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< LUR models were developed in 36 study areas in Europe using a standardized approach.
< NO2 models explained a large fraction of concentration variability (median R2 82%).
< Local traffic intensity data were important predictors for LUR model development.
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Estimating within-city variability in air pollution concentrations is important. Land use regression (LUR)
models are able to explain such small-scale within-city variations. Transparency in LUR model devel-
opment methods is important to facilitate comparison of methods between different studies. We
therefore developed LUR models in a standardized way in 36 study areas in Europe for the ESCAPE
(European Study of Cohorts for Air Pollution Effects) project.

Nitrogen dioxide (NO2) and nitrogen oxides (NOx) were measured with Ogawa passive samplers at 40
or 80 sites in each of the 36 study areas. The spatial variation in each area was explained by LUR
modelling. Centrally and locally available Geographic Information System (GIS) variables were used as
potential predictors. A leave-one out cross-validation procedure was used to evaluate the model
performance.

There was substantial contrast in annual average NO2 and NOx concentrations within the study areas.
The model explained variances (R2) of the LUR models ranged from 55% to 92% (median 82%) for NO2 and
from 49% to 91% (median 78%) for NOx. For most areas the cross-validation R2 was less than 10% lower
than the model R2. Small-scale traffic and population/household density were the most common pre-
dictors. The magnitude of the explained variance depended on the contrast in measured concentrations
as well as availability of GIS predictors, especially traffic intensity data were important. In an additional
evaluation, models in which local traffic intensity was not offered had 10% lower R2 compared to models
in the same areas in which these variables were offered.

Within the ESCAPE project it was possible to develop LUR models that explained a large fraction of the
spatial variance in measured annual average NO2 and NOx concentrations. These LUR models are being
used to estimate outdoor concentrations at the home addresses of participants in over 30 cohort studies.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many epidemiological studies have suggested that traffic-
related air pollution contributes to health effects associated with
long-term exposure to air pollution. Current estimates of the Eu-
ropean health impact of air pollution are large (Brunekreef and
Holgate, 2002). These estimates are, however, primarily based on
exposure response relationships established in studies in North
America (especially Pope et al., 2002). There is therefore an urgent
need to perform long-term air pollution exposure and health effect
studies in Europe. The European Study of Cohorts for Air Pollution
Effects (ESCAPE) project was designed to help to fill this gap.

Recent epidemiological research demonstrated the importance
of accounting for within-city variability in estimating air pollution
concentrations (Jerrett et al., 2005; Hoek et al., 2008; Beelen et al.,
2008; Brauer et al., 2003). Several methods can explain such small-
scale within-city variations such as geostatistical interpolation,
dispersion models, and Land Use Regression (LUR) models. Geo-
statistical interpolation of monitored concentrations is problematic
whenever networks are not dense enough, and therefore fail to
capture variability of concentrations over short distances. Disper-
sion models depend on detailed and spatially resolved input data if
they are to capture small-scale spatial variations in air pollutants
adequately. LUR modelling uses multiple linear regression to
analyse associations betweenmeasured pollutant concentrations at
a number of monitoring sites and predictor variables such as traffic,
land use and topography. LUR models have been shown to be a
cost-effective method to explain the spatial variation in air pollu-
tion in a number of studies (Hoek et al., 2008; Marshall et al., 2008).

Within the ESCAPE project LUR models for 36 study areas have
been developed to estimate outdoor pollutant concentrations at
the home addresses of participants in a large number of cohort
studies conducted all over Europe. In this paper, we describe the
standardized approach we used to develop these models for ni-
trogen dioxide (NO2) and nitrogen oxides (NOx), and we discuss the
performance of the models in terms of explained variance and
cross-validation.We also discuss some of themethodological issues
occurring in LUR model development. LUR models for particulate
matter have been published elsewhere (Eeftens et al., 2012a).

2. Methods

Annual average NO2 and NOx concentrations from an intensive
monitoring campaign and predictor variables were used to develop
LUR models in each ESCAPE study area. A standardized approach
described in the ESCAPE exposure manual (available on www.
escapeproject.eu) was used to develop LUR models in all areas.
Predictor variables were derived from Europe-wide and local
Geographic Information System (GIS) databases. European-wide
GIS data were centrally obtained to facilitate consistency between
study areas. In addition, local GIS data were collected in each study
area as not all potential predictor variables were centrally available.

http://www.escapeproject.eu
http://www.escapeproject.eu
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Local GIS data might also be more accurate than the central GIS
data. Common criteria were followed by each center for the
collection of local GIS data. Both the central and local GIS predictor
variables were included in exposure model development. Models
were optimised locally with no attempt to force a common model
to all study areas. This decision was based on the diversity of study
areas and differences in available GIS predictor variables.

2.1. Air pollution measurement data

The ESCAPE air pollution measurements have been described
previously (Eeftens et al., 2012b; Cyrys et al., 2012). Briefly, mea-
surements of both particulate matter (PM2.5, PM2.5 absorbance and
PM10) and nitrogen oxides (NO2 and NOx) were conducted in 20
European study areas at 20e40 sites for PM and at 40e80 sites for
NOx per area. In an additional 16 areas only NOx measurements
were conducted. So in total, NOx was measured in 36 areas (Fig. 1).
The Barcelona measurement campaign (N ¼ 40 NOx sites) was also
part of the Catalunya measurement campaign (N ¼ 80 NOx sites). A
detailed description of each study area is given in the online sup-
plement of Cyrys et al. (2012). Study areas varied significantly in
size. Most study areas consisted of a major city and surrounding
area, but large areas were studied in e.g. Catalunya and the
Netherlands.

Measurements were conducted between October 2008 and
April 2011. Sites were selected following a common study manual
(available on www.escapeproject.eu) to represent the anticipated
Fig. 1. ESCAPE study areas. Circles mark the study areas where both PM and NOx w
spatial variation of air pollution in the included cohort studies.
Based on the ESCAPEmanual, each local groupmade a site selection
proposal with a detailed characterization of the sites including
pictures of the study area and sites. The proposal was evaluated by
the ESCAPE exposure working group to harmonize the site selec-
tion across the groups. Sites were classified as regional background,
urban background and street sites. In each area street sites were
over represented as we anticipated more variation between street
sites than between regional or urban background sites. Sites rep-
resenting the full range of local traffic intensities were selected.
Other sources were also considered during site selection, e.g. in-
dustries or major ports. Physical geography characteristics such as
altitude were also considered.

At each site measurements were conducted during three 14-day
periods representing the warm, cold and one intermediate season.
Ogawa badges were used for NOx measurements (Van Roosbroeck
et al., 2006). For each site an annual average concentration was
calculated, correcting for temporal variation using measurements
obtained from a centrally located reference site or from a routine
monitoring site (areas with only NOx measurements) which was
operated year-round (Cyrys et al., 2012).

The geographical coordinates of each site were recorded with
Global Positioning System (GPS) readings at each site visit. Because
unacceptable variation of repeated GPS readings of more than 10 m
was found in some sites and because of the large spatial variability
of traffic-related air pollutants that occurs within tens of metres
from major roads, the GPS readings were used as a proxy for the
ere measured. Squares indicate the study areas where only NOx was measured.

http://www.escapeproject.eu
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correct coordinates. Final coordinates of the monitoring locations
were therefore extracted from the same, accurate digital maps
which were also used for extracting GIS predictors.

2.2. Predictor data for LUR models

GIS analyses were conducted to derive the values for the pre-
dictor variables for the coordinates of the monitoring sites. Table 1
shows the potential predictor variables, and the a priori choices we
made in the design for LUR model development including the
buffer sizes, transformations of the variable and the a priori defined
direction of effect. The buffer sizes were selected to take account of
known dispersion patterns. Both small-scale and larger-scale buffer
sizes were used for the traffic variables indicating two scales of
influence: near source and urban background levels representing
larger-area traffic density (Su et al., 2009).

