,

and highly-parallel.

SNNs are divided into two categories in this thesis—classical SNNs and deep

SNNs—according to whether they follow the deep learning paradigm and apply deep

learning techniques such as gradient descent and backpropagation. This section covers

the contents of classical SNNs, with an emphasis on their computational properties

19

20 CHAPTER 2. BACKGROUND

Figure 2.1: The anatomy of a neuron. The �gure is modi�ed from [Tow91].

and biological plausibility. The over-detailed biological foundations of SNNs, such as

some experimental neuroscience observations and some computational neuroscience

conclusions, are out of the scope of this section.

2.1.1 Anatomy of a neuron

A neuron (also known as a nerve cell) comprises three parts: dendrites, a soma, and an

axon. Communication between neurons relies on synapses. As shown in Figure 2.1,

dendrites are tree-shaped structures that receive information from other neurons through

synapses. The soma, also known as the cell body, is the core of a neuron that maintains

the normal function of the neuron, e.g. by producing proteins in the nucleus of the

soma. The axon is a tail-like structure that sends signals to other neurons. Locating

at the end of the axon are axon terminals, and they contain neurotransmitters that are

crucial for signal transmission from this neuron to another. Neurons do not touch each

other directly, but are connected by synapses. Speci�cally, a synapse connects an axon

terminal of a neuron to a dendrite of the next neuron. Neurons are extensively linked to

other neurons in this way, enabling information to be carried to different neurons.

The carrier of information is spike. When spikes are generated and propagated

through the axon to the axon terminals, neurotransmitters are released into the synapses

and accepted by the dendrites of other neurons. During this process, the electrical signals

2.1. CLASSICAL SPIKING NEURAL NETWORKS 21

Figure 2.2: The waveform of two action potentials with similar height and width. The
Figure is modi�ed from [SS14].

(spikes) in the neurons are converted to chemical signals (carried by neurotransmitters)

and then converted to electrical signals (input currents) in the other neurons.

2.1.2 Spikes

A spike is an electrical signal occurring in a neuron, and it is also known as an action

potential or a nerve impulse. When a spike is generated in a spiking neuron, the

membrane potential of this neuron rapidly rises and falls, forming a pulse-shaped

electrical signal traveling along the axon of this neuron. The waveforms of spikes are

identical, and follow a stereotypical voltage change and time duration as shown in

Figure 2.2. After a spike is emitted, this neuron enters a refractory period with a typical

time length of several milliseconds during which spikes are harder to generate.

Whether a spike is generated is determined by the values of its membrane potential

and spiking threshold. The membrane potential is the difference between the inside

and outside electrical potentials in a neuron, represented by voltage with the units of

millivolts. The spiking threshold is usually modeled by a voltage value that provides the

explicit criterion to determine whether a spike will be generated, though the biological

details are more complicated. A more detailed description of the spike generation

process is given along with an introduction to the IF model in the following section.

22 CHAPTER 2. BACKGROUND

2.1.3 Neuronal models

There are a variety of neuronal models proposed to capture the dynamics of spiking

neurons in nervous systems. This section introduces �ve typical models which are

widely supported in neuromorphic hardware and SNN simulators. These models are all

single-compartment point neurons which means they ignore the complicated dendrite

dynamics and the physical shape of spiking neurons. The computational complexity

and biological plausibility of these �ve models are compared in Figure 2.3.

• Integrate-and-�re model (IF model) . This is also known as the non-leaky

integrate-and-�re model, and it is one of the earliest and simplest spiking neuronal

models [Abb99]. The neuronal dynamics of the IF model can be summarised

as two stages: voltage integration and spike �ring. At the voltage integration

stage, the input current is integrated into the membrane potential of a spiking

neuron, and causes the membrane potential (which is usually measured by voltage.

Typical values of membrane potential are in the range from -70 mV to -40 mV.)

to increase or decrease; this voltage will keep stable if no more input electrical

signals are integrated. Once the voltage inside a spiking neuron surpasses a

threshold, it enters the second stage, spike �ring. At this stage, a spike will be

generated, and the membrane potential will drop down to the resting potential

(e.g. -70 mV) and wait for the next integration.

• Leaky integrate-and-�re model (LIF model) . The LIF model is more bio-

logically plausible than the standard IF model, as it takes the imperfection of

membrane potential into consideration. Due to this imperfection, the integrated

voltage in a spiking neuron will slowly leak out over time, which is modeled by

the leak mechanism in the LIF model. The leak rate in an LIF neuron is controlled

by a time constant whose typical value is several milliseconds. The LIF model is

the default spiking model in many neuromorphic machines and SNN simulators.

More detailed neuronal dynamics of the LIF model are illustrated by equations in

the following section.

• Other variants of Integrate-and-�re model . In addition to the LIF model,

there are other variants of the standard IF model, e.g. the adaptive integrate-and-

�re model which is useful in online learning in SNNs. There are one or more

parameters in the adaptive IF model that can adapt to the input current. This

neuronal model can �t and predict the data from experimental neuroscience more

2.1. CLASSICAL SPIKING NEURAL NETWORKS 23

Figure 2.3: Neuronal models with different computational complexity and biological
plausibility. The �gure is modi�ed from [Izh04]. The detailed position of different
neuronal models is disputable.

precisely, so it is more biologically plausible than the standard IF model and,

potentially, the LIF model.

• Hodgkin-Huxley (HH) model. The Hodgkin-Huxley neuronal model [HH52]

was proposed in 1952. It consists of several nonlinear differential equations to

model the impact of different ion channels to the membrane potential of spiking

neurons. In contrast, there is only one differential equation in the IF model and

the LIF model.

• Izhikevich model. The Izhikevich spiking model [Izh03] was proposed in 2003,

with the rationale to reconcile computational ef�ciency and biological plausibility

in spiking neuronal modeling. As shown in Figure 2.3, the biological plausibility

of the Izhikevich model is higher than the IF models and the IF model variants,

while its computational complexity is lower than the HH model. [Izh04] shows

that the Izhikevich model is in a “sweet spot”: it has a similar computational

24 CHAPTER 2. BACKGROUND

ef�ciency to the IF model and the same number of biologically-plausible features

as the HH model.

2.1.4 Neuronal dynamics of the LIF model

The LIF model is widely supported in neuromorphic machines and SNN simulators as

a basic neuronal model. This section describes the detailed neuronal dynamics of the

LIF model using equations. It starts by deriving the two main equations that control the

subthreshold and supra-threshold dynamics of the LIF model. Some useful conclusions,

including how the membrane potential is charged, instantly charged, and leaked, can

be gotten from the subthreshold equation. These conclusions enable the adoption of

the simpli�ed computation of LIF neurons during SNN simulations, and facilitate the

understanding of the dynamics of LIF neurons. Combining the subthreshold equation

and the supra-threshold equation, the output spike rates of an LIF neuron under different

input can be calculated. This input-output response is crucial for rate-coded SNNs, and

is elaborated in this section as well.

LIF Equations

LIF model consists of three mechanisms: integration, leak, and �ring. The �rst two

mechanisms, also known as the subthreshold dynamics of an LIF neuron, can be

modeled by an RC circuit as shown in Figure 2.4 . This RC circuit has a resistor with

the resistanceR, connected to a power supply whose voltage isurest, in parallel with a

capacitor whose capacitance isC. The input to this circuit is the currentI (t). According

to Kirchhoff's current law,

I (t) = IR+ IC; (2.1)

in which

IR =
u(t) � urest

R
; (2.2)

and

IC =
dq
dt

= C
du
dt

: (2.3)

Combining Equation 2.2 and 2.3 with Equation 2.1 gives

I(t) =
u(t) � urest

R
+ C

du
dt

: (2.4)

2.1. CLASSICAL SPIKING NEURAL NETWORKS 25

Figure 2.4: An LIF neuron and its RC circuit model. A neuron enclosed by the cell
membrane receives an input currentI (t) which causes the change of its membrane
potential. The cell membrane acts like a capacitor in parallel with a resistor which is in
line with a battery of potentialurest (zoomed inset). Figure is from [GKNP14].

Multiplying both sides of this equation byRand introducing the time constant of the

membrane potentialt m = RC, this becomes:

t m
du
dt

= � [u(t) � urest] + RI(t); (2.5)

which is the standard equation de�ning the subthreshold dynamics of an LIF neuron.

The spike generating mechanism (also known as the supra-threshold dynamics) of

an LIF neuron is controlled by its thresholduthreshold. Equation 2.6 describes how the

output spike train is calculated. Onceu(t) > uthreshold, a spikez(t) is generated at time

t and the membrane potentialu(t) is reset to resting potentialurest; on the other hand,

no spike will be generated whenu(t) � uthreshold.

z(t) =

8
<

:
1 and u(t) = urest; when u(t) > uthreshold;

0; when u(t) � uthreshold:
(2.6)

Note that the values“1” and“1” of z(t) represent the all-or-none property of a spike

rather than describing its explicit form and shape.

The leak of the pre-charged voltage

Considering an LIF neuron with an initial membrane potentialu(t0) under the constraint

urest < u(t0) � uthresholdand zero input currentI (t),

26 CHAPTER 2. BACKGROUND

u(t0) = urest+ Du; (2.7)

and

I(t) = 0; f or t � t0: (2.8)

The solution of Equation 2.5 with these initial conditions is

u(t) � urest = Due
t� t0
t m ; f or t � t0: (2.9)

It suggests that in the absence of input current, the membrane potential of an LIF neuron

decays exponentially with time, and the decay rate is characterized by the time constant

t m. Whent = ¥ , Equation 2.9 becomes

u(t) � urest = 0: (2.10)

This equation shows that after in�nite timet, the membrane potentialu(t) drops tourest.

In practice, whent � t0 is much larger thant m, u(t) can be roughly thought to have

dropped tourest.

One useful conclusions that can be drawn from Equation 2.9 is that the absolute

decay speed of the membrane potential slows down:

u(t � Dt) � u(t)
Dt

>
u(t) � u(t + Dt)

Dt
; f or t � Dt > t0: (2.11)

Constant current injection

Considering an LIF neuron with the initial membrane potentialu(t0) and the input

currentI (t) as shown below:

u(t0) = urest; (2.12)

and

I(t) = I0: f or t > t0 (2.13)

The solution of Equation 2.5 with these initial conditions is

u(t) � urest = RI0[1� e� t� t0
t m]; f or t > t0: (2.14)

2.1. CLASSICAL SPIKING NEURAL NETWORKS 27

Whent = ¥ , Equation 2.14 becomes

u(t) � urest = RI0: (2.15)

This suggests that when timet is long enough, the membrane potentialu(t) will

stabilize at a certain voltage which is determined by the input constant currentI0 and

the resistanceR in the LIF neuron.

A useful conclusion that can be drawn from Equation 2.14 is that the absolute charge

speed of the membrane potential slows down:

u(t) � u(t � Dt)
Dt

>
u(t + Dt) � u(t)

Dt
; f or t � Dt > t0: (2.16)

In other words, asu(t) gets closer to the maximum membrane potentialurest+ RI0, the

charge speed ofu(t) slows down (du
dt gets smaller).

