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Abstract 

We present a computational (LSTM) model that learns to 
produce English (3sg and -bare) verb inflection when trained 
on English child-directed speech (CDS). The model is trained 
on input containing morphemized verbs and learns to predict 
the next token (word/morpheme) given a preceding sequence 
of tokens. The model produces the type of error (-bare for -3s) 
made by English-learning children while avoiding errors that 
children do not often make (-3s for -bare). The model also 
shows the same type of sensitivity to input statistics that has 
been reported in English-learning children. Finally, we 
manipulated the length of the sequences the model is trained 
on and show that this results in the delayed acquisition of -3sg 
forms that is characteristic of English-learning children with 
Developmental Language Disorder (DLD). Taken together 
these results suggest that input-driven learning is a major 
determinant of the patterns observed in both typical and 
impaired acquisition of English verb inflection. 

Keywords:  English Verb Inflection, Developmental 
Language Disorder. LSTM Language Model, Input-Driven 
learning.   

 

Introduction 

Children in many languages go through a stage in which they 

produce uninflected or nonfinite forms in contexts where an 

inflected form is required in the adult language. Thus, 

children learning English may produce forms with missing 

3rd person singular (3sg) -s, like he go there instead of the 

correct he goes there. These types of errors have become 

known as Optional Infinitive (OI) errors (Wexler, 1994; 

1998). OI errors are very common in English-speaking 

children: typically developing children only reach 90% 

correct provision on 3sg -s when they are around 4.5 years 

old (Rice et al., 1998). This is in contrast to children learning 

(for example) Spanish, where error rates lower than 5% have 

been reported in children as young as 2.5 years old (Hoekstra 

& Hyams, 1998). The problems that English-speaking 

children have in acquiring (3sg) inflection extend to clinical 

populations. English-speaking children with Developmental 

Language Disorder (DLD) continue to produce OI errors for 

far longer than typically developing children, even when 

controlling for factors such as children’s Mean Length of 

Utterance (MLU) or vocabulary size (Leonard et al., 1999). 

Several explanations have been proposed for English-

speaking children’s difficulties with verbal morphology, 

many of which suggest that the nature of the input makes the 

English 3sg -s hard to acquire. Freudenthal et al. (2015; 2023) 

argue that the prevalence of the bare stem in English (which 

is used as the infinitive as well as all present tense forms apart 

from the 3sg) means that children may produce it as a default 

form. Experimental evidence for this suggestion has been 

provided by Räsänen et al. (2014), who showed that children 

tend to produce bare forms in 3sg contexts of those verbs that 

tend to occur as bare forms in the input. 

A second characteristic of English input that may make 3sg 

inflection hard to acquire is the fact that the English process 

of question formation means that bare forms frequently occur 

after 3sg subjects. That is, phrases like Can he go, or Does he 

go, actually provide conflicting evidence suggesting that 

phrases like he go are acceptable English word sequences in 

isolation. This feature of English has also been implicated in 

explaining the difficulty that children with DLD have with 

English verb inflection. According to the Competing Sources 

of Input hypothesis (Leonard et al., 2015), children may fail 

to grasp that the non-finite verb go in these sequences is 

licensed because of the preceding (separated) modal or 

auxiliary verb can or does, and this problem may be 

exacerbated in children with DLD, who have been shown to 

have difficulties in processing long-distance dependencies 

(Purdy et al., 2014), and in the learning of sequential 

information (verbal statistical learning: Lammertink et al., 

2017; serial reaction time tasks: Lum et al., 2014). Consistent 

with this account, Sawyer et al. (2022) have found that a 

useful predictor of whether a child will make a bare-form 

error on a given production is the relative frequency with 

which the particular subject-verb combination they are 
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producing occurs in (contextually appropriate) bare as 

opposed to inflected form in the input. 

Such input-driven accounts were recently tested by 

Freudenthal et al. (2021), who used a sequential version of 

the Rescorla-Wagner model, and showed that models trained 

on (idealized) English input were slow to acquire verb 

inflection compared to models trained on Spanish input. 

Moreover, unlike the Spanish model, the English model’s 

performance was much impaired when the model’s ability to 

integrate information over longer phrases was degraded.   