2.2.1. Central GIS data
The following central datasets were available for all study areas:

1. Digital road network

High resolution road data were obtained from the Eurostreets
version 3.1 digital road network (1:10,000 resolution) which is
based on the TeleAtlas MultiNet TM for the year 2008. Attributes
include name of street, route number, speed class, length and road
classification (0: Motorways; 1: Roads belonging to ‘Main road’
major importance; 2: Other major roads; 3: Secondary roads; 4:
Local connecting roads; 5: Local roads of high importance; 6: Local
roads; 7: Local roads of minor importance; 8: Others). In the
absence of traffic intensity data, several LUR studies have success-
fully explored the use of the length of specific road types without
traffic intensity (Hoek et al., 2008). All roads of class 0, 1 and 2 were
classed as major roads (and classes 3 and 4 based on local knowl-
edge and decision). This dataset was used to calculate the total
length of all roads, and of major roads in buffers of 25, 50, 100, 300,
500 and 1000m.We also calculated the distance to the nearest road
and the nearest major road.

2. Land use data

The centrally available CORINE (COordination and INformation
on the Environmental programme, initiated by the European
Commission) land use data have been shown to be predictors in
land use regression models (Vienneau et al., 2010; Beelen et al.,
2009). CORINE land cover 2000 data were available from the Eu-
ropean Environment Agency as a 1:100,000 vector database (except
Norway and Switzerland) (EEA, 2005). It comprises 44 land cover
classes and has a spatial minimum mapping resolution of 25 ha.
The 44 categories were regrouped in 6 classes (High density resi-
dential land; Low density residential land; Industry; Port; Urban
green; and Semi-natural and forested areas) following a recent
paper on LUR modelling in the UK and The Netherlands (Vienneau
et al., 2010). The surface area (in m2) of each land-use was calcu-
lated in buffers of 100, 300, 500, 1000 and 5000 m.

3. Population density data

Population data modelled at a 100 m grid were available from
the INTARESE project (http://www.integrated-assessment.eu/
resource_centre/eu_agesex_stratified_population_100_metre_
grid). Following the approach of Briggs et al. (2007) inwhich census
data were spatially disaggregated on the basis of land cover data,
the 2001 population density available from the EEA (http://www.
eea.europa.eu/data-and-maps/data/population-density-
disaggregated-with-corine-land-cover-2000-2) (Gallego, 2010)
was enhanced and converted to a grid of population numbers.
Because the data are based on CORINE land cover, the population
data excludes Switzerland and Norway. Total population was
calculated in buffers of 100, 300, 500, 1000 and 5000 m around
each site.

4. Altitude

Digital elevation data (SRTM 90 m) were obtained through the
Shuttle Radar Topographic Mission, and available globally from
CGIAR-CSI GeoPortal (http://srtm.csi.cgiar.org/). The data have a
resolution of 90 m at the equator.

2.2.2. Local GIS data
Local GIS data were collected in each study area (if available).

Online supplement 1 describes in detail the available local GIS data
for each area.

1. Local digital road network with linked traffic intensity data

Because the central road network only contained a road classi-
fication, local road networks with linked traffic intensity data were
collected. If available, traffic intensity data were collected for
different traffic types (light-duty and heavy-duty). The accuracy for
the local road network should be at least 10 m compared to the
central road network.

The local road network was used to collect total traffic load in
vehicles*metres, calculated as the length of a road segment*the
traffic intensity on that road segment. This was done for buffers of
25, 50, 100, 300, 500 and 1000 m for both heavy traffic and total
traffic. Similar calculations were done for major roads only (where
major was defined as a road with over 5000 motor vehicles (mvh)/
24 h). We also calculated the traffic intensity on the nearest road
and the nearest major road, and the distance to these roads.

2. Land use data

CORINE may not incorporate specific land use for some study
areas. Local land use data, with accuracy of at least 100m compared
to central data, were therefore collected. The surface area (in m2) of
each land-use was calculated in buffers of 100, 300, 500, 1000 and
5000 m.

3. Population density data

Local population density data were collected because the cen-
trally available population density data were modelled. If available,
household density data were also collected. The accuracy should be
at least 100 m. Both the number of inhabitants and households
were calculated in buffers of 100, 300, 500, 1000 and 5000 m.

4. Altitude

Local altitude datawere collected in areas where local datawere
better than the central altitude data. The required resolution for
altitude data was 100 m.

5. Study area specific local data

This may include information about wood smoke, distance to
sea/lake and distance to major air pollution sources. Region in-
dicators or coordinate variables were in some areas used to model
large-scale spatial trends that could not be explained by the other
predictors which had a maximum buffer of 5000 m.

http://www.integrated-assessment.eu/resource_centre/eu_agesex_stratified_population_100_metre_grid
http://www.integrated-assessment.eu/resource_centre/eu_agesex_stratified_population_100_metre_grid
http://www.integrated-assessment.eu/resource_centre/eu_agesex_stratified_population_100_metre_grid
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2
http://srtm.csi.cgiar.org/


Table 1
Predictor variables with predefined variable names, units, defined buffer sizes, transformations of the predictor variables, a priori defined direction of effect, and indicator whether data are central or local data, divided in
background and traffic variables.

GIS dataset Predictor variable Name variablea Unit Buffer size (radius of buffer
in metre)

Transformation Direction
of effect

Central or
local data

Background variables
CORINE High density residential landb HDRES m2 100, 300, 500, 1000, 5000 NA þ Central
CORINE Low density residential landb LDRES m2 100, 300, 500, 1000, 5000 NA þ Central
CORINE Sum of high density and low density residential landb HLDRES m2 100, 300, 500, 1000, 5000 NA þ Central
CORINE Industryb INDUSTRY m2 100, 300, 500, 1000, 5000 NA þ Central
CORINE Portb PORT m2 100, 300, 500, 1000, 5000 NA þ Central
CORINE Urban greenb,c URBGREEN m2 100, 300, 500, 1000, 5000 NA � Central
CORINE Semi-natural and forested areasb,d NATURAL m2 100, 300, 500, 1000, 5000 NA � Central
CORINE Sum of urban green and semi-natural and forested

areasb
GREEN m2 100, 300, 500, 1000, 5000 NA � Central

Local land use Similar as CORINE variablesb Similar as CORINE
variables

m2 100, 300, 500, 1000, 5000 NA Following
CORINE

Local

Local land use Areab/number of buildings BUILDINGS m2/N(umber) 100, 300, 500, 1000, 5000 NA þ Local
Local land use Area of waterb WATER m2 100, 300, 500, 1000, 5000 NA � Local
Population density Number of inhabitants POP N(umber) 100, 300, 500, 1000, 5000 NA þ Central/

Local
Household density Number of households HHOLD N(umber) 100, 300, 500, 1000, 5000 NA þ Local
Altitude Altitude SQRALT m NA square root � Local
e Regional estimatec REGIONALESTIMATE NA NA Local decision NA Local
e Coordinate variablesc XCOORD, YCOORD or

other combinations
m NA Local decision NA Local

e Area indicatorc AREA NA NA NA NA Local
e Distance to sea DISTINVSEA

DISTINVSEA2
m NA Inverse distance

and inverse
distance squared

�

Traffic variables
Central road network Road length of all roads in a buffer ROADLENGTH m 25, 50, 100, 300, 500, 1000 NA þ Central
Central road network Road length of major roads in a bufferd MAJORROADLENGTH m 25, 50, 100, 300, 500, 1000 NA þ Central
Central road network Distance to the nearest road DISTINVNEARC1

DISTINVNEARC2
m�1, m�2 NA Inverse distance

and inverse
distance squared

þ Central

Central road network Distance to the nearest major roadd DISTINVMAJORC1
DISTINVMAJORC2

m�1, m�2 NA Inverse distance
and inverse
distance squared

þ Central

Local road network Traffic intensity on nearest roade TRAFNEAR Veh. day�1 NA NA þ Local
Local road network Distance to the nearest road DISTINVNEAR1

DISTINVNEAR2
m�1, m�2 NA Inverse distance

and inverse
distance squared

þ Local

Local road network Product of traffic intensity on nearest roade (INT) and
inverse of distance to the nearest road (INVDIST) and
distance squared (INVDIST2)

INTINVDIST
INTINVDIST2

Veh. day�1 m�1

Veh. day�1 m�2
NA NA þ Local

Local road network Traffic intensity on nearest major roade,f TRAFMAJOR Veh. day�1 NA NA þ Local
Local road network Distance to the nearest major roadf DISTINVMAJOR1