LIF Response curve with a constant current injection

Equation 2.14 is the solution of the subthreshold equation of an LIF neuron when

applying a constant current injection. This equation shows how the membrane potential

u(t) increases with time, and indicates that the highest value the membrane potential

u(t) can reach isurest+ RI0. Note that Equation 2.5 and its solution Equation 2.14 do

not involve any spike generating mechanism. Instead, the spike generating mechanism

is controlled by the supra-threshold equation 2.6. To explore how many time steps until

a spike is generated and how many spikes will be generated in a given time window,

Equation 2.14 and Equation 2.6 need to be considered together.

Assigningu(t) = uthreshold and bringing it to Equation 2.14, the timet can be

calculated. (Of course, if the highest membrane potential this LIF neuron can get is

smaller than the threshold, which isurest + RI0 < uthreshold, the membrane potential

will never surpass the threshold, and Equation 2.14 will not have a solution. For these

situations,t can be thought as in�nite.) This time point is when the membrane potential

reaches the threshold and causes a spike to be emitted. Also, an inter-spike interval

(ISI) t � t0 can be derived, which represents how long it will take for a spike to be

generated with the constant current injection and the initial membrane potentialurest.

The �ring rate (or �ring frequency) of an LIF neuron is represented by1t� t0
. Note that

this calculation ignores the impact of the refractory time. If taking the refractory time

into considerations. ISI ist � t0 + tre f ractory timeand the �ring rate is 1
t� t0+ tre f ractory time

.

Given a different constant input currentRI0, a corresponding �ring rate can be

28 CHAPTER 2. BACKGROUND

calculated according to the method above (If the valuet is in�nite as aforementioned,

the �ring rate is approximated as 0 Hz). This input-output mapping is called the

response curve of the LIF neuron. A typical response curve of an LIF neuron is shown

in Figure 2.5, along with the input current and the change of membrane potential with

time. Note that the time window of the input current injection in this Figure is about

1000 ms instead of in�nite, so its output �ring rate is discrete instead of continuous.

It is clear that the slope of this response curve gradually decreases with increasing

input current. This response curve can be characterized by two values. The �rst value is

the minimum input current that can give rise to an output spike in this spiking neuron,

which is uthreshold� urest
R . This is when the maximum voltage of the membrane potential

urest+ RI0 just equals the spiking thresholduthreshold. The second value is the cut-off

frequency, which is the maximum output �ring rate that can be reached by this LIF

neuron. This value is primarily controlled by the refractory time.

LIF response curve with a noisy current injection

When the input is noisy, e.g. by adding Gaussian noise to the constant current input, the

response curve of an LIF neuron will be smoothed as shown in Figure 2.6. Compared

with constant input, noisy input can give rise to output spikes even with a small input

current. This feature is considered to be an advantage of noise in SNNs, that is improving

the sensitivity of weak signals and enabling these weak signals to be transmitted to

other neurons by generating a few spikes [FSW08]. Nevertheless, a shortcoming is that

these generated output signals are noisy rather than precise.

Generally, most input currents to SNNs are noisy, the reasons are twofold: First, the

input current of an LIF neuron is the sum of input signals from many other neurons,

these input signals are usually generated irregularly and they are discrete in time which

causes the summed input current to be noisy. The spiking neurons in the input layer

may receive constant input current, but these input neurons are only a small portion of

the neurons in SNNs or in the nervous system. Second, the nervous system are affected

by multiple noise sources [FSW08], which leads to noisy input currents to LIF neurons.

The response curve of an LIF neuron with noisy inputs has inspired the adoption of

the ReLU activation function in arti�cial neural networks.

Instant current injection

The solution of a constant current injection is provided in Equation 2.14 which is shown

below:

2.1. CLASSICAL SPIKING NEURAL NETWORKS 29

Figure 2.5:A. An LIF neuron and its RC circuit model.B. The constant current injection
and how membrane potential changes with time.C. The response curve (tuning curve)
of this LIF neuron. Figure is from [JLPPSRE22].

30 CHAPTER 2. BACKGROUND

Figure 2.6: The response curve of an LIF neuron when inputs are noisy current injections.
The noise type is Gaussian noise which is characterized by its standard deviation (whose
values are 0, 0.2, 0.5, and 1.0 as shown in legend. 0 corresponds to a constant current
injection). This shows that noisy inputs can smooth the response curve of an LIF neuron,
and enable spikes to be generated when the input is weak and even negative. Note that
the response curves of noisy inputs are noisy as well, so only some typical curves are
picked here. Figure is from [LF16].

2.1. CLASSICAL SPIKING NEURAL NETWORKS 31

u(t) � urest = RI0[1� e� t� t0
t m]; f or t > t0: (2.17)

When the input currentI0 is in�nitely high and the current injection timet � t0 is

in�nitely small, the input turns to instant current injection. This instant current injection

can be de�ned by an equation similar to the Dirac delta function

I(t) =

8
<

:
+ ¥ ; f or t0 < t � t0 + 1

¥ ;

0; f or t > t0 + 1
¥ ;

(2.18)

under the constraint of Z + ¥

t0
I (t)dt = q: (2.19)

Since the current injection timet � t0 is in�nite small, e� t� t0
t m in Equation 2.17 can

be approximated by Taylor series:

e� t� t0
t m = 1�

t � t0
t m

; f or t = t0 +
1
¥

: (2.20)

Note that only the �rst order of the Taylor series is considered here. Bring it to Equation

2.17, Equation 2.17 becomes

u(t) � urest = RI0[
t � t0
t m

]; f or t = t0 +
1
¥

: (2.21)

SinceI0(t � t0) = q, and R
t m

= 1
C. Equation 2.21 becomes

u(t) � urest =
q
C

; f or t = t0 +
1
¥

; (2.22)

a very simple solution.

The advantage of modeling input current as an instant injection is that, compared

with the constant injection, instant injection avoids computing membrane potential

u(t) for every time step. Also, the improved membrane potential given an input can

be interpreted straightforwardly: it equals toq
C. Due to these reasons, some SNN

simulations simplify the input as an instant injection. Also, when the time constant of

synapsest syn (See Section 2.1.5 for the de�nition oft syn) is set much lower than the

time resolution of simulation, the current transmitted by synapses can be seen as being

injected to a neuron instantly.

32 CHAPTER 2. BACKGROUND

Decomposing the input current

In Equation 2.5 which de�nes the subthreshold dynamics of the LIF model, the in-

put currentI (t) is provided directly. This section gives more details on howI(t) is

calculated.

In SNNs, a spiking neuron usually receives inputs from many other spiking neurons,

so the input currentI (t) is essentially the sum of currents sent from other spiking

neurons. These spiking neurons are called presynaptic neurons, and their generated

electric signals will go through synapses and are received by a postsynaptic neuron.

These currents will cause postsynaptic potentials (PSPs) in the postsynaptic neuron,

which are divided into the excitatory postsynaptic potentials (EPSPs) and the inhibitory

postsynaptic potentials (PSPs), according to whether the postsynaptic potential increases

(depolarization) or decreases (hyperpolarization).

The sum of these currents can be either spatial (when these currents are from

different synapses), or temporal (when these currents are from the same synapse but

arrive at different times), or both (when spatial integration and temporal integration

happen simultaneously, known as spatiotemporal integration).

2.1.5 Synaptic model

Spiking neurons in the nervous system are connected and communicate through

synapses. Nevertheless, not all neurons are connected, and how neurons in the brain

are connected to realise highly-ef�cient information communication and information

processing is a signi�cant research topic. Different synapses have different strengths

which are referred to as synaptic strengths, leading to different currentsI (t) aroused in

postsynaptic neurons by identical spikes. The strength of synapses may be determined

by the release probability of neurotransmitters, and the current jump caused by the

release of neurotransmitters in synapses [Mur98]. Synapses are plastic, which is known

as synaptic plasticity, and this is thought to involve the function of memory and learning

in nervous systems. Two typical examples are STDP (spike-timing-dependent plasticity,

a formulation of Hebbian learning) and structural plasticity.

In SNNs, a synapse is modeled by a synaptic weightw. The sign of this weight

represents the type of the synapse, one arouses EPSPs in the postsynaptic neuron and

one arouses IPSPs in the postsynaptic neuron. The magnitude of this weight models

the synaptic strength. Synaptic weightw can contribute to the input currentI (t) of the

postsynaptic neuron through two stages (exempli�ed by a single exponential synaptic

2.1. CLASSICAL SPIKING NEURAL NETWORKS 33

model). First, a weight effectw(t) in the single exponential synapse can be calculated

by

w(t) = å
f

we�
t� t f
t syn : (2.23)

t f is the spike �ring time of the presynaptic neuron whose axon is connected to this

synapse, and these spikes can evoke the weight effectw(t). t syn is the time constant of

this synapse, and it controls the detailed synaptic dynamics, similar to the function of

the membrane potential time constantt m in LIF neurons. Second,w(t) can contribute

to the input currentI (t) of the postsynaptic neuron. When applying a current-based

synaptic model,

I (t) = w(t); (2.24)

when applying a conductance-based synaptic model,

I (t) = gsyn(t)[u(t) � Esyn]; (2.25)

whereEsyn is the reversal potential of a synapse (Esyn is usually set to -75 mV for

inhibitory synapses and 0 mV for excitatory synapses) andgsyn(t) is the conductance

of the transmitter-activated ion channels whose value equalsw(t). Note that these

equations only model one synapse and the temporal integration ofI (t). If there are more

synapses connected to the postsynaptic neuron, the spatial integration ofI (t) needs to

be considered as well.

When analyzing synapses at the neural-network level, more features of synapses can

be found. Both theoretical analysis and experimental evidence indicate that excitatory

synapses and inhibitory synapses are well balanced (E-I Balance) [ZY18]. E-I Balance

is crucial for achieving effective computation and communication in the nervous system.

Besides, it is claimed that there is a clear pattern on the synapses. Synapses connected

from a given neuron are either inhibitory or excitatory but not blended; this is referred to

as Dale's law or Dale's principle. From the computational perspective, it means that the

synaptic weights of these synapses are either positive or negative. From the biological

perspective, this synaptic pattern is because neurons release the same set of transmitters

to all of their synapses. Some studies show that Dale's law is not a limitation for the

computational capacity of SNNs [PAE08, TE16] and of ANNs[CKL+ 21].