Freudenthal et al. thus provide support for the claim that 

questions, in particular, and the statistics of the wider input, 

in general, might explain the difficulty that both typically 

developing children and children with DLD have with 

English verb inflection. However, Freudenthal et al. used an 

idealized version of the input, which was limited to the 30 

most frequent verbs, and conflated all (pronominal and 

lexical) 3sg subjects into a single -3S marker. Moreover, the 

model’s input was limited to subjects and verbs (excluding 

all other words) and the model’s task was to predict one of 3 

possible inflections (-3S, bare form or progressive). 

In this paper, we investigate whether a model faced with 

more realistic input and a more challenging task can learn 

English verb inflection, and whether it will show the same 

pattern of error as children learning English (whilst avoiding 

errors not produced by children). We do this by training a 

Language Model (LM) equipped with an LSTM cell and 

embedding layers to predict the next word given an input 

sequence of a given length. Recent work has shown that 

models like this are capable of learning long-distance number 

agreement, whether run as classifier models or performing 

next word prediction (Linzen et al., 2016; Gulordava et al., 

2018) 

The input to our model consists of sequences of child-

directed speech. Importantly, the model input retains the 

difference between different subjects, is not limited to a 

specific set of verbs (outside general vocabulary limitations), 

and the model was trained to predict the next word in the 

input (with verb inflections considered as separate words). 

We were interested in whether the model produces the errors 

shown by children (-bare for -3s errors), whilst avoiding 

those that children do not (or rarely) produce (-3S for -bare 

errors). Additionally, we were interested in whether reducing 

the length of the sequences the model is exposed to results in 

the increased error rates found in children with DLD who 

have been argued to show decreased sensitivity to long-

distance dependencies.  

 

Methods 

The model: 

The model we employed was a Language Model (LM) that 

was trained to predict the next word in the input based on 

preceding input sequences of a given length. The model uses 

an input layer with one node for every word in the input 

vocabulary. The input layer connects to an embedding layer 

which learns distributed (semantic) representations for the 

words in the input during training. The embedding layer 

connects to an LSTM cell, which in turn connects to an output 

layer containing the same number of nodes as the input layer. 

After a given training or test trial, the output layer represents 

an estimated probability distribution over the model 

vocabulary given the input sequence. In what follows, we 

trained high- and low-capacity models aimed at investigating 

the model’s ability to simulate late stages and early stages of 

development respectively. High-capacity models had an 

embedding layer of 100 nodes and 500 hidden nodes. They 

were trained for 100,000 batches of 32 training items with a 

fixed learning rate of .001 (the default for the Adam 

optimizer). Low-capacity models had an embedding length 

of 50, and a hidden (LSTM) capacity of 100 nodes. These 

models were trained for 250,000 batches with an initial 

learning rate of .0001 which was increased by .0001 every 

5,000 batches to a maximum of .001.  

Model Input: 

We trained the model using child-directed speech (CDS) 

obtained from CHILDES (see project repository at 

https://github.com/cbannard/inflection_errors_cogsci23 for 

details). The input consisted of a mix of UK and US English 

corpora. We performed minor filtering on the CHILDES files 

(we removed punctuation and mark-up). For information on 

the corpora used see the github repository. The total amount 

of input was approximately 2 million utterances, restricted to 

a maximum length of 15 words. We reduced the model 

vocabulary to words that occurred in the input a minimum of 

10 times – words in the input that had a frequency of less than 

10 were replaced with an <unk> marker. We used the FLAIR 

(Akbik et al., 2019) tagger to assign Part of Speech (POS) 

categories to words in the input. We morphemized items 

assigned a 3sg present tense (FLAIR VBZ), non-3sg present 

tense (VBP) or verb base form (VB) tag, by changing them 

into their base form and adding a -3S or -BARE morpheme 

(e.g., goes -> go -3S, go -> go- BARE) as the next item in the 

sequence. The inflection was thus encoded as a separate 

word, and hence a potential target in the next word prediction 

task. 

 

Model training: 

Words in the input that had a frequency of less than 10 were 

replaced with an <unk> marker. This reduced the model 

vocab from ~50,000 to ~11,000 words. The input was split 

into a training and test set. The training set contained all items 

that did not end in -3S or -BARE, plus 80% of items that did 

end in -3S or -BARE. The test set contained the remaining 

20% of items ending in -3S or -BARE. The test set was 

further reduced to contain only items where the POS-tag of 

the pre-verbal element was a (singular or plural) (pro)noun. 