DISTINVMAJOR2
m�1, m�2 NA Inverse distance

and inverse
distance squared

þ Local

Local road network Product of traffic intensity on nearest major roade

(INTMAJOR) and inverse of distance to the nearest
major road (INVDIST) and distance squared (INVDIST2)f

INTMAJORINVDIST
INTMAJORINVDIST2

Veh. day�1 m�1

Veh. day�1 m�2
NA NA þ Local

Local road network Total traffic load of major roads in a buffer (sum of
(traffic intensity*length of all segments))f

TRAFMAJORLOAD Veh. day�1 m 25, 50, 100, 300, 500, 1000 NA þ Local

Local road network Total traffic load of all roads in a buffer (sum of (traffic
intensity*length of all segments))

TRAFLOAD Veh. day�1 m 25, 50, 100, 300, 500, 1000 NA þ Local

Local road network Heavy-duty traffic intensity on nearest
roade

HEAVYTRAFNEAR Veh. day�1 NA NA þ Local
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2.3. LUR model development

The average NO2 and NOx concentrations and the GIS based
values for potential predictor variables were used to develop LUR
models following a standardized approach described in the ESCAPE
exposure manual (available on www.escapeproject.eu). A work-
shop was organized for all persons developing models to further
standardize model development procedures. LUR models were
developed locally and then centrally evaluated by the ESCAPE
exposure working group for final approval.

Regression models that maximize the adjusted percentage
explained variance (R2) were developed to explain these concen-
trations, using a supervised forward stepwise procedure with a
priori defined predictor variables (Table 1). First, univariate
regression analyses were conducted for all predictor variables. The
model with the highest adjusted R2 and a slope of the pre-specified
direction was regarded as the start model. Second, to this start
model all remaining variables, regardless how high the R2 was in
univariate analyses, were added consecutively and the effect on the
adjusted R2 recorded. The predictor variable with the highest
additional increase in adjusted R2 was maintained if three criteria
were fulfilled: 1) the absolute increase in adjusted R2 was more
than 1%, 2) the coefficient conformed to the predefined direction of
effect, and 3) the direction of effect for predictors already in the
model did not change. When a variable was included, other buffer
sizes of the same variable continued to be offered to the model,
both smaller and larger buffers. When a variable enters a model
with different buffer sizes these are overlapping. To make the
model more intuitively interpretable, in the final model such a
variable was rewritten using concentric adjacent rings (or
doughnut-shaped buffers), e.g. traffic in a 50 m buffer and traffic
between 50 and 500 m (Von Klot, 2011).

The addition of variables was repeated until there were no
variables that added more than 1% to the adjusted R2 of the pre-
vious model. Finally, variables with p-values larger than 0.1 were
sequentially removed from the model as a final step.

Diagnostic tests were applied to the final models: multi-
collinearity between included variables (Variance Inflation Factors
or VIF), influential observations (Cook’s D), and heteroscedasticity,
normality and spatial autocorrelation (Moran’s I) of residuals to
assess the independence assumption. In case of a high VIF value,
specified as >3, for predictor variables included in the final model,
the variable with highest VIF value was excluded from the model
and the decrease in predictive power of the model was evaluated.
We assessed a high Cook’sD value (i.e.>1), indicating an influential
observation, because it could be caused by an (extreme) high or low
concentration of one of the site(s) or by an included predictor
variable with extreme values or many zero values. In such case, the
developed model was applied to all sites minus the site with the
high Cook’s D value and the changes in model structure (parameter
estimates and p-values of included variables, and model R2) were
evaluated. If the high Cook’s D value was caused by one of the
included predictor variables (indicated by a large change in
parameter estimate for that variable without the site), a new LUR
model was developed using all sites but without offering that
specific predictor variable to the model. We used this procedure
because we aimed at having a stable model that was not influenced
by one or more individual sites, which might limit external validity.
In addition, this was done because the default procedurewas not to
exclude data from individual monitoring sites from model devel-
opment. Data from individual sites were only excluded if the site
was an influential observation in the analyses (based on Cook’s D
analyses), when the developed model changed substantially (with
respect to model R2 and parameter estimates and p-values of
included variables) after excluding such a site, and if the site was

http://www.escapeproject.eu
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not representative for locations where study participants live (e.g.
very close to a freeway), i.e. an insight that the site should not have
been selected. This was decided based on consensus between the
local group and the ESCAPE exposure working group. For the
models for Stockholm County, Bradford, Manchester, Erfurt, Geneva
and Basque Country one sitewas excluded. A detailed description of
each of the excluded sites can be found in Online supplement 2. The
number of excluded sites was very small compared to the total
number of monitored sites (N w 1400 NOx sites).

Model performance was evaluated using a leave-one-out cross-
validation (CV) method (Brauer et al., 2003). The final model was
fitted to N � 1 sites, where the structure of the model remains
constant but parameter estimates can change, and the predicted
concentrations were compared with the actual measured concen-
trations at the left-out site. This procedure was repeated N times
and the over all level of fit (R2) between the predicted and
measured concentrations, across all sites, was then calculated as a
measure of model performance.

We finally developed models for urban background concentra-
tions including the regional and urban background sites and
background predictors (Table 1). These models were used in
ESCAPE together with traffic intensity variables as alternative
exposure models. See online supplement 3 for more details about
background models.

GIS analyses were conducted with ArcGIS. Statistical analyses
were conducted using the statistical package available in the local
study area (SAS, SPSS, STATA or R).

3. Results

3.1. Model input data

Descriptive statistics of the air pollution measurements have
been reported previously (Cyrys et al., 2012). Tables 2 and 3
describe the mean and range in concentrations for NO2 and NOx.
Substantial spatial variations were found which were larger for NOx

than for NO2. Within-area contrasts were largest for Catalunya,
Barcelona and London-Oxford and smallest for Kaunas, Gyor and
Bradford. The number of selected traffic sites differed per area, with
a range of 5 traffic sites in Umeå Region and 28 traffic sites in
Barcelona.

Local road network data with linked traffic intensity data were
available for most areas, except Heraklion, Asturias, and Basque
Country. Other local GIS data such as population or household
density were available in 28 of the 36 areas. Some buffer variables
had for a large number of sites in each area a value of zero, for
example the smaller buffers for industry, port, urban green and
semi-natural and forested areas, as well as the 25 m buffers for the
traffic variables. These variables could induce influential observa-
tions. The ESCAPE exposure working group recommended that a
variable should have at least 5 sites with a non-zero value, other-
wise it could be a priori excluded from model development by the
local team. Within the CORINE database a differentiation between
low density and high density residential land and between urban
green and semi-natural and forested areas was available. Based on
previous experience, local knowledge and after evaluation by the
ESCAPE exposure working group for standardization, it was
decided to sum both into new combined variables in some areas:
residential land variable and green space (see Tables 2 and3).

3.2. Model results

The final LURmodels are presented in Tables 2 and 3 for NO2 and
NOx respectively. Online supplement 4 describes the distribution of
the included predictor variables for the NO2 and NOx models.
Model R2 ranged from 55% to 92% (median 82%) for NO2
(Table 2, Fig. 2) and from 49% to 91% (median 78%) for NOx

(Table 3). R2 values for NO2 and NOx models were very similar
within a study area consistent with the high correlation between
the measured concentrations of both pollutants in all study areas
(>0.9) (Cyrys et al., 2012). In some areas (almost) the same
predictor variables were included in both models (e.g. Umeå
Region, Copenhagen, Kaunas, Ruhr Area, Erfurt, Lyon, Varese,
Asturias, Basque Country, Catalunya, Mid-East Spain, Granada,
Huelva, Heraklion).

Highest model R2 were found in Pavia, Mid-East Spain and Lyon
for NO2 and in Stockholm, Bradford and London-Oxford for NOx.
Lowest model R2 were found in Huelva and Basque Country. For the
Basque Country study area neither local traffic nor local land use
data were available. For the Huelva study area only limited local
traffic data were available, and in addition the model was devel-
oped on only 24 sites as models for the Andalucia study area were
separately developed for Huelva and Granada. These low model
performance results for these areas illustrate the importance of
availability of accurate local traffic data in addition to the centrally
available GIS data. In an additional evaluation of the value of traffic
intensity data, LUR models were centrally developed for each area
with and without offering local traffic intensity data. LUR models
with local traffic intensity data had R2 values which were on
average 10% higher than models without local traffic intensity data.
Online supplement 5 shows the R2 values for both models for each
study area.