34 CHAPTER 2. BACKGROUND

2.2 Neuromorphic hardware

2.2.1 Categories of neuromorphic hardware

The concept of Neuromorphic hardware was proposed by Carver Mead, with the pursuit

of electronic modeling of human neurology [Mea90]. Neuromorphic hardware repli-

cates the merits presented in the nervous system on analog/digital circuits, with the goal

of enhancing our understanding of the human brain and brain-inspired computing. It

embodies the quote of the famous theoretical physicist Richard Feynman “What I cannot

create, I do not understand”. The brain merits that are replicated on neuromorphic

hardware usually include parallel computing, asynchronous computing, event-based

computing, near-memory computing, in-memory computing, domain-speci�c com-

puting, dense connections, spike communications, and optimal spike routing. Other

minor goals of neuromorphic computing can be categorized into two aspects: promoting

academic research by providing ef�cient machines to computational neuroscientists and

researchers in robotics for neuronal simulation, and promoting practical industrial appli-

cations by facilitating low-power low-latency deployments of spike-based deep learning

algorithms and validating AI algorithms in new paradigms. Current neuromorphic

hardware can be roughly divided into three types: analog, digital, and hybrid.

Analog neuromorphic hardware usually adopts energy-ef�cient devices such as

memristors [LWM+ 18], skyrmions [SJP+ 20], and photonics [SBMN17], or utilizes

subthreshold transistor dynamics to emulate neurons directly [Mea90], pursuing ultra-

low-power computing. However, their building blocks are usually of low precision and

suffer imperfection and noise, which imposes the challenges of reliable programming

and large-scale applications.

Digital neuromorphic hardware simulates SNNs using digital circuits. “simulate”

refers to the fact that in fully digital neuromorphic hardware, neuronal models, synaptic

models, and spikes are all simulated digitally. Simulating these components may be

less power-ef�cient than emulating them, but routing spikes with digital circuits is far

simpler than with analog circuits. SpiNNaker [FGTP14], TrueNorth [MAAI+ 14], and

Loihi [DSL+ 18] can be categorized as digital neuromorphic hardware.

Hybrid neuromorphic hardware mixes digital circuits and analog circuits to simulate

SNNs. The spiking neurons and synapses in this type of neuromorphic hardware

are emulated directly by analog components, and the generated spikes are routed to

other neurons by digital circuits. Compared to pure analog neuromorphic hardware,

the hybrid paradigm removes the obstacle of effective spike routing so it enables the

2.2. NEUROMORPHIC HARDWARE 35

building of larger machines. However, the imperfection problem still exists when

emulating neurons and synapses. Neurogrid [KGT+ 15] and BrainScales [SBG+ 10] can

be put into this category.

2.2.2 Other related hardware

Dynamic Vision Sensors (DVS). Dynamic Vision Sensors (DVS) [GDO+ 20], also

known as event cameras, are biologically inspired sensors that capture images asyn-

chronously only when the pixel intensity changes. They are generally compared with

static vision sensors applied in conventional frame-based cameras which capture images

synchronously in a �xed interval. There are several differences between DVS and

frame-based cameras: (1). DVS only measures motion (pixel intensity change) and

acquires input signals in an event-based manner, rather than measuring absolute pixel

intensity by frame-based signal acquisition. (2). DVS is achieved by more complicated

circuits than static vision sensors, and each pixel in DVS usually occupies a bigger

space than that in static vision sensors, so its spatial resolution is usually lower. (3).

Though the spatial resolution is potentially lower, its temporal resolution is obviously

higher. A typical latency of signal acquisition in DVS is 1µs(10� 6 s). The latency

can be further reduced in lighter illumination. Hence, DVS gains more advantages in

low-light environments than static vision sensors. The dynamic range of EVS is also

wider. (4). DVS has lower bandwidth and lower power consumption. The acquired data

is sparser and less than that acquired by static vision sensors. (5). Motion blur can be

more ef�ciently alleviated.

When brightness changes in any pixel, DVS generates a piece of data that contains

the information of the time, location, and the sign of brightness change. This spatial-

temporal representation follows the address-event representation protocol, which is also

known as AER [Mah92]. This data form is signi�cantly different than the form of data

gathered by conventional sensors, and it needs whole new algorithms to process. SNNs

are naturally compatible with processing DVS data, and there have been many studies

surging on this research topic [ONL+ 13, FYC+ 21b]. In the application aspect, DVS

can work jointly with static vision sensors to capture more detailed information.

Dynamic audio sensors. They are biologically inspired sound sensors which

measure air vibrations and generate neural signals [LvSMD13]. They mimic human

hearing in the cochlea so they are also known as silicon cochleas. Similar to DVS, the

data acquisition in dynamic audio sensors is asynchronous and event-based, and follows

the AER protocol. In dynamic audio sensors, the “address” in the AER protocol is

36 CHAPTER 2. BACKGROUND

the frequency address instead of the spatial address used in DVS, e.g. the index of a

channel which measures sound in a certain frequency range.

Neurorobotics. Robotics develops machines to substitute for humans and replicate

human actions. Neurorobotics, or biologically-inspired robotics, is a research area in

robotics, and it is closely related to many other research �elds, such as computer vision,

neuromorphic hardware, dynamic sensors, and SNNs. One promising application

scenario is recording human behaviours by biologically-inspired dynamic sensors and

processing the acquired data ef�ciently by SNN algorithms on neuromorphic hardware.

The output of SNNs is then sent to a robot to generate motor commands for robot

control. The actions of robot may in turn affect the behaviours of the human, which

forms a closed-loop biologically-inspired system. Robotics can also be simulated in

virtual environments.

2.3 Deep learning

This section introduces deep learning techniques related to SNNs, with the focus on

neural networks and supervised learning.

Deep arti�cial neural networks, simpli�ed as ANNs, are hierarchical neural network

models that can learn input-output mappings from labeled examples. This learning

process is called supervised learning as the examples are labeled, which is equivalent

to providing supervision and instructions during learning. The learning in ANNs is

essentially an information processing and extraction to represent in�nite input-output

mappings by �nite network parameters trained by �nite examples. “Finite” guarantees

low cost during ANN training and “in�nite” signi�es the generalization of the ANN

models.

2.3.1 Network architectures

The network architecture has a major impact on the performance that can be achieved

after training. Some network architectures are intrinsically easier to train, or more

computationally ef�cient, or more ef�cient to represent features during learning. This

section introduces three typical network architectures, fully-connected networks, VGG,

and ResNet.

Fully-connected networks usually contains several layers, and two adjacent layers

are fully connected to each other. The connections between these adjacent layers

2.3. DEEP LEARNING 37

are dense, which prevents this network architecture from scaling to more layers and

solving more dif�cult tasks. VGG is a group of ef�cient image recognition models

whose building blocks are convolutional layers and pooling layers. The information

in these networks can only be propagated forward, and these networks do not contain

any feedback connections. ResNet introduces shortcut connections over some layers,

enabling establishing deeper ANNs and rendering better performance.

2.3.2 Objective functions

An objective function, also known as a cost function, or loss function, quanti�es the

performance of ANNs on a task, and provides a criterion for choosing an ANN learning

process. During ANN training, the training samplesX are sent to the input layer of an

ANN which generates inference resultsY0 in the output layer. Each training example

contains a labelY, and the goal of ANN learning is to minimise the difference between

Y0andY while ensuring this difference is small for new samples as well. There are

various objective functions to choose from, such as MSE (mean squared error) and

cross-entropy.

2.3.3 Learning rules

ANNs do not learn directly from humans or human knowledge, but learn by the pre-

de�ned learning rules that control how their network parameters are updated. In

supervised learning, the parameter updates are controlled by learning signals which

eventually come from the objective function and are transmitted to these parameters by

the backpropagation algorithm.

The backpropagation (backprop, BP) algorithm is widely used to facilitate the

training of deep arti�cial neural networks. It gives a methodology to calculate gradients

of the learning signal to the trainable parameters in a deep ANN. The calculation of

gradients in the output layer is straightforward, and BP is applied to calculate the

gradients in hidden layers and determines how gradient �ows go back to the top layers.

2.3.4 Activation functions

Arti�cial neurons are the information processing units in ANNs, and their neuronal

dynamics can be described by their activation functions. An activation function gives

a mapping from an inputx to an outputy in a neuron which is usually nonlinear and

38 CHAPTER 2. BACKGROUND

differential. The nonlinearity of activation functions is vital for their computing capacity,

and their differentiable form bene�ts the use of backpropagation to calculate gradients.

The recti�ed linear unit (ReLU) is one of the most frequently used activation

functions, and it is inspired by the response curve of spiking neurons [GBB11]. ReLU

can be approximated more easily by spiking neurons than other activation functions.

The form of ReLU is shown as follows:

y j = max(0;å
i

wi j yi); (2.26)

wherey j is the output of an arti�cial neuron, andyi is the output of an arti�cial neuron

in the previous layer.wi j denotes the synaptic weight from neuroni to j.

2.4 Deep spiking neural networks

2.4.1 Synaptic models

The synaptic models in deep SNNs are simpler than those in classical SNNs. Usually,

the detailed synaptic dynamics are ignored, and the weight effect is �xed as

w(t) = w: (2.27)

Note thatw(t) will be integrated into the postsynaptic neuron only when a spike is

generated in the presynaptic neuron. These synaptic models in deep SNNs do not

distinguish the type of synapses implicitly, but these synaptic models are essentially

closer to the form of current-based synaptic model (Equation 2.24).

2.4.2 Neuronal models

There are a variety of neuronal models used in deep SNNs. In the context of ANN-to-

SNN conversion, the focus of this thesis, there are three typical models as introduced

below. In these neuronal models, the current will be injected to neurons instantly, which

gives simpli�ed equations of neuronal dynamics.

Leaky integrate-and-�re model. SNNs that use the leaky integrate-and-�re model

usually feature high biological plausibility. LIF neuronal dynamics are described in

Equation 2.28 and 2.29. The leak mechanism in this neuronal model hurts the similarity

of ANN activation and SNN output response, which hinders this model from scaling to

large datasets such as ImageNet.

2.4. DEEP SPIKING NEURAL NETWORKS 39

u t
j = au t� Dt

j + å
i

wi j z t
i : (2.28)

z t
j = 1 andu t

j = u rest; whenQ(u t
j � u threshold) = 1: (2.29)

In these equations,u t
j andu t� Dt

j are the membrane potential of spiking neuronj at

timet andt � Dt respectively.a controls the leak rate,Dt is the time resolution during

simulation.wi j are the synaptic weights between neuroni in the previous layer and

neuronj in this layer.z t
i denotes the spike generated by neuroni at timet, and it has

two statesf 0, 1g representing whether or not a spike is elicited. The range of the sum

is all spiking neurons connected to neuronj. u thresholdandu rest are the threshold and

the reset membrane potential of the spiking neuronj respectively.Q(�) denotes the

Heaviside step function.

The standard integrate-and-�re model. The neuronal dynamics of this model are

controlled by two equations below:

u t
j = u t� Dt

j + å
i

wi j z t
i ; (2.30)

z t
j = 1 andu t

j = u rest; whenQ(u t
j � u threshold) = 1: (2.31)

Compared with LIF model, this neuronal model is more effective when applying to

ANN-to-SNN conversion so more frequently adopted. Some studies have reported the

competitive results on nontrivial datasets such as CIFAR-10 and ImageNet using this

model.