We also excluded items containing an <unk> or ‘XXX’ 

(unintelligible) marker from testing. The test set thus 

contained items ending in Subject-Verb-Inflection sequences 

like I go -BARE, Anne want -3S, Does he run -BARE, She eat 
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-3S. We only tested the model on sequences that ended in a 

subject-verb sequence that occurred in the training set. 

Individual models were run and averaged over 5 different 

instantiations of training and test-set (5-fold validation). 

Models were trained on sequences of tokens (morphemized 

input words). Sequences did not cross utterance boundaries 

(i.e., were restricted to single utterances). For a given 

sequence length (n), the sequence ending in the ith word in 

an utterance contained the n-1 words preceding it, with 

padding markers added as necessary (due to utterance 

boundaries) up to the sequence length. Thus, for sequence 

length 5, the model predicted the 5th word on the basis of 

words 1-4. The second word in the utterance was predicted 

by 3 padding markers followed by the first word in the 

utterance.  
The training set consisted of ~9.5 million sequences, most 

of which ended in an item other than -3S or -BARE. The test 

set consisted of ~70,000 items of which ~7,500 ended in -3S 

and the rest in -BARE. Testing took place every 5,000 

batches. Models were tested on all -3S targets and a random 

sample of 10,000 -BARE targets, and accuracy (proportion 

correct) was recorded for -3S and -BARE targets separately. 

In testing we only considered the relative production 

probability of the -3S and -BARE form, and assigned to the 

model’s output the one that was most likely given the 

preceding context (that is, we ignored other, potentially more 

probable words). In practice, however, the model considered 

few other forms with high likelihood beyond the very early 

stages of training. 

 

 

Results 

Performance of high-capacity models 

We start by examining the extent to which the model is 

capable of learning English verb inflection when given 

substantial resources. Fig.1 shows the performance of high-

capacity models (embedding of length 100, 500 hidden 

(LSTM) nodes, and learning rate of .001) trained for 100,000 

batches on sequences of length 5, 6, 8 and 10 (-3S targets 

only). As can be seen in Figure 1, the model is able to reach 

around 95% correct performance, with the models trained on 

the longest sequences performing best. Given sufficient 

capacity, the model is thus capable of learning the task, but it 

shows limited developmental effects. The model’s ability to 

simulate developmental change (i.e., earlier developmental 

phases) was then examined by training models with lower 

capacity (embedding length 50, 100 hidden nodes and a 

learning rate that gradually increases from .0001 to .001). 

 
Fig. 1: -3S performance of high-capacity models trained on 

sequences of length 5,6,8,10. 

Performance of low-capacity models 

Figure 2 shows the results for low-capacity models trained on 

sequences of length 5 for a total of 250,000 batches. The 

figure shows accuracy levels for -3S and -BARE targets 

separately. The model achieves low initial accuracy scores 

for -3S targets which gradually rise to peak at around 90% 

correct. By contrast, accuracy for -BARE targets is near 

100% throughout. Since the testing procedure considers the 

relative probability of -3S and -BARE forms only, all errors 

on -3S targets involve the production of a -BARE form (and 

vice-versa). The model thus starts out producing many BARE 

for -3S errors, and at the same time produces very few -3S for 

-BARE errors (as is the case in English-learning children). 

With increased exposure the model is increasingly capable of 

distinguishing the contexts that require a -3S and -BARE 

response, and accuracy on -3S targets increases as a result. 

 

 
Fig. 2: -3S and -BARE Performance of low-capacity models 

trained on sequences of length 5. 

 



Fig. 2 shows that the model can show high accuracy on -

BARE targets combined with increasing accuracy on -3S 

targets, when collapsed over all test items.  

Understanding errors 

 

In order to understand what is driving the errors seen, we built 

a series of regression models examining whether the model’s 

behaviour reflects the same factors as that of children. As 

noted in the introduction, one prominent claim is that 

children’s errors reflect them defaulting to the most frequent 

form for the given verb being produced. In the spirit of this 

prediction, we tested whether the model’s predictions of a 

non-finite form in contexts where a finite form is required 

reflect the relative frequency with which that verb is seen in 

bare form across all contexts in child-directed speech. We 

analysed one model at an intermediate stage (100,000 

batches) of training and regressed the probability of seeing 

the bare form on  the output layer on the frequency of the bare 

form, controlled for the total frequency of the verb. We found 

that the input frequency of the bare form explains variance 

above the total verb frequency (F(1,7383) = 209.37; p < 2.2e-

16), with standardized  coefficients indicating that the 

probability of the model predicting a bare form decreases 

with the total frequency of the verb (B=-.584), but increases 

with the frequency of the bare form of the verb across all 

contexts (B =.597).   