Fig. 2 shows the distribution of NO2 model R2 values for all
areas, and for the regions North, West-Central and South. It shows
that on average model R2 values are highest in North and lowest
in South, but the range in R2 values is considerable within a
region.

The number of included predictor variables ranged from 2 to 7
(average number w4) for both NO2 and NOx. All the NO2 and NOx

models included one or more traffic variables such as traffic in-
tensity on nearby roads, distance to nearby roads and traffic in-
tensity in a small buffer around the site. Fig. 3 shows the frequency
of categories of predictor variables in NO2 LUR models over all
study areas. In the 36 NO2 LUR models 137 different predictor
variables were included, of which 86 were traffic variables (w63%).
The category of traffic intensity within 100 m variables was the
most common traffic variable (N ¼ 22). In addition, several models
included traffic variables with a 1000 m buffer, such as the total
traffic load on all roads or major roads or the length of all roads.
Most models further included population or household density. In
the models covering the Netherlands and Belgium a regional esti-
mate was included to model (large-scale) spatial trends that could
not be explained by the other potential predictor variables (that
had a maximum buffer size of 5000 m) as the study area was
w200 � 300 km. The regional estimate was based on inverse dis-
tance weighted interpolation of regional background sites con-
centrations. For the models for Mid-East Spain, where a combined
model was developed for Albacete and Asturias, an indicator vari-
able for region was included.

Formost areas the CV R2 was less than 10% lower than themodel
R2. For a few areas the difference was larger than 10% (Tables 2 and
3). For example, in Munich the NO2 model R2 and CV R2 were 86%
and 67%, respectively. This was largely due to two sites as without
these two sites the cross-validation R2 increased to 76% illustrating
that one or a few sites can influence the cross-validation R2 values.
Because the sites were representative sites they were not excluded
from model development.

The spatial autocorrelation in the residuals evaluated with the
Moran’s I value was generally small and non-significant (Tables 2
and 3).



Table 2
Description of developed LUR models for NO2, including descriptive statistics of the concentrations. Order of study areas is from North to South.

Study area LUR modela R2 of
model

R2 cross
validation

RMSE (cross
validation)
(mg m�3)

Number
of sitesb

Moran’s I
(p-value)

Measured
concentration
(mg m�3)c

Oslo, Norway 2.43 þ 6.52E-2*MAJORROADLENGTH_50 þ 2.85E-4*TRAFNEAR þ 7.30E-
7*HEAVYTRAFMAJORLOAD_500 þ 9.34E-2*POP_100 þ 2.03E-4*POP_100_5000

76% 64% 7.9 39 �0.03 (0.48) 23.2 [6.7 � 59.8]

Umeå Region, Sweden 3.51 þ 0.26*MAJORROADLENGTH_25 þ 2.22E-7*TRAFLOAD_500 87% 83% 2.8 40 �0.08 (0.43) 9.3 [1.5 � 35.8]
Stockholm County, Sweden 5.82 þ 1.08E-3*ROADLENGTH_500 þ 4.01E-4*TRAFNEAR þ 5.39E-3* POP_100 82% 78% 3.5 39 �0.23 (0.00) 15.5 [2.1 � 33.0]
Helsinki and Turku, Finland 7.61 þ 1.18E-5*TRAFLOAD_25 þ 3.43E-8*TRAFLOAD_25_1000 þ 0.04*ROADLENGTH_

25 þ 1.24E-3*ROADLENGTH_25_300 � 9.18E-5*URBGREEN_500d
83% 75% 3.4 40 0.07 (0.19) 18.9 [6.1 � 40.8]

Copenhagen, Denmark 10.64 þ 3.15E-7*TRAFLOAD_300 þ 2.87E-7*PORT_5000 þ 488.80*DISTINVMAJOR2 �
3.00E-6*GREEN_1000d

88% 83% 3.9 41 �0.06(0.57) 17.8 [6.3 � 50.1]

Kaunas, Lithuania 8.18 þ 76.64*DISTINVMAJOR1 þ 3.95E-4*POP_1000 þ 2.28E-3* HEAVYTRAFNEAR 72% 63% 3.6 40 �0.03 (0.25) 16.7 [8.3 � 36.2]
Bradford, UK 16.52 þ 7.81E-5*BUILDINGS_300 þ 5.86E-6*TRAFLOAD_25 þ 3.20E-8*TRAFLOAD_

25_1000 � 1.09E-4*NATURAL_300d þ 7.43E-4*HEAVYTRAFMAJOR
83% 80% 2.4 40 �0.07 (0.20) 25.3 [16.7 � 36.7]

Manchester, UK 20.40 þ 1.87E-2*HEAVYINTINVDIST þ 3.39E-7*INDUSTRY_5000 þ 1.20E-5*
HDRES_500 � 1.89E-6*NATURAL_1000 þ 1.61E-3*MAJORROADLENGTH_300 þ
4.37E-2*ROADLENGTH_25

83% 75% 2.6 39 �0.006 (0.50) 25.6 [17.0 � 37.1]

London, Oxford, UK 8.51 þ 7.30E-6*TRAFMAJORLOAD_50 þ 1.10E-3*ROADLENGTH_500 þ 2.00E-
7*HLDRES_5000

89% 87% 6.6 40 �0.009 (0.71) 37.9 [7.3 � 102.7]

Netherlands and Belgium �7.80 þ 1.18*REGIONALESTIMATE þ 2.30E-5*POP_5000 þ 2.46E-6*TRAFLOAD_
50 þ 1.06E-4*ROADLENGTH_1000 þ 9.84E-5*HEAVYTRAFLOAD_25 þ 12.19*
DISTINVNEARC1 þ 4.47E-7*HEAVYTRAFLOAD_25_500

86% 81% 5.1 80 �0.143 (0.09) 30.9 [12.8 � 61.5]

Ruhr Area, Germany 19.66 þ 3.48E-7*INDUSTRY_5000 þ 2.24E-2*POP_100 þ 4.10E-6*PORT_5000 þ
1.31E-6*TRAFLOAD_100

89% 84% 4.3 40 �0.18 (0.08) 33.2 [20.2 � 58.4]

Erfurt, Germany 11.11 þ 2.44E-3*INTMAJORINVDIST þ 9.47E-7*TRAFLOAD_100 þ 3.81E-
8*TRAFLOAD_100_1000

89% 87% 2.1 39 0.01 (0.16) 18.6 [11.0 � 33.4]

Munich-Augsburg, Germany 7.43 þ 1.98E-6*TRAFLOAD_50 þ 1.35E-3*INTMAJORINVDIST þ 2.37E-
2*ROADLENGTH_50 þ 1.47E-5*POP_5000 þ 4.15E-2*MAJORROADLENGTH_50d þ
9.85*HLDRES_500d

86% 67% 5.5 40 �0.04 (0.86) 26.8 [13.6 � 53.5]

Vorarlberg, Austria 8.60 þ 4.16E-3*ROADLENGTH_300 þ 1.02E-5*TRAFLOAD_25 � 3.56E-7*NATURAL_
5000 þ 2.44E-5*INDUSTRY_1000

74% 66% 4.2 40 0.03 (0.29) 22.6 [7.4 � 39.7]

Paris, France 25.86 þ 4.85E-7*TRAFLOAD_300 þ 0.26*MAJORROADLENGTH_25 � 5.60E-
7*NATURAL_5000

77% 67% 11.6 40 �0.05 (0.71) 39.8 [6.9 � 96.8]

Grenoble, France 8.99 þ 2.87E-6*HEAVYTRAFLOAD_300 þ 5.18E-7*HEAVYTRAFLOAD_300_1000 þ
95.96*DISTINVMAJOR1 þ 1.39E-3*ROADLENGTH_300

83% 78% 4.8 40 �0.08 (0.82) 27.2 [5.5 � 53.2]

Lyon, France 6.64 þ 5.41E-2*ROADLENGTH_50 þ 3.04E-4*TRAFMAJOR þ 2.85E-6*HDRES_5000 þ
0.16*MAJORROADLENGTH_25