The modi�ed integrate-and-�re model (soft-reset integrate-and-�re model). To

improve the compatibility to the ANN-to-SNN conversion technique, the reset mecha-

nism of the standard integrate-and-�re model is changed from reset-to-rest (Equation

2.31) to reset-by-subtraction:

z t
j = 1 andu t

j = u t
j � (u threshold� u rest); when

Q(u t
j � u threshold) = 1:

(2.32)

This modi�cation prevents the information loss brought by reset-to-rest, and enables

more precise information to be be processed in spiking neurons and propagated to

deeper layers. The subthreshold neuronal dynamics of this model is controlled by 2.30.

40 CHAPTER 2. BACKGROUND

The SNNs with this neuronal model have achieved the highest accuracy in various

datasets.

2.4.3 Training

Deep SNNs can be trained in various ways, and there are many new training approaches

proposed each year. This section starts from introducing two basic training methods:

ANN-to-SNN conversion and direct training. They are both based on ANN training

techniques, while other SNN training methods are primarily based on these two methods.

Some training techniques will apply feedback alignment to avoid backpropagation,

which is introduced as well.

Training approaches

• ANN-to-SNN conversion. When applying rate coding in SNNs, the response

curve of a spiking neuron is similar to a ReLU activation function in ANNs.

Hence, an SNN can be implicitly trained through training an ANN whose ac-

tivation function is ReLU and converting this ANN into a rate-coded SNN, an

approach referred to as ANN-to-SNN conversion [DNB+ 15]. The fundamental

problem in ANN-to-SNN conversion is how to effectively map ANN activation to

SNN �ring rate to obtain higher accuracy, lower latency, and lower computational

burden.

• Direct training by surrogate gradients. Direct training is inspired by the

backpropagation through time algorithms in recurrent neural networks. When

conducting direct training, an SNN is unfold in the time domain, and the learning

signal is backpropagated spatiotemporally [NMZ19]. Direct training usually

renders lower latency than ANN-to-SNN conversion. Also, direct training is

naturally compatible with DVS data.

• Feedback alignment. Feedback alignment [LCTA16] is an alternative to back-

propagation. Speci�cally, the feedback weight matrices are randomly generated,

and the learning signal will transmit through these weight matrices without the

need to access the original weight matrices in ANNs. This algorithm avoids the

weight mirroring problem in backpropagation and is claimed to be more biologi-

cally plausible. On the other hand, the randomly generated weights are biased

compared to the original weights matrices, causing a biased learning process and

2.4. DEEP SPIKING NEURAL NETWORKS 41

lower performance especially in challenging datasets such as ImageNet. Note

that feedback alignment is not a learning approach, e.g., it does not generate

learning signals by itself. It needs to associate with other learning methods such

as gradient descent to realize its function.

• Online learning. Online learning attracted wide scholarly attention, as it promises

to complete learning on new input samples while processing them. In other words,

the training and inference happen simultaneously. In contrast, of�ine learning

cannot achieve such real-time training but relies on extra time to train on new

samples. These samples will accumulate and require external memory to store

them, waiting to be loaded and trained again when the machine is spare. These

features of online learning—simultaneous learning and low memory require-

ments—facilitate on-chip learning, especially learning on neuromorphic chips

[IC20]. Note that most online learning research in SNNs is not continuous learn-

ing, which suggests that they do not solve the problem of catastrophic forgetting.

An online learning algorithm called e-prop is exempli�ed here [BSS+ 20]. In

e-prop, the equation of backpropagation through time is divided into two parts:

the eligibility trace which originates from a reinforcement learning concept, and

the instantaneous learning signal which ignores the learning signal from future

time steps. Both of these two parts can be obtained during the inference of input

data without the need to wait for future signals, promoting e-prop as a powerful

algorithm on recurrent SNNs. e-prop can be combined with feedback alignment

to avoid accessing weight metrics.

• Event-based on-chip direct training. It is spiking neurons rather than arti�cial

neurons that are simulated or emulated on neuromorphic hardware. Hence,

the on-chip learning algorithms on neuromorphic hardware are training spiking

neurons. Considering this, the direct training algorithms, instead of ANN-to-

SNN conversion, are more compatible with on-chip learning. One primary

requirement of on-chip learning is that the information involved in learning

should be local, since accessing global information is expensive [TKPM21].

It suggests that on-chip learning algorithms can be combined with feedback

alignment. Besides, on-chip learning needs to be power-ef�cient and compatible

with neuromorphic hardware, or on-cloud learning would be more practical. How

to make the learning signals in on-chip learning sparse and event-based for higher

compatibility with neuromorphic hardware has triggered a surge of interest.

42 CHAPTER 2. BACKGROUND

2.4.4 ANN-to-SNN conversion

This section provides more technical details and analysis on ANN-to-SNN conversion,

as it has signi�cant impact on deep SNN optimizations and it is at the center of many

studies presented in this thesis.

ANN-to-SNN conversion is a highly effective training method. It is essentially

training an ANN to represent a rate-coded SNN at the abstract level where only the

input-output response curve of a spiking neuron is considered. In theory, if a perfect

ANN-to-SNN mapping is achieved, an SNN built by ANN-to-SNN conversion can

achieve exactly the same accuracy as that of the ANN. Some recent studies suggest

that by adding some constraints during ANN training before ANN-to-SNN conversion,

the SNN can obtain some extra features, such as sparser communications (lower �ring

rates) [SLBS20, NBLD22]. ANN-to-SNN conversion can transfer the progress in

ANNs to promote building more competitive SNNs. Considering that the current ANN

community is obviously larger and its research is prosperous, ANN-to-SNN conversion

is expected to promote faster progress in SNNs, at least at this stage.

The ANN-to-SNN conversion technique is proposed in [CCK15] which shows using

spiking neurons to approximate hyperbolic tanh neurons in ANNs. This study not only

demonstrates good approximation between a single spiking neuron and an arti�cial

neuron but also shows an unchanged approximation of these neurons at the network

level, by which a functional SNN can be built by converting an already-built ANN.

[DNB+ 15] propose to use ReLU in ANNs and show competitive accuracy on MNIST,

probably bene�ting from the better approximation of the response curve of spiking

neurons to ReLU. The implicit link between the activation function in spiking neurons

and arti�cial neurons is suggested in more early studies, see [OB11, GBB11] which

introduce this in the perspective of neuroscience and deep learning respectively.

Central to ANN-to-SNN conversion are the adopted normalization strategies to map

the ANN activation to the SNN �ring rate. This topic is �rst researched in [DNB+ 15],

and there are two normalization methods proposed in this paper, named model-based

normalization and data-based normalization. Model-based normalization is too conser-

vative which leads to a long latency; data-based normalization takes both the model

parameters (such as synaptic weights) and the input data into consideration so renders

a better latency and accuracy. The maximum �ring rate of an SNN when applying

data-based normalization is 1000 Hz under the time resolution of 1 ms. [RLH+ 17]

provides the exact equations for data-based normalization as well as equations to nor-

malize biases and convert batch normalization. The maximum �ring rate de�ned in this

2.4. DEEP SPIKING NEURAL NETWORKS 43

paper is 1000 Hz as well, but it maps the great majority of ANN activation to higher

SNN �ring rates. As a result, the latency is reduced considerably. Besides, [RLH+ 17]

applies analog input (instead of rate coding) and the modi�ed IF model (instead of

the standard IF model) to render better ANN-to-SNN mapping, enabling to convert

ANNs for challenging datasets such as CIFAR-10 and ImageNet. A channel-wise

data-based normalization is raised in [KPNY20] to improve the granularity of parameter

normalization. Consequently, the �ring rate is higher than the original data-based

normalization.

[SYW+ 19] proposed a �ring rate management strategy called Spike-Norm. This

strategy is non-deterministic so the �ring rate range is different for each trial. The

�ring rate of spiking neurons after applying this strategy is low in general, though

the inference latency is extended consequently. The bias in ANNs is not modeled in

SNNs in this research. [LF21] proposed an approach to enable more �exible �ring rate

management compared with data-based normalization. It shows that for the standard IF

model, applying a maximum �ring rate of 400Hz outperforms the default 1000 Hz used

in [DNB+ 15]. Also, the bias and batch normalization is successfully modeled in this

study. [HSR20] illustrates the response curve of the standard IF model and suggests that

this curve is non-linear. However, this non-linear shape of the response curve will only

appear in the �rst hidden layer. Feedforward propagation will smooth this response

curve in deeper layers [LF21].

The equations for data-based normalization are provided below:

ewn = wn �
l n� 1

l n
; (2.33)

ebn = bn �
1
l n

: (2.34)

wn andbn (ewn andebn) are the weights and biases before (after) the normalization in

layern respectively.l n is the maximum ANN activation value in layern.

2.4.5 Encoding

Rate coding. Rate coding was initially found in muscle nerve cells [AZ26], and was

further expanded to brain neurons as more extensive biological evidence appeared. The

information in rate coding is encoded by the �ring rate—the generated spike counts in a

certain time window—to guarantee the ratio of spike countN(spikes) and time window

44 CHAPTER 2. BACKGROUND

Dt is proportional to input densityDensity(Input) as below:

N(spikes)
Dt

µ Density(Input): (2.35)

The time windowDt usually needs to be long enough to maintain suf�cient encoding

precision. The long time window is not suitable for tasks that require a fast response.

However, it provides enhanced robustness to noise, e.g. noise caused by accidental

appearance or loss of spikes. Rate coding was applied in SNNs to solve various pattern

recognition tasks[BFD+ 21, LF21].

The naive way to encode information according to Equation 2.35 is using pure rate

coding. In pure rate coding, the inter-spike interval (ISI)Dt
N(spikes) is �xed. However,

pure rate coding cannot be effectively applied in SNN simulators and on neuromorphic

hardware. This is because pure rate coding requires a high time resolution to calculate

the spike emitting time according to ISI, but the time resolution in these platforms is

usually low (Typical time resolutions are 1 ms or 0.1ms). This mismatch will bring

considerable errors in neural encoding.

Most rate coding applied to SNN neuromorphic hardware, SNN simulators and SNN

algorithms is the stochastic version of the rate coding. Stochastic rate coding introduces

randomness and probability to neural encoding, based on the fact that spike patterns are

different in each neuroscience experimental trial, even when the input stimuli is kept the

same. Due to this randomness, the generated spike counts in a certain time window in

statistical rate coding is not guaranteed to be equal to the target spike countN(spikes).

Nevertheless, its error is still smaller than that in pure rate coding. In statistical rate

coding, whether a spike is generated in a simulation time step is controlled by the

equation below:

P(St = 1) µ Density(Input): (2.36)

St = 1 represents a spike generated at timet. P(St = 1) is the probability of generating

a spike at timet, which is proportional to the input intensityDensity(Input). According

to Equation 2.36, whether a spike is generated in one time step follows a Bernoulli

distribution. Also, whether a spike is generated in each time step is independent, so the

overall generated spike counts inn time steps follows a Binomial distribution.