      We next examined the possibility that it is a high rate of 

exposure to instances of the particular subject-verb 

combination in the input that drives errors. We followed the 

same process as for the verb frequencies but using the total 

frequency of the subject verb sequence and its frequency in 

bare form. We found that the frequency of the bare form of 

the subject-verb combination, like that of the verb, explains 

variance above the total verb frequency (F(1,7383) = 816.48; 

p < 2.2e-16), with standardized  coefficients indicating that 

the probability of the model predicting a bare form decreases 

with the total frequency of the verb (B=-0.143), but increases 

with the frequency of bare form of the verb across all contexts 

(B = 0.121). For completeness, we next repeated the process 

for the relative frequency of any bare form verb appearing 

with each subject, and found the same pattern. Finally, we 

built a model containing all 6 predictors for all three models, 

and found that all terms explained unique variance while all 

maintaining the same direction of effect. This suggests that 

our LSTM model is making independent use of all of these 

sources of information in making its predictions. 

In summary, then, the model shows lower rates of (-Bare 

for -3S) error for phrases that are of higher frequency, and 

higher rates of error for sequences that are more likely to 

occur with bare forms. The frequency of the bare form 

explains the most unique variance (controlling for total 

frequency of the conditioning form) in the model regressed 

on the identity of the Subject (partial R2 = .281), followed by 

the Subject-Verb sequences (partial R2 = .10), and the identity 

of the Verb (partial R2 = .027). The partial R2 for all of the 

bare form frequencies combined was .24, The R2 for the 

model with all six predictors was .32, with the three 

individual models explaining .29 (Subjects), .13 (Subject-

Verb) and .03 (Verbs) % off the variance.  

We also ran regressions at an earlier stage of training 

(35,000 batches). These models largely replicated the pattern 

above, with the full model explaining 32% of the variance. 

However, these models showed a far greater influence of the 

Verb statistics, with the three individual models explaining 

18% (Verbs), 15% (Subjects) and 7% (Subject-Verb 

sequences) of the variance.  

 

Performance on individual test items 
 

Figure 3 looks at the model’s performance on 4 individual 

items in more detail (averaged over 5 model runs). It plots 

model performance (across 250,000 batches) on a high 

frequency verb (go) with four individual subjects requiring a 

-3S response - two pronominal and two lexical. Plotted in 

Figure 3 are the absolute production probabilities for the -

BARE and -3S form. Figure 3 shows different performance 

trajectories for the different test items. The phrases with 

(frequent) pronominal subjects (he, that one) are learned 

much faster than the phrases with (less frequent) lexical 

subjects (mummy, the lion). A similar pattern has been 

reported in English-learning children (Pine et al., 2008). 

However, there are also differences within the lexical and 

pronominal classes. The model has more difficulty learning 

the -3S suffix for sequences ending in mummy go compared 

to the lion go, possibly reflecting the increased use of the 

word mummy as a 3sg subject in questions.  

It is worth noting that, after the early stages of training, the 

summed production probabilities of the -BARE and -3S form 

are close to one, reflecting the fact that (for these stimuli) the 

model does not assign a high probability to words other than 

-BARE or -3S. Finally, in the early stages, the model prefers 

the -BARE form over the -3S form for all four phrases, 

reflecting the fact that the -BARE form acts as a default form 

in the initial stages. The default -BARE response is replaced 

with a -3S response as evidence for it becomes available, but 

this happens at different speeds for different phrases. 



Fig. 3: Performance of low-capacity models trained on 

sequences of length 5 on individual test items. 

 

Performance of models trained on short sequences: 

Figures 2 and 3 showed performance of models trained on 

sequences of length 5. For the majority of training and test 

items, sequences of this length will contain all the evidence 

that is required for the model to determine the correct 

response. Short targets (e.g., he go -3s, or mummy want -3S) 

will be padded out to length 5, which will set them apart from 

modal or auxilary phrases like can he go -BARE, or does 

mummy want -BARE). Moreover, since can and does are 

included in the longer phrases, the model can learn that the    

-BARE response in these contexts is associated with the 

modal can and the auxiliary does rather than the 3sg subject 

that follows them. 