90% 72% 8.7 40 �0.06 (0.80) 35.0 [7.3 � 88.0]

Marseille, France 7.09 þ 0.19*MAJORROADLENGTH_25 þ 3.32E-4*ROADLENGTH_1000 þ
83.31*DISTINVMAJOR1

59% 46% 10.7 40 �0.06 (0.87) 36.1 [10.0 � 92.8]

Gyor, Hungary 7.36 þ 7.83E-8*TRAFLOAD_1000 þ 5.66E-3*INDUSTRY_5000 þ 1.25E-
2*MAJORROADLENGTH_100

75% 69% 3.3 40 �0.04 (0.84) 16.7 [9.2 � 37.4]

Basel, Switzerland 54.35 þ 1.23E-2*INTMAJORINVDIST þ 1.88E-5*HLDRES_500d þ 5.33E-
7*HLDRES_500_5000d � 3.96*SQRALT

67% 58% 4.8 40 �0.05 (0.45) 31.0 [16.0 � 47.8]

Geneva, Switzerland 21.32 þ 1.14E-5*TRAFLOAD_25 þ 3.42E-7*TRAFLOAD_25_300 þ 2.35E-2*BUILDINGS_
100 � 4.44E-7*NATURAL_5000d þ 2.51E-
8*TRAFMAJORLOAD_1000

87% 81% 3.7 40 0.002 (0.25) 29.3 [16.1 � 51.3]

Lugano, Switzerland 39.67 þ 5.45E-6*TRAFLOAD_50 þ 4.95E-8*TRAFLOAD_50_1000 þ 4.31E-
4*TRAFMAJOR � 1.50*SQRALT þ 4.33E-3*INTINVDIST

87% 82% 3.5 42 �0.04 (0.51) 28.6 [12.2 � 59.1]

Turin, Italy 19.95 þ 7.79E-8*TRAFLOAD_1000 þ 3.53E-2*MAJORROADLENGTH_100 þ 5.63E-
5*HLDRES_300 � 4.46E-7*NATURAL_5000

78% 70% 7.7 40 �0.08 (0.10) 53.3 [15.6 � 83.7]

Varese, Italy 179.70 � 4.05E-5*NATURAL_1000 þ 269.00*DISTINVMAJORC2 e 6.45*SQRALT 72% 61% 10.6 20 �0.10 (0.18) 36.5 [17.8 � 77.7]
Pavia, Italy �16.98 þ 0.13*MAJORROADLENGTH_50 þ 3.52E-2*ROADLENGTH_50 þ

3.72E-3*HHOLD_300
92% 87% 3.3 20 �0.05 (0.99) 25.9 [15.7 � 53.4]

Verona, Italy �31.23 þ 3.64E-5*TRAFLOAD_100 þ 4.37E-6*HLDRES_5000 þ 1.07E-3*
MAJORROADLENGTH_1000

64% 55% 10.8 40 �0.05 (0.33) 41.6 [16.3 � 100.1]

(continued on next page)
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Table 2 (continued )

Study area LUR modela R2 of
model

R2 cross
validation

RMSE (cross
validation)
(mg m�3)

Number
of sitesb

Moran’s I
(p-value)

Measured
concentration
(mg m�3)c

Rome, Italy 12.88 þ 6.00E-3*POP_100 þ 3.28E-4*ROADLENGTH_1000 þ 107.78*
DISTINVNEAR2 þ 1.14E-6*INDUSTRY_5000 � 1.01E-5*URBGREEN_1000 þ
4.12E-6*TRAFLOAD_50 þ 1.51E-2*MAJORROADLENGTH_100

87% 76% 6.8 40 0.034 (0.17) 42.6 [13.6 � 72.6]

Asturias, Spain 8.13 þ 2.72E-4*HHOLD_300 þ 0.28*MAJORROADLENGTH_25 � 4519.10*
DISTINVSEA1

75% 69% 9.2 40 �0.11 (0.09) 32.0 [8.6 � 76.4]

Basque Country:
Bilbao-San
Sebastian, Spain

6.66 þ 3.24E-4*ROADLENGTH_1000 þ 0.13*MAJORROADLENGTH_25 þ
1.47E-6*LDRES_5000

58% 50% 6.5 39 �0.07 (0.72) 25.6 [6.8 � 74.3]

Barcelona, Spain 3.16 þ 6.26E-3*INTINVDIST1 þ 1.18E-4*HDRES_300 þ 992.09*
DISTINVMAJOR2 þ 3.51E-4*ROADLENGTH_1000

75% 68% 11.6 40 �0.03 (0.98) 57.7 [13.8 � 109.0]

Catalunya, Spain 13.52 þ 6.09E-4*ROADLENGTH_1000 þ 9.97E-6*TRAFMAJORLOAD_25 �
5.54E-7*NATURAL_5000

71% 69% 12.0 80 �0.01 (0.95) 47.8 [12.2 � 109.0]

Mid-East Spain:
Albacete-Valencia,
Spain

�16.00 þ 3.15E-5*HDRES_500 þ 5.66E-7*HHOLD_5000 þ 1271.43*
DISTINVMAJOR2 þ 9.07*AREA

90% 87% 5.2 38 0.03 (0.37) 26.1 [1.9 � 75.5]

Granada, Spain 6.70 þ 4.89E-5*HHOLD_1000 þ 36.97*DISTINVMAJORC1 82% 77% 11.2 14 �0.03 (0.81) 34.8 [12.4 � 89.0]
Huelva, Spain 3.84 þ 5.51E-3*TRAFMAJOR þ 5.22E-4*HDRES_100 �

1.51E9*DISTINVSEA2
55% 31% 7.0 24 �0.14 (0.10) 21.9 [8.4 � 43.4]

Athens, Greece 15.46 þ 2.34E-6*TRAFMAJORLOAD_25 þ 0.012*ROADLENGTH_100 þ 0.001*
HHOLD_500 þ 6.24E-5*INDUSTRY_300 � 2.66E-5*NATURAL_1000

70% 55% 8.1 40 �0.09 (0.10) 36.5 [13.3 � 71.0]

Heraklion, Crete 7.39 þ 35.14*DISTINVMAJORC1 þ 1.62E-5*PORT_1000 þ 1.65E-
2*ROADLENGTH_50

62% 49% 5.0 40 0.007 (0.84) 15.3 [5.3 � 34.3]

a See for detailed explanation of the variable names in Table 1. Variables with _X (e.g. POP_100) are buffers with _X indicating the radius of the buffer in metres. The following predictors were derived for all sites: the surface
area (m2) of high density residential land (HDRES_X), low density residential land (LDRES_X), all residential land (HLDRES_X), industry (INDUSTRY_X), port (PORT_X), urban green space (URBGREEN_X), natural land (NAT-
URAL_X), urban green and natural land combined (GREEN_X), water (WATER_X), the number (N) or surface area (m2) of buildings (BUILDINGS_X), population (N) (POP_X) or number of households (HHOLD_X), the square root of
altitude (SQRALT), a regional background concentration estimate (mg m�3) (REGIONAL ESTIMATE), X-coordinate (XCOORD), Y-coordinate (YCOORD), area indicator (AREA), inverse/inverse distance squared to sea (DISTINVSEA,
DISTINVSEA2), total length (m) of all road and all major road segments (ROADLENGTH_X, MAJORROADLENGTH_X), inverse distance (m�1) and inverse distance squared (m�2) to the nearest road of the central road network
(DISTINVNEARC1, DISTINVNEARC2) and the nearest major road in the central road network (DISTINVMAJORC1, DISTINVMAJORC2), traffic intensity on the nearest road (TRAFNEAR) and nearest major road (TRAFMAJOR), heavy
traffic intensity on the nearest (HEAVYTRAFNEAR) and the nearest major road (HEAVYTRAFMAJOR), inverse distance (m�1) and inverse distance squared (m�2) to the nearest road of the local road network (DISTINVNEAR1,
DISTINVNEAR2) and the nearest major road in the local road network (DISTINVMAJOR1, DISTINVMAJOR2), the product of inverse/inverse distance squared to the nearest road and the traffic intensity on this road
(vehicles day�1 m�1/vehicles day�1 m�2) (INTINVDIST, INTINVDIST2), equivalent for major roads (INTMAJORINVDIST, INTMAJORINVDIST2), and for heavy traffic (HEAVYINTINVDIST, HEAVYINTINVDIST2), the sum of (total
intensity � length of all road segments) within a buffer (vehicles day�1 m) for all roads (TRAFLOAD_X), for major roads (TRAFMAJORLOAD_X), for heavy traffic (HEAVYTRAFLOAD_X) and heavy traffic on major roads
(HEAVYTRAFMAJORLOAD_X). See Online supplement 4 for description of distributions of included variables.

b Number of sites that have been used for model development.
c Mean [min � max].
d Local data.
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Table 3
Description of developed LUR models for NOx, including descriptive statistics of the concentrations. Order of study areas is from North to South.