In addition to the lower error in neural coding, another useful advantage of stochastic

rate coding over pure rate coding is that it does not require de�ning the time windowDt

in advance. This is due to stochastic rate coding calculating spike generation in each

2.4. DEEP SPIKING NEURAL NETWORKS 45

individual time step instead of based on a prede�ned time window.

Temporal coding. Temporal coding encodes information in the precise time of a

spike or the time interval between spikes. It is a highly ef�cient encoding approach that

is capable of providing richer information than rate coding. However, naive temporal

coding is not robust to noise such as the variation of spike generation time. There are

many temporal coding schemes proposed in SNN research, such as rank order coding

[GJDSA07], latency coding [PWZ+ 19] and Time-to-First-Spike Coding [PKNY20].

Population coding. Population coding [PWZ+ 19] encodes information in the �ring

pattern of a group of neurons. In population coding, each neuron responds to a part of

the input signal, so the joint response activity (spikes) of a neuronal population can be

combined to encode the original input signal.

Binary coding. Binary coding [SM19, SM21] encodes information according

to binary code, a coding scheme used in computer processing. In binary coding,

the generation of a spike corresponds to the signal “1” and the absence of a spike

corresponds to the signal “0”. Each spiking neuron represents a bit in binary code.

Burst coding. In burst coding [GFES21], a burst of spikes is sent out instead of

one spike. Sending more spikes can improve the robustness to noise and non-idealities,

making burst coding a useful encoding scheme on analog or hybrid neuromorphic

hardware.

2.4.6 Datasets

Datasets are a crucial factor behind the prosperity of deep learning, while it is also

signi�cant to SNNs to test and compare the effectiveness of SNN algorithms and drive

more rapid progress. The datasets adopted in SNNs can be roughly divided into two

categories: datasets inherited from deep learning such as some pattern recognition

datasets, and datasets built for SNNs or datasets intrinsically suitable for using SNNs to

solve such as DVS datasets.

Deep learning datasets

• MNIST . MNIST is a handwritten digit database for computer vision and pattern

recognition [LBBH98]. It has a training set of 60,000 examples and a test set

of 10,000 examples. These examples are 28x28 pixel pictures of handwritten

numbers between 0 to 9. Each pixel has a grey-scale value between 0 (black

background) and 255 (white foreground).

46 CHAPTER 2. BACKGROUND

• Caltech101. Caltech101 [FFFP04] contains about 9,000 object images grouped

in 101 classes, plus a background class. The size of these images varies, with a

typical height of 245 pixels and a width of 302 pixels.

• fashion-MNIST. This dataset [XRV17] shares the same sample size, data format,

and dataset splits of training samples and test samples as MNIST: It consists of

60,000 examples in the training set and 10,000 examples in the test set. Each

example is a 28x28 grey-scale image. There are 10 classes of clothes in Fashion-

MNIST, such as “shirt” and “sneaker”.

• EMNIST . EMNIST [CATVS17], or Extended-MNIST, is a handwritten character

and digit dataset whose image format and dataset structure are arranged in a

similar way to MNIST. There are six different subset splits in this dataset such as

the ByClass dataset and the Balanced dataset.

• SVHN. SVHN [NWC+ 11] is the abbreviation of Street View House Numbers, a

real-world image dataset tailored for object recognition algorithms. Similar to

MNIST, each sample in this dataset is a single digit whose label is one of “0”

to “9”. Nevertheless, the size of each sample is 32-by-32 and the size of this

dataset is bigger (73,257 digits for training, 26,032 digits for testing, and 531,131

additional less dif�cult samples which can be used as extended data in the training

set.); also, the digit recognition problem in this dataset is more challenging than

MNIST, since the digit is in a natural scene. SVHN is collected from house

numbers in Google Street View images.

• CIFAR-10. This dataset [KH+ 09] contains 60,000 images, divided into 10 classes

such as bird and cat. There are 50,000 training images and 10,000 test images.

The size of each image is 32x32 pixels and their format is RGB.

• CIFAR-100. This dataset [KH+ 09] is similar to CIFAR-10 in image size and

format (32x32 color images), but differs in the number of classes and the number

of images per class (100 classes with 600 images each, divided into 500 training

images and 100 test images.).

• ImageNet. ImageNet [DDS+ 09] is a large object recognition dataset, and the

frequently-used version is ILSVRC-2012. ILSVRC-2012 has over one million

labeled RGB examples, and 1000 object classes. Generally, its validation set

instead of the test set is adopted to test the model after training. The size of the

validation set is 50,000.

2.4. DEEP SPIKING NEURAL NETWORKS 47

• Keyword spotting tasks. Keyword spotting involves monitoring a real-time

audio stream with the purpose of identifying keywords of interest in utterances.

One typical application scenario is the wake-up word detection such as “Hey,

Siri” in virtual assistants. A keyword spotting dataset provided in [BCHE19]

consists of a training set of about 2,000 utterances and a test set of 192 utterances,

collected from 96 speakers,

• TIMIT . TIMIT [ZSG90], or TIMIT Acoustic-Phonetic Continuous Speech Cor-

pus, is a speech recognition dataset. The samples in this dataset are recorded

from 8 dialects of American English, and each of them reads 10 phonetically-rich

sentences

• PASCAL VOC. PASCAL VOC (PASCAL Visual Object Classes) [EEVG+ 15] is

a dataset for object recognition, semantic segmentation, and classi�cation tasks,

containing 20 categories such as vehicles and animals. Each sample in this dataset

is an image with pixel-level segmentation annotations, bounding box annotations,

and object class annotations. It has 1,464 images in the training set and 1,449

images in the validation set

• TIDIGITS . TIDIGITS [LD93] is an acoustic dataset originally collected at Texas

Instruments, Inc, with the purpose of designing and evaluating algorithms for

speaker-independent, sequence-connected audio classi�cation. The audio signals

in this dataset are labeled from `zero' to `nine' and `oh', and there are 2,464

training and 2,486 testing utterances. Speakers are selected for balance (111 men,

114 women, 50 boys, and 51 girls), and each speaker group is divided into a

training set or a test set.

• RWCP. RWCP (Real World Computing Partnership) [NHA+ 00] is a sound

dataset consisting of 200 training and 200 test samples. Unlike speech datasets

such as TIDIGITS, this dataset includes non-speech sounds with the labels such

as “bell” and “phone”.

Event-based datasets

• POKER-DVS and SLOW-POKER-DVS. The POKER-DVS [SGLB15] database

comprises 131 poker pip symbols which are tracked and extracted from a dy-

namic vision sensor. The samples in this dataset are 32x32 pixel event streams,

categorized into 4 categories (“club”, “diamond”, “heart” or “spade”) according

48 CHAPTER 2. BACKGROUND

to the poker symbol. The SLOW-POKER-DVS dataset is collected in the similar

manner, while the poker cards are slowly moving across the screen.

• MNIST-DVS and MNIST-FLASH-DVS . The MNIST-DVS [SGLB15] database

consists of 30,000 DVS recordings of handwritten digits between 0 to 9. The

samples are collected by moving the digit samples in MNIST and recording them

by a highly-sensitive DVS. MNIST-FLASH-DVS is collected in the similarly

way to MNIST-DVS. However, Each digit is �ashed several times during DVS

recording, which make this dataset more challenging.

• N-Caltech101. This is a neuromorphic vision dataset converted from an existing

Computer Vision static image dataset Caltech101 [OJCT15]. This dataset is

captured by mounting a Asynchronous Time-based Image Sensor (ATIS) sensor

on a pan-tilt unit, and move the sensor while viewing Caltech101 samples on an

LCD monitor.

• N-MNIST . The Neuromorphic-MNIST (N-MNIST) dataset is a spiking version

of the original frame-based MNIST dataset, captured in a similar way to N-

Caltech101 [OJCT15]. It has the same dataset size and sample size as the original

MNIST dataset: 60,000 training samples and 10,000 test samples, and 28x28

pixels per sample.

• N-TIDIGITS . This dataset is converted from the TIDIGITS dataset, an audio

dataset, to spiking version using a spiking silicon cochlear sensor[ANDL18].

• Yin-Yang. The Yin-Yang dataset [KGP22] is tailored for deep SNN research

especially that adopts biologically-plausible error backpropagation algorithms.

The training set has 5,000 samples and the test set has 1,000 samples. Each

sample is a two-dimensional representation of the yin-yang symbol, and it is

classi�ed into one of the three classes, “Yin”, “Yang”, and “Dot”.

• DVS128 gesture dataset. This is a spiking gesture recognition dataset, recorded

by a DVS in the form of event streams [ATB+ 17]. This dataset contains 11 hand

gestures, collected from 29 subjects under 3 illumination conditions

• SHD. SHD [CSSZ20], the abbreviation of Spiking Heidelberg Digits, is an audio

classi�cation dataset. It is converted from the Heidelberg Digits dataset to the

spiking version. There are 8,332 training samples and 2,088 test samples, each

2.4. DEEP SPIKING NEURAL NETWORKS 49

sample has 700 input channels. These samples are recordings of spoken digits

from 0 to 9 from 12 speakers in both German and English.

• SSC. SSC [CSSZ20]. is converted from the Speech Commands dataset [War18],

which was initially released by Google, to the spiking version. It consists of utter-

ances recorded from a great number of speakers under less controlled conditions,

divided to 35 categories.

• N-Cars. The N-CARS dataset [SBB+ 18] is a large-scale real-world event-based

dataset for car classi�cation. It was directly recorded in urban environments by an

event-based sensor. The raw data is an approximately 80-minute video, which is

then extracted and processed to generate samples. These samples are grey-scale

images, including 12,336 car samples (7,940 samples in the training set and 4,396

in the test set) and 11,693 background samples (7,482 samples in the training set

and 4,211 in the test set). Each sample lasts 100 milliseconds.

• CIFAR10-DVS. This dataset [LLJ+ 17] is converted from CIFAR-10, a frame-

based object classi�cation dataset. A subset of samples in CIFAR-10 is converted

to event streams with the size of 128×128 by a dynamic vision sensor, and there

are totally 10,000 samples in this dataset.

• ES-ImageNet. ES-ImageNet [LDQ+ 21] is an event-stream (ES) version of

a computer vision dataset ImageNet, comprising about 1,300,000 event-based

samples divided into 1,000 categories. This dataset is generated by an algorithm

(which is called Omnidirectional Discrete Gradient) rather than acquired by

a DVS, which enables building such a large-scale dataset with low-cost and

high-speed.

2.4.7 SNN simulators

SNNs are eventually targeted to be deployed to neuromorphic hardware to achieve

brain-like energy ef�ciency for practical tasks. Before that, SNNs can be simulated on

simulators for concept validation and fast development. The SNN simulators introduced

in this section are crudely divided into two main categories: classical SNN simulators

which are initially designed to run classical SNNs, and the simulators built upon deep

learning tools for deep SNN simulations.

50 CHAPTER 2. BACKGROUND

Classical SNN simulators

• NEST. NEST [GD07] is a function simulator for spiking neural network models.