Figure 4 shows the model’s performance when the 

sequences it is trained and tested on are reduced to length 4 

and 3 (thus depriving it of information needed to distinguish 

-3S from -BARE contexts). This reduction in context length 

serves as a potential model for a hypothesized deficit in the 

processing of sequential stimuli in children with DLD. Figure 

4 shows an increase in error rates on -3S targets relative to 

Figure 2. This increase is particularly noticeable for 

sequences of length 3 (he go -3S/-BARE), but also apparent 

for sequences of length 4, where distinguishing information 

is removed from sequences with multi-word subjects (the lion 

go -3S/BARE).  

Figure 4 also shows a small increase in errors on -BARE 

targets. This increase likely results from the model being 

tested on phrases like Does he want -BARE, where the 

absence of does licenses a -3S response. The combined 

pattern of increasing -BARE for -3S errors and low error on 

-BARE targets is consistent with that found in children with 

DLD, and thus provides support for the notion of a sequence 

learning deficit as a (partial) explanation of the verb 

inflection deficit in DLD. 

 

 
Fig. 4: Performance of low-capacity models trained on 

sequences of length 4 and 3. 

 

Conclusions 

The main conclusions to be drawn from the research 

described in this paper are a) that an LSTM Language Model 

that learns to predict the next word in the sequence is capable 

of learning English verb inflection when presented with 

English child-directed speech containing morphemized verb 

forms (when given sufficient capacity, the model is capable 

of reaching near 95% correct on the test set), and b) that when 

the model capacity and learning rate are restricted, the model 

starts to produce errors in a way that mirrors those made by 

young children - the errors that the model produces are 

largely restricted to -BARE for -3S errors, while the reverse 

(-3S for -BARE errors) are rare (as is the case in English-

learning children).  

These results are in line with those reported by Freudenthal 

et al. (2021), but the task faced by the current model is more 

challenging and more realistic than that faced by the 

Rescorla-Wagner model, which learned to predict one of 

three targets on the basis of idealized input (subject-verb 

sequences that conflated all 3sg subjects, and was restricted 

to 30 frequent verbs). 

The current model also showed the same effects of 

releative input frequency as children. The regression analyses 

and plots for individual test items showed that the model 

produces fewer errors in 3sg contexts for items that are high 

frequency, and more errors for items that tend to occur with 

a bare form. Similar results have been reported in English-

learning children. Sawyer et al. (2022) argue that children are 

more likely to produce -BARE for -3S errors on subject-verb 

sequences that occur with bare forms, while Pine et al. (2008) 

show that children are less likely to produce -BARE for -3S 

errors with (frequent) pronominal compared to lexical 

subjects. 

Such input-driven effects on children’s learning of verb 

inflection may not be surprising, but it is worth bearing in 

mind that -BARE for -3S errors (also referred to as OI errors) 

have often been explained in terms of the slow unfolding of 

innate linguistic principles (e.g., Wexler 1994, 1998). The 

kind of input-driven effects reported here are difficult to 

reconcile with this kind of explanation. 

Our manipulation of sequence length suggests that the slow 

acquisition of verb inflection in English-learning children 

with DLD may reflect the same (but magnified) input-driven 

biases that operate in typically developing children. That is, 

children with DLD may have difficulty processing the 

fronted auxiliary or modal in questions, and hence may be 

slow, relative to TD children, to grasp the fact that phrases 

like ‘he go’ are not permissible in isolation. This is in contrast 

to some approaches that assume the deficit in DLD is related 

to procedural learning (e.g., Ullman & Pierpoint, 2005), but 

is in line with a recent proposal, calling for interventions for 

children with DLD that alter the distribution of the input to 

draw children’s attention to the contexts in which bare forms 

are and are not permissible (Leonard et al., accepted). 

However, the actual mechanism for simulating DLD 

(reducing the length of sequences available to the model) is 

rather crude. We are currently in the process of investigating 

whether more sophisticated manipulations of the model’s 

gating (and learning) mechanisms, can yield similar 

differences in performance in models that are exposed to the 

same lengths of training sequences. 



Taken together, our simulations thus suggest that the slow 

acquisition of verb inflection in English children is largely 

driven by input factors (the high frequency of the English 

bare form, and the English process of question formation). 

However, they also suggest that the performance of TD and 

DLD children may be best viewed as lying on a continuum 

with the input effects apparent in TD children being amplified 

in children with DLD, as the result of a diminished ability to 

integrate information that unfolds over time.  
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