Study area LUR modela R2 of
model

R2 cross
validation

RMSE (cross
validation)
(mg m�3)

Number
of sitesb

Moran’s I
(p-value)

Measured
concentration
(mg m�3)c

Oslo, Norway 9.23 þ 2.02E-5*HEAVYTRAFMAJORLOAD_100 þ 0.24*MAJORROADLENGTH_50 þ 0.14*POP_100 þ
3.42E-4*POP_100_5000

76% 67% 15.3 39 �0.03 (0.18) 47.1 [14.2 � 116.8]

Umeå Region, Sweden 4.79 þ 0.89*MAJORROADLENGTH_25 þ 4.96E-7*TRAFLOAD_500 87% 82% 7.9 40 �0.13 (0.12) 18.9 [2.3 � 95.9]
Stockholm County,

Sweden
11.09 þ 1.77E-2*POP_100 þ 2.92E-4* HDRES_100 þ 1.32E-3*TRAFNEAR 83% 79% 8.2 39 �0.11 (0.20) 28.7 [2.5 � 78.7]

Helsinki and Turku,
Finland

12.56 þ 3.46E-5*TRAFLOAD_25 þ 4.92E-8*TRAFLOAD_25_1000 þ 1.70E-2*ROADLENGTH_100 �
5.58E-5*URBGREEN_1000d þ 2.54E-3*HHOLD_300

85% 74% 7.8 40 0.09 (0.14) 30.6 [8.6 � 94.7]

Copenhagen, Denmark 13.88 þ 6.18E-7*TRAFLOAD_300 þ 1864.86*DISTINVMAJOR2 � 7.42E-6*GREEN_1000d þ 3.82E-
7*PORT_5000

83% 73% 11.5 41 �0.05 (0.72) 30.3 [9.0 � 123.6]

Kaunas, Lithuania 9.51 þ 7.59E-4*POP_1000 þ 225.99*DISTINVMAJOR1 þ 5.07E-3*HEAVYTRAFNEAR 63% 52% 11.2 40 �0.06 (0.82) 28.8 [11.3 � 89.6]
Bradford, UK 19.76 þ 1.68E-5*TRAFLOAD_25 þ 1.90E-6*TRAFLOAD_25_100 þ 2.74E-4*BUILDINGS_300 �

2.48E-3*NATURAL_100d þ 1.92E-4*TRAFMAJOR
90% 88% 4.9 40 �0.11 (0.02) 43.7 [22.4 � 79.9]

Manchester, UK �1.47E2 þ 1.86E2*DISTINVMAJOR1 þ 3.36E-4*ROADLENGTH_1000 þ 5.38E-7*TRAFLOAD_
100 þ 4.38E-4*YCOORD

83% 78% 5.6 39 0.02 (0.16) 44.9 [27.4 � 74.3]

London, Oxford, UK 5.12 þ 2.29E-5*TRAFLOAD_50 þ 7.17E-3*ROADLENGTH_300 þ 2.60E-7*HLDRES_5000 91% 88% 16.2 40 �0.009 (0.78) 69.3 [18.8 � 257.4]
Netherlands and Belgium 3.25 þ 0.74*REGIONALESTIMATE þ 4.22E-6*TRAFLOAD_50 þ 6.36E-4*POP_1000 þ 2.39E-

6*HEAVYTRAFLOAD_500 þ 71.65*DISTINVMAJOR1 þ 0.21*MAJORROADLENGTH_25
87% 82% 11.2 80 �0.16 (0.06) 51.8 [17.5 � 130.8]

Ruhr Area, Germany 23.88 þ 8.54E-7*INDUSTRY_5000 þ 6.35E-2*POP_100 þ 1.23E-5*PORT_5000 þ 8.06E-
6*TRAFLOAD_50

88% 81% 13.6 40 �0.03 (0.95) 60.0 [26.9 � 135.7]

Erfurt, Germany 16.35 þ 5.81E-3*INTMAJORINVDIST þ 1.67E-6*TRAFLOAD_100 þ 5.31E-8*TRAFLOAD_100_1000 87% 84% 4.3 39 �0.02 (0.95) 28.8 [15.6 � 61.8]
Munich-Augsburg,

Germany
13.34 þ 3.90E-6*TRAFLOAD_50 þ 8.97E-2*MAJORROADLENGTH_50d þ 3.81E-3*INTMAJORINVDIST þ
2.46E-8*TRAFLOAD_1000 þ 5.11E-2*ROADLENGTH_50 þ 19.50*HLDRES_1000d

88% 76% 9.4 40 �0.05 (0.65) 46.9 [23.7 � 95.2]

Vorarlberg, Austria 35.54 þ 0.47*MAJORROADLENGTH_25 þ 0.12*POP_100 � 6.58E-7*NATURAL_5000 60% 51% 12.7 40 �0.04 (0.72) 42.7 [14.6 � 91.4]
Paris, France 34.48 þ 0.89*MAJORROADLENGTH_25 þ 1.17E-6*TRAFMAJORLOAD_300 75% 67% 31.6 40 �0.06 (0.77) 80.3 [12.7 � 248.3]
Grenoble, France 8.10 þ 9.80E-7*HEAVYTRAFMAJORLOAD_1000 þ 9.97E-3*HEAVYTRAFNEAR þ 3.72E-3*ROADLENGTH_

300 þ 156.66*DISTINVMAJOR1
82% 74% 11.2 40 �0.07 (0.76) 48.2 [6.5 � 116.2]

Lyon, France �1.33 þ 7.82E-4*TRAFMAJOR þ 6.11E-6*HDRES_5000 þ 0.43*MAJORROADLENGTH_25 þ
0.11*ROADLENGTH_50

75% 65% 22.5 40 �0.08 (0.88) 61.7 [6.5 � 199.2]

Marseille, France 8.18 þ 0.52*MAJORROADLENGTH_25 þ 259.49*DISTINVMAJOR1 þ 1.92E-3*ROADLENGTH_500 53% 39% 31.6 40 �0.04 (0.65) 70.1 [11.9 � 266.1]
Gyor, Hungary 6.95 þ 9.59E-2*MAJORROADLENGTH_50 þ 0.61*INDUSTRY_500 þ 5.59E-3*ROADLENGTH_300 �

0.90*URBGREEN_300
74% 64% 10.4 40 �0.11 (0.39) 32.5 [13.4 � 86.3]

Basel, Switzerland �80.41 þ 2.75E-2*INTMAJORINVDIST þ 5.25E-5*HLDRES_500d þ 1.84E-6*HLDRES_500_5000d 61% 52% 12.0 40 �0.04 (0.71) 53.1 [21.6 � 95.7]
Geneva, Switzerland �23.40 þ 3.16E-5*TRAFLOAD_25 þ 7.61E-7*TRAFLOAD_25_300 þ 0.16*ROADLENGTH_25 þ

0.82*BUILDINGS_100 þ 1.34E-2* HLDRES_5000d
81% 73% 9.1 40 0.003 (0.23) 55.9 [22.1 � 108.6]

Lugano, Switzerland 75.6 6 þ 2.82E-5*TRAFLOAD_25 þ 9.11E-8*TRAFLOAD_25_1000 þ 9.96E-4*TRAFMAJOR �
3.22*SQRALT þ 2.24E-4*HEAVYTRAFLOAD_100

87% 82% 7.4 42 �0.05 (0.28) 47.8 [21.2 � 116.4]