This simulator emphasizes the function and dynamics at the neuronal level and

the connection and structure at the neural system level. The exact morphology of

individual neurons is ignored. NEST supports the simulation of some learning

and plasticity mechanisms in SNNs.

• Brian and Brian2GeNN. Brian [GB08] is an ef�cient Python-based SNN simu-

lator with the goal of providing easy-to-use SNN modeling tools for scientists

in computational neuroscience and other research disciplines. It is �exible and

scalable, which enables new models, especially networks of single-compartment

spiking neurons (point model), to be developed rapidly. Brian has realized the

second version called Brian2 [SBG19]. Brian2GeNN [SGN20] couples Brian

and GeNN to accelerate SNN modeling by using GPUs. One to two orders of

magnitude times speed-up is realized in two example models on Brian2GeNN.

• PyNN. PyNN [DBE+ 09] is a python package for SNN simulation. It is simulator-

independent, which means a model de�ned by PyNN APIs can be run on any

supported simulators by PyNN such as NEURON, NEST, and Brian, and on

neuromorphic hardware including SpiNNaker and BrainScaleS. PyNN can be

seen as a high-level SNN model library to de�ne SNN elements including neurons,

layers, connections, and so on at the abstract level. Some low-level APIs are also

provided in PyNN, giving more �exibility and, potentially more ef�ciency.

Simulators based on deep learning tools

• PyTorch. PyTorch [PGM+ 19] is an open-source machine learning framework,

aiming to accelerating model prototyping as well as practical hardware deploy-

ment. It can build ANNs with very deep network structures ef�ciently and the

gradients, a key factor related to the learning process in ANNs, can be calcu-

lated automatically. PyTorch supports GPU acceleration which improves the

simulation speed of deep neural networks by orders of magnitude compared

with CPUs-based simulations. Some studies simulate SNNs in PyTorch when

the investigated tasks, learning algorithms, and network structure are closely

related to deep learning [WDL+ 18, LF21]. PyTorch provides many advantages

for SNN simulation. It is convenient to build an SNN with typical ANN network

2.4. DEEP SPIKING NEURAL NETWORKS 51

topology. Also, the learning algorithms of SNNs are well supported in PyTorch:

For SNNs built by ANN-to-SNN conversion, the learning process takes place

in ANNs. This ANN learning process can easily be achieved in PyTorch since

PyTorch is designed for ANNs and ANN learning; for SNNs built by direct

training, the training is based on the surrogate gradient algorithms which needs

to modify gradients. This need on custom gradient modi�cations can be met by

PyTorch as well. On the other hand, simulating SNNs on PyTorch suffers some

dif�culties. For example, PyTorch does not provide standard spiking neuronal

models to use, so any spiking neuronal models need to be built from scratch.

Some functions in spiking neuronal models such as leak and refractory time may

not be straightforward to simulate. Also, some synaptic connection patterns such

as random connection and some synaptic dynamics such as postsynaptic potential

which are naturally supported in classical SNN simulators may not be supported

in PyTorch by default. Another dif�culty is that the recording of neuronal states,

such as spike count recording and membrane potential recording in each time

step, need to be programmed manually from the beginning, which involves many

data merge, data format conversion, and data calculation issues.

• SpykeTorch. This [MGNDM19] is a an open-source high-speed PyTorch-based

simulator for convolutional SNNs. Each spiking neuron in this framework only

generates one spike at most and input is encoded by rank order to build highly-

ef�cient SNNs. This framework supports the STDP learning rule and reward-

modulated STDP learning, and can run on GPUs for acceleration.

• CARLsim. CARLsim [BCC+ 15] is a library for simulating large-scale SNNs

ef�ciently while keeping high biological details. For example, this simulator al-

lows building SNNs composd of Izhikevich spiking neurons and realistic synaptic

dynamics and accelerating them using GPUs. It provides C/C++ level interface

like in PyNN, which improves the �exibility of SNN modeling in this simulator.

• SpikingJelly. SpikingJelly [FCD+ 20] is an open-source framework for deep

SNN simulation on PyTorch. Some high-impact SNN algorithms and some

neuromorphic datasets are embedded in this framework, to move obstacles on

PyTorch-based SNN simulation.

• snnTorch. This [EWN+ 21] is a PyTorch-based Python package with the function

52 CHAPTER 2. BACKGROUND

of conducting gradient-based learning in spiking neural networks. snnTorch pre-

designs many spiking neuronal models such as leaky integrate-and-�re neurons

as well as other functions including rate coding, the surrogate gradient descent

algorithm, and the online learning algorithm, which empower user-friendly deep

SNN modeling.

• Rockpool. Rockpool is a Python package to build machine-learning-based

SNNs for signal processing applications. It contains necessary functions to build,

simulate, train, test, and deploy SNNs. Rockpool is simulator-independent so the

SNNs built in Rockpool can be run on simulation backends such as Brian2, NEST,

and Torch. It also supports SNN deployment on event-driven neuromorphic

hardware.

• DECOLLE . DECOLLE [KMN20] (a rough abbreviation of Deep Continuous

Local Learning) is an SNN simulation framework for online learning. This

framework provides a local error signal to enable online learning in SNNs with no

extra memory overhead, paving the way to further deployment on neuromorphic

hardware

• Norse. Norse [PP21] is a deep learning library for spiking neural network

simulation with the aim of exploiting the advantages of bio-inspired neural

components such as sparsity and event-based computing. Also, since Norse is

based on PyTorch, the merits of deep learning tools can be retained as well. It

provides some examples to solve MNIST and CIFAR-10 using SNNs as well as

to realize some learning algorithms in SNNs.

• BindsNET. BindsNET [HSK+ 18] is a Python package for SNN simulation,

utilizing PyTorch Tensor-based computation on CPUs or GPUs. It assists research

into applying SNNs to machine learning problems.

• cuSNN. cuSNN [PVSDC20] is a C++ library to simulate large-scale SNNs which

are accelerated by GPUs. It contains some LIF models and STDP learning rules,

and supports building SNNs with convolution network topology.

• Nengo. Nengo [BBH+ 14] is a Python package for building, evaluating, and

deploying neural networks including their spiking versions. Nengo is based on

the Neural Engineering Framework, it is highly �exible and easily extensible.

The detailed neuronal models, learning rules, and so on can be customized by

users.

2.5. SUMMARY 53

• Sinabs. Sinabs is a python library for developing and implementing of Spiking

Convolutional Neural Networks (SCNNs), managed by SynSense (former aiCTX

AG).

• SLAYER. SLAYER [SO18] is the crude abbreviation of Spike LAYer Error

Reassignment, and it provides methods to handle the non-differentiability of

spike function and to achieve effective SNN training. Both the fully connected

network and convolutional neural network are available to be trained in this

framework.

• SNN toolbox. SNN toolbox (Spiking neural network conversion toolbox) is

designed for automating ANN-to-SNN conversion. An ANN built and trained in

PyTorch or in other deep learning frameworks can be converted to SNNs by this

toolbox, and run on SNN simulators or neuromoprhic hardware.

2.5 Summary

This chapter introduced the fundamental knowledge about deep SNNs as well as

related concepts in classical SNNs, neuromorphic computing, and deep learning. The

computational property of a single spiking neuron was highlighted in Section 2.1. Also,

the detailed equations that describes the neuronal dynamics and synaptic dynamics

were provided. Neuromorphic hardware was initially designed to conduct bio-inspired

computing and enhance our understanding of the human brain. However, more deep

learning elements are now involved in neuromorphic computing. Deep SNNs are

promising to achieve power-ef�cient event-based computing. Section 2.4 described the

building blocks of deep SNNs.

Chapter 3

SNNs on neuromorphic hardware

3.1 Introduction

So far, SNNs are still in the early stage, and many researchers are attempting to discover

the advantages of SNNs compared with ANNs which are currently more successful

on many benchmarks [LBBH98, KH+ 09, RDS+ 15]. Two potential advantages of

SNNs have been found and received considerable scholarly attention: First, SNNs can

achieve better energy ef�ciency when power-ef�cient neuromorphic hardware is applied

[MPSC17], and when SNNs are optimized for short latency [WCZ+ 19] and low �ring

rates [PSRGSGLB20]. Second, a rate-coded SNN can generate outputs faster than an

equivalent ANN, though its output may be noisy and of low precision. The inference

precision would then rise with more evidence accumulated over time by the spiking

neurons [DNB+ 15]. This feature is potentially useful for dealing with the challenge of

real-time processing in self-driving vehicles which current ANNs struggle to overcome.

In summary, SNNs have potentially bene�cial effects on power ef�ciency and fast

inference. However, we have just scratched the surface of realizing these advantages

[PP18] and we do not know yet how to use these characteristics properly to make SNNs

more competitive than their ANN counterparts.

To promote a deeper understanding of SNN merits, this chapter �rst investigates

one potential advantage on noise robustness of SNNs and compares it to ANNs. The

results show that SNNs are more robust to Gaussian noise in synaptic weights, a typical

perturbation to SNNs when deploying SNNs on cutting-edge materials, than ANNs

under some conditions. This �nding will expand our understanding of the neural

dynamics in SNNs and the advantages of SNNs compared with ANNs. Also, the

reported results imply the possibility of using high-performance cutting-edge materials

54

3.2. PRELIMINARY 55

with intrinsic noise as an information storage medium in SNNs, such as memristors and

skyrmions. The contents related to the simulation of deploying the weights of SNNs on

skyrmions are illustrated in the following section. At the end of this chapter, the process

of deploying an SNN on SpiNNaker, a digital neuromorphic hardware, is presented.

3.2 Preliminary

3.2.1 Weights

At the algorithm level, the function of a deep neural network model is characterized by

its network parameters, including weights, biases, and so on. The most fundamental

parameters of a neural network are its weights which de�ne the synaptic connections

between two adjacent layers. The biases, on the other hand, are not a compulsory

element in neural network models, such as in [DNB+ 15]. The lack of biases in a neural

network model may cause an accuracy degradation as the model representation capacity

is impaired.

At the hardware level, weights attract more attention than biases as well. There is

much research focusing on how to deploy a neural network more ef�ciently to hardware

during inference. One promising approach is using the structure of a crossbar to store

a weight matrix ef�ciently in an analog manner, a method called in-memory neural

network computing.

In summary, the weights are widely researched both at the algorithm level and at the

hardware level. The research presented in this chapter also focuses on noise injections

into weights rather than biases.

3.2.2 Weights in hardware

The research into the storage medium of weights in deep neural networks is vigor-

ous. Three typical storage mediums for weights are listed and discussed here: digital

platforms, analog platforms, and non-volatile analog platforms.

Digital platforms are the main solution for parameter storage in neural networks.

The neural network models are stored in digital memories and are loaded to digital

computing platforms such as GPUs, CPUs, TPUs, and FPGAs during inference. GPUs

and other similar computing devices are reliable enough and the neural network models

can be run on them without the need to consider noise. Keeping these models on digital

platforms, however, will consume signi�cant electricity, which poses a challenge to

56 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

power-ef�cient neural network inference for real-world applications. This drawback is

more serious when the input to the neural network is sparse.

Analog platforms are more power-ef�cient for neural network applications. There

are different ways to represent weights in analog platforms, such as using an analog

crossbar and by digital SRAM. Some variations may exist in these weights for both

cases. When conducting feedforward propagation, these weights are extracted from

these storage media and participate neural network computing in the form of current.

Current neural network storage techniques do not result in noisy weights, but noise

could become an issue when more advanced storage devices such as memristors and

magnetic skyrmions are used to implement neural networks [SSSW08, JUZ+ 15]. These

two devices have the excellent characteristics of non-volatility and nanoscale size. These

advantages make memristors and magnetic skyrmions good candidates to deal with the

challenges of high power-dissipation in neural networks and the continuation of Moore's

law. Memristors and magnetic skyrmions have been applied to SNNs by both theoretical

simulations and experimental investigations [SHY18, CSR18]. However, these cutting-

edge devices may contain non-negligible random noise at room temperature, which is

typically Gaussian distributed.

3.2.3 Noisy weights

The noise type investigated in this study is Gaussian noise. The key parameters of

Gaussian noise are its mean and standard deviation (SD). The mean of Gaussian noise

is zero, and the discussions are mainly focused on how to determine the SD of Gaussian

noise. Here three different ways to choose the standard deviation are considered: SD is

�xed in different synaptic weights; SD is proportional to the amplitude of each weight;

SD is proportional to the square root of each weight's amplitude (which is equivalent

to setting the variance of the Gaussian noise to be proportional to the values of the

weights). This study chooses the second method to determine the standard deviation of

Gaussian noise. In this situation, weights with high amplitude will have larger noise

�uctuations.

Note that the investigated noise in this study is not the random variance in crossbar-

based weight matrices which has been widely researched [ZM18, SNP+ 15]. This

random variance originates from the physical properties of materials and the fabrication

of transistors therefore this variance is �xed and will not change over time. By contrast,

the noise in synaptic weights discussed in this study is the random noise that exists in

future high-performance devices such as memristors and magnetic skyrmions at room

3.2. PRELIMINARY 57

temperature. This random noise has a certain distribution and its value will change over

time.

3.2.4 Related work

Previous research suggests that the biological neural networks of the brain inherently

contain noise and rely on the presence of noise to carry out their functions [BBNM11,

RT11]. [FSW08] reviewed various noise sources in the nervous system at different

levels and showed how noise contributes to trial-to-trial variability. This paper also

suggests the potential bene�ts of noise and illustrates the principles to manage noise.

[BCFA01] studies noisy synaptic weights computationally, and shows that the primary

noise source of neurons comes from synaptic activities, and the noise in a synapse will

reduce to 1=
p

N if N spikes are generated and propagated through this synapse.

In the context of deep spiking neural networks for pattern recognition, the integrate-

and-�re mechanism in spiking neurons introduces subthreshold noise and over-threshold

noise to the neural network [DNB+ 15]. Moreover, when using rate coding as an

encoding method in SNNs, the input signal is typically noisy as well [PP18]. Even if

SNNs inherently contain these noise sources, they could still complete inference with

high accuracy in many benchmarks [TGK+ 19]. Existing research has systematically

investigated the impacts of several kinds of noise on the performance of spiking deep

belief networks [TGK+ 19]. However, the inference accuracy of these neural networks

is not competitive, and the comparisons in this paper are limited to the same SNNs with

different noise levels. By contrast, better results have been achieved by the technique

of ANN-to-SNN conversion; meanwhile, ANN-to-SNN conversion allows comparing

SNNs to ANNs with the same architecture and synaptic weights.

Though several kinds of noise are investigated in [SNP+ 15], no study has reported

the impact of noisy synaptic weights in SNNs. This gap is �lled by this research which

studies the tolerance of SNNs to Gaussian noise in synaptic weights. Moreover, the

robustness to noisy weights of SNNs and ANNs with the same network architecture are

compared, for the �rst time indicating that SNNs are potentially more robust to noisy

weights than ANNs.

58 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

3.3 Robustness to noisy weights on MNIST

3.3.1 Network architectures

The experiments are conducted on two kinds of feed-forward neural network: fully

connected networks (FCNs) which can be ef�ciently modeled by a crossbar, and

convolutional neural networks (CNNs) which are more powerful models for pattern

recognition tasks.

The detailed network parameters are shown in Figure 3.1. In fully connected

networks, every two adjacent layers are fully connected in a feed-forward pattern. The

output of spiking neurons in the same layer will be sent to all neurons in the subsequent

layer without any feedback connection to other layers as shown in Figure 3.1(a). If the

connections between two adjacent layers in an FCN become localized and share the

same kernels, it will turn into a CNN as shown in Figure 3.1(b). CNNs could achieve

better inference results than FCNs with relatively fewer connections, and more local

structure information of inputs could be maintained by convolutional kernels. Usually,

a pooling layer would be added after a convolutional layer to sub-sample feature maps

and reduce the number of parameters. In this study, average pooling layers rather than

max-pooling layers are adopted to make the conversion to SNNs easier.

The selected network architectures for evaluation of noise weights are not the state-

of-the-art network structure. Impressive results were achieved by using more hidden

layers in FCNs [16] and more hidden layers on CNNs [17]. However, to keep the

network simple and make it easy to be repeated by other researchers, we use a shallow

structure as well as limited optimization techniques for both FCNs and CNNs. Another

reason for choosing these relatively shallow network structures is for maintaining the

balance between a model and a task. Usually, a bigger deep neural network model

is applied only when the tasks to be solved by this model become harder. The task

investigated in this study is MNIST, a relatively basic task, which �ts the adopted

shallow network structure.

3.3.2 ANN-to-SNN conversion

ANN-to-SNN conversion is a relatively successful algorithm to achieve both high

inference accuracy and short inference latency in SNNs [DNB+ 15]. More importantly,

it provides an opportunity to compare the performance of ANNs and SNNs in the same

network architecture and with the same trained weights. Note that for the standard

3.3. ROBUSTNESS TO NOISY WEIGHTS ON MNIST 59

Figure 3.1: The architecture of FCNs and CNNs, and the diagram of the IF neural
model

ANN-to-SNN conversion, the weights in ANNs and SNNs are different as the weights

are scaled by a factor. In this study, the weights in ANNs and SNNs are kept identical to

fairly compare ANNs and SNNs. The thresholds of spiking neurons are scaled instead

during ANN-to-SNN conversion. Besides, as the research topic in this study is noisy

weights, the biases are deleted to avoid the problem of weight-bias imbalance when

using rate coding and the standard integrate-and-�re neurons in SNNs (See Section 4.4

for details).

The weights of the ANN are trained by stochastic gradient descent. After ANN

training, the weights are kept unchanged and the analog neurons are replaced with the

standard integrate-and-�re neurons. The analog inputs will be encoded as spike trains

by rate coding.

The threshold in the layerl is set toDl =Dl � 1, whereDl is the maximum input of

analog neurons in the layerl , andDl � 1 is the maximum input of analog neurons in

the previous layerl � 1. In particular, the threshold in the �rst hidden layer should be

60 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

D2=D1. BecauseD1 is the maximum input in the input layer and it is equal to1 in the

MNIST dataset, the threshold in the �rst hidden layer is simpli�ed toD2, the maximum

input in this layer in the ANN.

In Section 3.3.7, we adopt different SNN thresholds to explore the in�uence of

thresholds on inference accuracy and inference latency. The thresholds in these ex-

periments are set by replacing allDl in the threshold normalization withsDl . s is a

scale factor. After adding this scale factor, the threshold in the �rst hidden layer would

besD2 and the thresholds in other layers are kept unchanged. Whens equals 1, the

dynamics of spiking neurons are unchanged. Whens is higher (lower) than 1, spiking

neurons will integrate more (fewer) time steps before emitting spikes. The detailed

explanations are given below.

Through this weight scaling, the threshold in the �rst hidden layer will bes times

the maximum input in this layer. According to the theory of data-based normalization,

scaling the threshold in a layer will inversely scale the maximum inputs in the subsequent

layer (This point is questioned by [SYW+ 19] because this theory is only strictly correct

when the activation in SNNs is exactly the same as that in ANNs. However, this theory

is still useful to roughly estimate the change of maximum inputs when the threshold is

scaled.). The maximum input in the subsequent layer would bes times smaller than the

original maximum input. Since the threshold in the subsequent layer is unchanged as

Dl =Dl � 1, the threshold in subsequent layers will bes times their maximum inputs as

well. Hence, simply addings to D1 will scale the relative magnitude of the maximum

input and the threshold in each layer, which will then scale the �ring rate of spiking

neurons in each layer.

3.3.3 Metrics for accuracy and latency

The inference result of rate-coded SNNs is the label of the spiking neuron that has

the highest �ring rate. The output �ring rate of SNNs changes over time so that their

inference results will change over time [PP18]. These �uctuations of �ring rate in

the time domain poses a fundamental problem as to when to end SNN simulation and

decode the output �ring rates as the �nal inference results.

No paper has been found that discusses the detailed metrics about the choice of

simulation time steps on deep SNNs built by ANN-to-SNN conversion. A practical

method is provided below:

The �rst step of the proposed method is to determine a �uctuation range and a

monitoring time window. When conducting SNN inference, the SNN simulation will

3.3. ROBUSTNESS TO NOISY WEIGHTS ON MNIST 61

end when the SNN accuracy in the monitoring time window is within the �uctuation

range. The SNN latency is the front end of this time window, and the SNN accuracy is

the accuracy reached at the front end of this time window. These two parameters can be

assigned with different values for different network architectures, tasks and noise levels.

An example to clarify the implementation of this method is given here. Assume that

the �uctuation range is set as±0.05%, and the monitoring time window is 20 time steps.

During SNN simulation, the SNN accuracy in any successive 20 time steps is monitored.

The accuracy on the �rst time step of this time window is the baseline accuracy, and the

accuraciy in other 19 time steps is compared with this baseline accuracy. Only when

the accuracy in the these 19 time steps is all around the baseline accuracy and their

differences are within±0.05%, the simulation is terminated. The inference latency of

this SNN simulation is the time point of the beginning of this time window, and the

inference accuracy is the accuracy achieved at this time point.

The reason to apply this metric is that accuracy �uctuates widely in rate-coded

SNNs, and these �uctuations are enlarged when the synaptic weights in the SNNs

are noisy. This can be illustrated from two perspectives. From the perspective of

information, the information is accumulated by the integration mechanisms of spiking

neurons, and is processed and propagated to the next layer by the �ring mechanisms of

spiking neurons. At each simulation time step new information comes in to the input

layer, and successively propagates to deep layers, eventually leading to the �ring rate of

the output neurons changing over time and the inference accuracy �uctuating over time.

From the perspective of noise, rate-coded SNNs are inherent noisy. Rate-coded SNNs

suffer rate coding noise, subthreshold noise, supra threshold noise, and occasional noise

(See Chapter 5 for more details.). These noise elements will propagate to deep layers

and lead to the SNN output being noisy and the SNN accuracy �uctuating. In the

following experiments, the �uctuation range is set as±0.03%, and the monitoring time

window is 10 time steps.