Turin, Italy 32.86 þ 1.60E-5*TRAFLOAD_50 þ 1.50E-4*HLDRES_300 þ 7.99E-8*TRAFLOAD_50_1000 78% 72% 17.0 40 �0.05 (0.36) 101.2 [22.8 � 101.2]
Varese, Italy 398.00 � 9.64E-3*NATURAL_1000 þ 816.10*DISTINVMAJORC2 � 14.73*SQRALT 74% 52% 29.8 20 �0.12 (0.09) 70.8 [29.3 � 190.5]
Pavia, Italy 25.87 þ 0.32*MAJORROADLENGTH_50 þ 7.28E-2*ROADLENGTH_50 88% 80% 9.6 20 �0.08 (0.46) 50.9 [29.5 � 117.9]
Verona, Italy 57.65 þ 8.61E-5*TRAFLOAD_100 þ 1.72E-2*TRAFNEAR 64% 54% 32.3 40 �0.02 (0.91) 91.8 [33.1 � 284.4]
Rome, Italy 82.21 þ 4.28E-4*LDRES_100 þ 2.97E-2*POP_100 þ 4.43E-6*TRAFLOAD_100 � 5.92*SQRALT �

8.43E-5*NATURAL_1000 � 3.01E-6*NATURAL_1000_5000 þ 0.28*ROADLENGTH_25
80% 69% 15.1 40 0.006 (0.48) 72.7 [25.1 � 146.0]

Asturias, Spain 5.58 þ 7.16E-4*HHOLD_300 þ 0.81*MAJORROADLENGTH_25 � 10837.82*DISTINVSEA1 69% 62% 28.3 40 �0.11 (0.13) 69.7 [16.2 � 220.3]
Basque Country:

Bilbao-San
Sebastian, Spain

14.56 þ 6.26E-4*ROADLENGTH_1000 þ 0.26*MAJORROADLENGTH_25 þ 2.60E-6*LDRES_5000 49% 39% 14.8 39 �0.08 (0.66) 52.7 [14.3 � 224.9]

Barcelona, Spain 32.85 þ 2.55E-4*HDRES_300 þ 2815.14*DISTINVMAJOR2 þ 3.87E-5*TRAFLOAD_25 73% 65% 27.7 40 0.02 (0.26) 101.3 [21.0 � 236.4]
Catalunya, Spain 22.56 þ 0.10*ROADLENGTH_1000 þ 3.06E-5*TRAFMAJORLOAD_25 � 9.76E-7*NATURAL_5000 69% 66% 26.8 80 �0.03 (0.72) 85.5 [18.2 � 236.4]
Mid-East Spain: Albacete-

Valencia, Spain
�32.39 þ 5.40E-5*HDRES_500 þ 9.83E-7*HHOLD_5000 þ 2988.61*DISTINVMAJOR2 þ 16.12*AREA 88% 84% 11.0 38 0.02 (0.46) 42.7 [0.6 � 148.6]

(continued on next page)
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Table 3 (continued )

Study area LUR modela R2 of
model

R2 cross
validation

RMSE (cross
validation)
(mg m�3)

Number
of sitesb

Moran’s I
(p-value)

Measured
concentration
(mg m�3)c

Granada, Spain 1.41 þ 1.00E-4*HHOLD_1000 þ 84.69*DISTINVMAJORC1 78% 62% 30.3 14 �0.29 (0.29) 59.7 [20.6 � 195.9]
Huelva, Spain 6.84 þ 9.12E-3*TRAFMAJOR þ 8.53E-4*HDRES_100 � 2.73E9*DISTINVSEA2 56% 31% 11.5 24 �0.15 (0.08) 33.8 [13.3 � 71.3]
Athens, Greece 26.65 þ 1.07E-5*TRAFMAJORLOAD_25 þ 0.001*POP_500 � 2.09*SQRALT þ 0.04*ROADLENGTH_100 þ

0.001*INDUSTRY_100
67% 46% 30.1 40 �0.15 (0.005) 77.9 [21.4 � 230.1]

Heraklion, Crete 10.57 þ 56.13*DISTINVMAJORC1 þ 6.42E-5*PORT_500 þ 2.48E-2*ROADLENGTH_50 62% 39% 8.1 40 �0.04 (0.96) 21.5 [8.6 � 52.8]

a See for detailed explanation of the variable names in Table 1. Variables with _X (e.g. POP_100) are buffers with _X indicating the radius of the buffer in meters. The following predictors were derived for all sites: the surface
area (m2) of high density residential land (HDRES_X), low density residential land (LDRES_X), all residential land (HLDRES_X), industry (INDUSTRY_X), port (PORT_X), urban green space (URBGREEN_X), natural land (NAT-
URAL_X), urban green and natural land combined (GREEN_X), water (WATER_X), the number (N) or surface area (m2) of buildings (BUILDINGS_X), population (N) (POP_X) or number of households (HHOLD_X), the square root of
altitude (SQRALT), a regional background concentration estimate (mg m�3) (REGIONAL ESTIMATE), X-coordinate (XCOORD), Y-coordinate (YCOORD), area indicator (AREA), inverse/inverse distance squared to sea (DISTINVSEA,
DISTINVSEA2), total length (m) of all road and all major road segments (ROADLENGTH_X, MAJORROADLENGTH_X), inverse distance (m�1) and inverse distance squared (m�2) to the nearest road of the central road network
(DISTINVNEARC1, DISTINVNEARC2) and the nearest major road in the central road network (DISTINVMAJORC1, DISTINVMAJORC2), traffic intensity on the nearest road (TRAFNEAR) and nearest major road (TRAFMAJOR), heavy
traffic intensity on the nearest (HEAVYTRAFNEAR) and the nearest major road (HEAVYTRAFMAJOR), inverse distance (m�1) and inverse distance squared (m�2) to the nearest road of the local road network (DISTINVNEAR1,
DISTINVNEAR2) and the nearest major road in the local road network (DISTINVMAJOR1, DISTINVMAJOR2), the product of inverse/inverse distance squared to the nearest road and the traffic intensity on this road
(vehicles day�1 m�1/vehicles day�1 m�2) (INTINVDIST, INTINVDIST2), equivalent for major roads (INTMAJORINVDIST, INTMAJORINVDIST2), and for heavy traffic (HEAVYINTINVDIST, HEAVYINTINVDIST2), the sum of (total
intensity � length of all road segments) within a buffer (vehicles day�1 m) for all roads (TRAFLOAD_X), for major roads (TRAFMAJORLOAD_X), for heavy traffic (HEAVYTRAFLOAD_X) and heavy traffic on major roads
(HEAVYTRAFMAJORLOAD_X). See Online supplement 4 for description of distributions of included variables.

b Number of sites that have been used for model development.
c Mean [min � max].
d Local data.
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and complexity of the study area, the completeness and quality of
predictor variables and quality of geo-coding. Substantial variation
in measured concentrations was found for both NO2 and NOx in all
areas. The on-average lower R2 in Southern-Europe could be due to
any of these factors, except concentration variability. An additional
analysis showed that LUR models with local traffic intensity data
had R2 values which were on average 10% higher than models
without local traffic intensity data. In several of the South-
European study areas, traffic intensity data were missing or
available on a limited scale only. Probably the more compact
structure of cities in the South, resulting in high concentrations in
canyon-like streets with moderate traffic intensity has contributed
to the lower R2 as no areas had data on street configuration
available.

Models in the 36 study areas differed in the variables that were
included in the models and/or the buffer size or type of road. This
resulted from the decision to estimate the best predictionmodel for
each individual study area. There are however also important
similarities between the models. Fig. 3 showed that traffic variables
were more often included than the background predictor variables
in the NO2 LUR models. All models contained a traffic variable.
Traffic intensity of buffers smaller than 100 m was the most com-
mon traffic variable. All models contained a traffic variable
describing small-scale variation, in line with studies that showed
that NO2 concentrations have a large decline in the first 100e200m
near high traffic intensity roads (Rijnders et al., 2001; Gilbert et al.,
2003). In addition, several models included traffic variables with a
1000 m buffer, such as the total traffic load on all roads or major
roads or the length of all roads, indicating a larger scale of influence,
i.e. representing larger-area traffic density (Su et al., 2009). Popu-
lation/address density was another common variable, consistent
with well documented urbanerural differences related to a variety
of sources including traffic and home heating (Brauer et al., 2003).
Even though industry is an important emission source of NO2 few
models contained industry variables. This is mainly a result of the
non-specificity of the CORINE industry variables which does not
distinguish type of industry and the selection of monitoring
locations.

Direct comparison of values for regression coefficients of similar
predictor variables in LUR models of different areas is difficult as
the coefficient depends on the other included predictors. In addi-
tion, GIS predictor data can also differ between study areas with
regards to accuracy and completeness. For example, CORINE data
are European wide data but are based on national data, so can have
differences between countries.

4.2. Modelling experiences

Because within the ESCAPE project LUR models have been
developed in so many areas using the standardized approach
several lessons have been learned. We used a standardized and
common site selection procedure in all study areas aiming at rep-
resenting the anticipated spatial variation of air pollution in the
included cohort studies, purposely over representing street sites
(Cyrys et al., 2012). If the range inmeasured concentrations is small,
then this complicates the development of good LUR models. It is
therefore important that the locations of the monitoring sites
represent a large diversity of potential sources of air pollution
variability such as traffic intensity, population density, industry, etc.
It is also important to include thewhole range of each characteristic
when selecting sites, and not include only the busiest road for
example, because this occasionally introduced an influential
observation during model development. Predictor variables with a
small variation (e.g. many zero values) also were found to be
problematic.
The aim was to standardize model development in all study
areas. It was however not possible due to differences in availability
to standardize the used predictor variables in all areas. This illus-
trates the need to make European-wide GIS data available and have
EU-wide standards for collecting and standardizing these data.
Central predictor variables were available for almost all areas, but
local predictors differed per study area. Models often included a
mixture of central and local predictor variables.

There is no universal standard method for developing LUR
models. Within the ESCAPE project we did not use an automatic
variable selection method but used a supervised forward stepwise
procedure. The procedure included a priori defined predictor var-
iables and a priori defined directions of effect for all predictor
variables which were based on basic physical principles. The
advantage of using a priori defined directions of effect is that a
model could be applied to other study areas and also limits risk of
overfitting. Basagaña et al. (2012) recently compared the perfor-
mance of the ESCAPE procedure, a procedure based upon maxi-
mizing the cross-validation R2 and a deletionesubstitution
algorithm in hold-out validation. The first two procedures had
higher R2 values than the deletionesubstitution algorithm but the
differences were very small (difference between first two pro-
cedures always <5%, difference with deletionesubstitution algo-
rithm with two other procedures <15% when n ¼> 40).

4.3. Previous LUR studies

In several of the ESCAPE study areas LUR models using purpose
designed monitoring campaigns have been developed in previous
studies for cohort exposure assessment (Table 4). The percentage of
explained variance of the ESCAPE LUR models is in most areas
similar (or higher) compared to these previous LUR models.

The strength of the ESCAPE project is that a common exposure
assessment approach was used in all study areas. Two previous
multicenter studies also used a common exposure assessment
approach: the SAVIAH project (Briggs et al., 1997) and the TRAPCA
project (Hoek et al., 2001; Hochadel et al., 2006; Morgenstern et al.,
2007). Within the SAVIAH project, in three cities (Amsterdam,
Huddersfield and Prague) NO2 concentrations were measured at
80 sites. The final LUR models explained between 61% and 72% of
the observed variability in concentrations between sites (Briggs
et al., 1997). In the TRAPCA project NO2 concentrations were
measured at 40 sites in the Netherlands, Munich, Stockholm and
Ruhr Area. The LUR models predicted 51e90% of the variation in
measured concentrations (Hoek et al., 2001; Hochadel et al., 2006;
Morgenstern et al., 2007).

Some of the ESCAPE LUR models have higher percentages of
explained variance in concentrations than in previous studies. The
main reason is probably that within the ESCAPE study areas more
and better GIS predictor variables were available compared with
the SAVIAH and TRAPCA project. In recent years the spatial reso-
lution of GIS data has improved considerably and traffic intensity
data (linked to digital road networks) become increasingly avail-
able, while in previous studies proxies such as road length were
used. Missing or inaccurate traffic variables, especially, limit the
ability to account for the very local scale concentration differences
between monitoring sites.

4.4. Limitations

Model performance was evaluated using a leave-one-out cross-
validation method because the total number of sites was too small
to have a separate test validation dataset of sufficient size. The R2

values from the cross-validations were in general only slightly
lower (i.e. <10%) than the R2 values from the LUR models,



Table 4
Description of previously developed NOx LUR models in ESCAPE study areas (using purpose designed monitoring campaigns).

Area Pollutant Number
of sites

Year Measurements Model R2 Reference

Oslo, Norway NO2 80 2005 Ogawa badges 77% Madsen et al., 2007
Oslo, Norway NOx 80 2005 Ogawa badges 73% Madsen et al., 2007
Oslo, Norway NO2 69 2008 Ogawa badges 74% Madsen et al., 2011
Oslo, Norway NOx 69 2008 Ogawa badges 69% Madsen et al., 2011
Stockholm, Sweden NO2 40 1999e2000 Palmes tubes 85% Hoek et al., 2001
The Netherlands NO2 40 1999e2000 Palmes tubes 85% Hoek et al., 2001
The Netherlands NO2 35 2007 Ogawa badges 86% Eeftens et al., 2011
Munich, Germany NO2 34 1996e1998 Palmes tubes 77% Carr et al., 2002
Munich, Germanya NO2 40 1999e2000 Palmes tubes 62% Hoek et al., 2001
Munich, Germanyb NO2 40 1999e2000 Palmes tubes 51% Morgenstern et al., 2007
Ruhr Area, Germany NO2 40 2002e2003 Palmes tubes 90% Hochadel et al., 2006
Rome, Italy NO2 68 1995e1996 Palmes tubes 69% Rosenlund et al., 2008
Sabadell, Spain NO2 57 2005e2006 Ogawa and

Radiello badges
68% Aguilera et al., 2008

Sabadell, Spain NOx 57 2005e2006 Ogawa and
Radiello badges

69% Aguilera et al., 2008

Asturias, Spain NO2 67 2006e2007 Radiello badges 52% Fernández-Somoano et al., 2011
Valencia, Spain NO2 93 2004e2005 Radiello badges 81% Iñiguez et al., 2009

a Model restricted to Munich city (size study area w310 km2).
b Model covering whole Munich metropolitan area (size study area w1200 km2).
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documenting the robustness of the models. Further support for the
usefulness of these LUR models to the ESCAPE cohorts is that the
root mean squared error was low compared to the range in
measured concentrations. A recent study in the Netherlands eval-
uated the performance of NO2 land use regression models using
internal cross-validation and validation against an independent
external dataset and investigated the impact of increasing numbers
of training sites (Wang et al., 2012). The R2 values of LUR models
were lower in external dataset validation compared with leave-one
out cross-validation, especially if the model was developed for a
small number of sites (N w 20). Another recent similar exercise in
Spain showed similar results and that the model R2 and leave-one-
out cross validation R2 can be inflated for smaller sample sizes,
particularly in cases where the number of potential predictor var-
iables is large (Basagaña et al., 2012). Bayak (2004) suggested as a
rule of thumb to have at least 10 observations per predictor variable
in the model, implying four predictors per model. Most models had
4 or less predictors, but a fewmodels contained more variables and
are likely over-specified. Wang et al. (2012) recently showed that
hold-out validation did not improve when these large models were
constrained to contain fewer variables. An evaluation of the pos-
sibility to develop models for combined study areas resulting in a
larger number of monitoring sites is ongoing.

Site characteristics such as street configuration, traffic speed etc
(Brauer et al., 2003) might improve LUR models. Such data are,
however, not usually available. In some areas (Kaunas, Bradford,
Manchester, Netherlands and Belgium, Grenoble and Lugano) in-
formation about the vehicle fleet, differentiating light-duty and
heavy-duty traffic, were available and were included in the final
models.

5. Conclusion

Within the ESCAPE project it was possible to develop LUR
models using a standardized approach that explained a large frac-
tion of the spatial variance in measured annual average NO2 and
NOx concentrations. Results showed that it is especially important
to have accurate local traffic intensity data as predictor variables
available and evaluate influential observations in LUR model
development. These LUR models are being used to estimate out-
door concentrations at the home addresses of participants in over
30 cohort studies included in the ESCAPE project.
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