To record latency more precisely for SNNs when injecting high noise levels, an

extra metric is introduce. This metric will record the simulation latency when an

SNN reaches an acceptable accuracy. This metric is based on the observations that

in rate-coded SNNs, increases of accuracy slow down when the accuracy is close to

the highest accuracy. Hence, the latency of SNNs to reach slightly lower accuracy is

usually obviously shorter than the latency to reach �nal accuracy, and is less noisy. This

lower accuracy is particularly valuable for real-world tasks, as lower accuracy renders

lower inference latency and lower power consumption, which are more crucial for many

62 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

real-world applications.

With this metric, the time when the SNN accuracy is approaching the �nal accuracy

and is within a certain percent accuracy loss from the �nal inference accuracy will be

recorded. For example, when the latency of one percent accuracy loss is selected as

the metric and the �nal inference accuracy is 98.8%, the time point when the inference

accuracy is higher than 97.8% for the �rst time would be recorded. Similarly, the latency

of 0.5% accuracy loss is the time point when the accuracy surpasses 98.3% for the �rst

time.

Table 3.1: Training parameters for FCNs and CNNs.

Training parameters FCNs CNNs
Learning rate 1 1
Momentum 0.5 0
Dropout rate 0 0

Training epochs 20 30
Batch size 100 50

3.3.4 Experimental setup

The dataset is MNIST, a handwritten digit database for computer vision and pattern

recognition [LBBH98]. It has a training set of 60,000 examples and a testing set of

10,000 examples. These examples are 28*28 pixel pictures of 10 handwritten numbers

from 0 to 9. Every pixel has a grey-scale value between 0 and 1.

The FCNs and CNNs are trained in MATLAB using a stochastic gradient descent

algorithm. The performance of the ANNs will be slightly different due to different

initialized weights and the randomness in the SGD algorithm, thus the �nal inference

accuracy of the ANNs is averaged over 5 trials. The network structure of the FCNs is

784-1200-1200-10 and the network structure of the CNNs is 28x28-12c5-2s-64c5-2s10o

as shown in Figure 3.1. The detailed training parameters are shown in Table 3.1. The

activation function is ReLU without bias, and it is de�ned as

y j = max(0;å
i

wi j yi); (3.1)

wherey j is the output of an analog neuron andyi is the output of an analog neuron in

the previous layer.wi j denotes the synaptic weight connecting neuroni to j. max(a;b)

3.3. ROBUSTNESS TO NOISY WEIGHTS ON MNIST 63

Figure 3.2: Accuracy comparison of the ANNs and the SNNs in the architecture of
FCNs for different noise levels.

returns the highest value betweena andb.

After training, all analog neurons are replaced by spiking neurons, and the weights

are kept unchanged. The applied spiking neuronal model is the standard IF model. The

time resolution of the SNNs is set to 1 ms. The input is changed to rate coding. The

maximum pixel intensity has the highest �ring rate of 1000 Hz, and the minimum pixel

intensity has the �ring rate of 0 Hz. The corresponding relationship of �ring rate and

pixel intensity is linear. The thresholds are set toDl =Dl � 1. In the output layer, the

inference result is the label of the neuron that has the highest �ring rate.

3.3.5 Inference accuracy

The comparison of ANNs and SNNs for different noisy weights on FCNs is shown in

Figure 3.2. The X-axis represents the ratio of the Gaussian noise's standard deviation to

synaptic weights. The noise level of zero percent on the X-axis represents noise-free

synaptic weights. In this �gure, the recognition accuracy of the SNNs is slightly lower

than that of the ANNs when the noise level is 0%. However, with the increase of noise

level, the inference accuracy of the ANNs drops dramatically. When the noise level

is 100%, the inference accuracy of the ANNs is only 94.74% on average, and their

standard deviation shows an increasing trend for higher noise levels. By contrast, the

inference accuracy of the SNNs keeps stable for all noise levels at around 98.76%, and

64 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

Figure 3.3: Accuracy comparison of the ANNs and the SNNs in the architecture of
CNNs for different noise levels.

their standard deviation is smaller than that of ANNs when the noise level is greater

than zero percent. When the noise level is 20%, the accuracy of the SNNs has surpassed

that of the ANNs.

Figure 3.3 is the comparison of the ANNs and the SNNs for noisy weights on

CNNs. The inference accuracy of the ANNs is higher than SNNs when the noise level

is 0%. When the noise level is 20%, the accuracy of the ANNs drops below 99%, but

the accuracy of the SNNs is still above 99%. The accuracy of the ANNs decreases

dramatically and their standard deviation increases to about 10% when the noise level is

greater than 40%. By contrast, the accuracy of the SNNs is still 98.89% even when the

noise level is 100%. Also, their standard deviation remains small for all noise levels.

3.3.6 Inference latency

The inference accuracy of SNNs represents their inference performance and the effec-

tiveness of ANN-to-SNN conversion, while the inference latency of SNNs re�ects their

energy ef�ciency and inference speed. If the inference latency is too long, SNNs will

lose their essential advantages of power ef�ciency and fast inference and will be not

suitable for applying to neuromorphic hardware and other cutting-edge devices. The

inference latency and standard deviation of spiking FCNs for different noise levels are

shown in Table 3.2. As shown in this table, the inference latency increases roughly with

3.3. ROBUSTNESS TO NOISY WEIGHTS ON MNIST 65

the noise level, as does the standard deviation. The inference latency of one percent

accuracy loss is relatively stable at around 16 ms and shows minor increases for higher

noise levels.

Table 3.2: The inference latency of the spiking FCNs for different noise levels.

Noise level Inference latency (ms) Inference latency
of 1% loss (ms)

0% 30.8� 4.6 16� 0.0
20% 40.2� 3.1 16� 0.0
40% 41.4� 9.8 16� 0.0
60% 60.2� 26.3 16.8� 0.3
80% 69.0� 16.4 17.0� 0.0
100% 64.8� 18.2 17.6� 0.9

Table 3.3 illustrates the inference latency of spiking CNNs. As can be seen from

this Table, the inference latency of SNNs with a high noise level is signi�cantly longer

than that with a low noise level. The inference latency with one percent accuracy loss

shows a similar trend. The standard deviation increases for higher noise levels as well.

Table 3.3: The inference latency of the spiking CNNs for different noise levels.

Noise level Inference latency (ms) Inference latency
of 1% loss (ms)

0% 206.5� 32.5 28� 0.0
20% 196.8� 60.2 29.6� 1.1
40% 222.0� 57.2 39.6� 1.7
60% 312.0� 76.0 71.7� 1.7
80% 654.8� 168.6 111.4� 9.1
100% 701.3� 134.8 173.5� 11.3

3.3.7 Different thresholds

The thresholds in SNNs will signi�cantly affect their inference accuracy and inference

latency. The threshold in this research is set by data-based normalization [DNB+ 15], in

the expectation that this threshold normalization could achieve both fast inference as

well as high accuracy. The optimal method to set thresholds may be different when the

66 CHAPTER 3. SNNS ON NEUROMORPHIC HARDWARE

Figure 3.4: The relationship of inference accuracy for differents.

weights in the SNN are noisy. Driven by that, this section will provide more results on

different thresholds.

The thresholds are changed by a scale factors as described in Section 3.3.2. Four

scale factorss of 0.2, 0.5, 1, and 2 are tested here. The accuracy of the spiking CNNs

for these scale factors and noise levels is shown in Figure 3.4. The accuracy of the

spiking FCNs is stable at around 98.77% for all scale factors and noise levels so it will

not be presented here. As shown in this �gure, the inference accuracy for all noise

levels rises with increasing scale factors. This indicates that the networks with high

thresholds tend to have a higher inference accuracy. As for inference latency, SNNs

adopting scale factors of 0.2, 0.5 and 2 show a similar increasing trend for different

noise levels as when the scale factor is 1. Figure 3.5 illustrates the relationship of

the inference latency ratio to the scale factors. This ratio is calculated by dividing

the inference latency at 100% noise level by the inference latency at 0% noise level,

and it represents how much additional time is needed to cope with Gaussian noise on

the weights before SNNs reach the target accuracy. The 1% accuracy loss inference

latency is applied as the metric for CNNs and the 0.5% accuracy loss inference latency

is applied as the metric for FCNs. The reason to choose 0.5% accuracy loss rather than

1% accuracy loss in FCNs is to improving sensitivity. As seen in Figure 3.5, the network

with a higher scale factor has a lower inference latency ratio both in FCNs and CNNs.

	Abstract
	Declaration
	Copyright
	Glossary
	Acknowledgements
	Introduction
	Overview of context
	Objectives and contributions
	Publications
	Thesis structure

	Background
	Classical spiking neural networks
	Anatomy of a neuron
	Spikes
	Neuronal models
	Neuronal dynamics of the LIF model
	Synaptic model

	Neuromorphic hardware
	Categories of neuromorphic hardware
	Other related hardware

	Deep learning
	Network architectures
	Objective functions
	Learning rules
	Activation functions

	Deep spiking neural networks
	Synaptic models
	Neuronal models
	Training
	ANN-to-SNN conversion
	Encoding
	Datasets
	SNN simulators

	Summary

	SNNs on neuromorphic hardware
	Introduction
	Preliminary
	Weights
	Weights in hardware
	Noisy weights
	Related work

	Robustness to noisy weights on MNIST
	Network architectures
	ANN-to-SNN conversion
	Metrics for accuracy and latency
	Experimental setup
	Inference accuracy
	Inference latency
	Different thresholds
	Analysis

	Optimizing a skyrmion-based SNN
	A multi-layer skyrmionic synapse
	Towards supervised learning
	Towards edge inference
	SNNs with the proposed skyrmionic synapses

	Deploying on SpiNNaker
	SpiNNaker
	Implementation details
	Results

	Summary

	Biological plausibility of SNNs
	Introduction
	Related work
	Current methods and gaps
	Firing rate degeneration and weight-bias imbalance
	Proposed methods
	Efficient calculation of gn
	Input normalization
	Further improvements and compatibility

	Considerations behind the proposed methods
	Inspirations
	Normalizing weights vs normalizing biases
	Low firing rates vs high firing rates
	Comparison to other normalization methods

	Benchmarks
	Experimental setup
	Inference accuracy
	Inference latency

	Summary

	A quantization framework for fast SNNs
	Introduction
	Related work
	Motivation
	Materials and methods
	Information compression during training
	Occasional noise
	Handling occasional noise and the other three noise types
	Event-based max pooling
	Quantization meets ANN-to-SNN conversion

	Experiments
	Experimental setup
	Benchmark results
	Bit precision during quantization training
	Bit precision in the output layer
	Ablation studies
	Results on VGG-16

	Comparison with other fast SNN approaches
	Further improvements
	Summary

	Summary and future work
	Summary
	Future work

	Bibliography

