MANCHESTER

1824
The University of Manchester

The University of Manchester Research

Towards (Really) Safe and Fast Confidential I/O

DOl:
https://doi.org/10.1145/3593856.3595913

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Lefeuvre, H., Chisnall, D., Kogias, M., & Olivier, P. (2023). Towards (Really) Safe and Fast Confidential I/O. Paper
presented at 19th Workshop on Hot Topics in Operating Systems, Providence, Rhode Island, United States.
https://doi.org/10.1145/3593856.3595913

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

OPEN ACCESS

Download date:29. Nov. 2023

https://doi.org/10.1145/3593856.3595913
https://research.manchester.ac.uk/en/publications/db3f5f1f-a966-43ac-acda-b0a6d3c9e669
https://doi.org/10.1145/3593856.3595913

Towards (Really) Safe and Fast Confidential 1/0

Hugo Lefeuvre’, David Chisnall®, Marios Kogiasi"", Pierre Olivier'

"The University of Manchester, ®Azure Research Microsoft, f{Imperial College London

ABSTRACT

Confidential cloud computing enables cloud tenants to dis-
trust their service provider. Achieving confidential comput-
ing solutions that provide concrete security guarantees re-
quires not only strong mechanisms, but also carefully de-
signed software interfaces. In this paper, we make the obser-
vation that confidential I/O interfaces, caught in the tug-of-
war between performance and security, fail to address both
at a time when confronted to interface vulnerabilities and
observability by the untrusted host. We discuss the problem
of safe I/O interfaces in confidential computing, its implica-
tions and challenges, and devise research paths to achieve
confidential I/O interfaces that are both safe and fast.

CCS CONCEPTS

+ Security and privacy — Trusted computing; - Software
and its engineering — Operating systems.

ACM Reference Format:

Hugo Lefeuvre, David Chisnall, Marios Kogias, Pierre Olivier. 2023.
Towards (Really) Safe and Fast Confidential I/O. In Workshop on Hot
Topics in Operating Systems (HotOS "23), June 22-24, 2023, Providence,
RI, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3593856.3595913

1 INTRODUCTION

Confidential cloud computing [50] enables tenants to distrust
their service provider. By encrypting data and manipulating
it within a Trusted Execution Environment (TEE), confiden-
tial computing technologies can guarantee that even strong
attackers (e.g., insider threats) controlling the hypervisor/-
cloud infrastructure remain unable to access tenant data. As a
solution to the problem of data privacy [46] in public clouds,
there is a very strong demand for confidential computing
across the industry and regulatory bodies [18].

Achieving confidential computing solutions that provide
concrete security guarantees requires 1) robust isolation,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotOS ’23, June 22—24, 2023, Providence, RI, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595913

encryption and attestation mechanisms for enforcing the
integrity and confidentiality of data throughout its lifetime
and 2) carefully designed software interfaces between trusted
and untrusted components. Both are critical: there is no
confidentiality without strong mechanisms [38, 45, 66], but
by themselves they are insufficient to protect a TEE in the
presence of unsafe software interfaces [13, 33, 34, 61].

There are two dominant confidential computing paradigms:
enclaves [16], that offer abstractions to run parts of an appli-
cation inside the TEE; and confidential VMs [4, 32], that turn
the popular VM abstraction confidential. These paradigms
guarantee data confidentiality and integrity during compute.
There are independent solutions covering similar guaran-
tees for data at rest [56, 57] and in transit [6, 22, 47]. Yet,
the transitions between those states, happening through I/O
interfaces, remain challenging and potential attack vectors.

We make the following key observation: unlike TEE mech-
anisms, the topic of confidential I/O interface safety has been
underexplored and even explicitly ignored in prior works,
e.g., rkt-io [55] and ShieldBox [58] use unhardened (or par-
tially hardened) DPDK drivers for network communication.
This is concerning: as we show in this paper, the design
of safe and efficient I/O interfaces is particularly difficult
and error-prone. Unfortunately, previous works aimed at
TEE [61] and compartment [26, 30, 34, 41] interfaces is help-
ful in characterizing the problem but too broad or generic to
provide solutions for efficient and safe I/O interfaces. This
highlights a need for research in that domain.

This problem is particularly challenging because the de-
sign space is vast. Independently of the underlying mech-
anism (enclaves/confidential VMs), there are two main dif-
ferences compared to prior work on interface safety [26, 30,
34, 61]. First, at the host end of the TEE there can be an
application-specific interface providing I/O services, as im-
plemented by different confidential computing frameworks [5,
9, 12, 21, 49, 52, 59]; a paravirtualized device; or a directly
attached hardware device. Second, I/O depends on deep pro-
tocol stacks that allow for different separation of concerns
between trusted/untrusted components, leading to different
confidentiality guarantees, performance, and porting effort.

The status quo of confidential I/O interface design is not
ideal. Intra-enclave library OSes/TEE frameworks [5, 12, 49,
52] limit the complexity of the interface with the untrusted
host by internally managing as many system features as
possible, but suffer from an increased TEE TCB size [3]. Fur-
ther, I/O still needs to go through the host which leads to

https://doi.org/10.1145/3593856.3595913
https://doi.org/10.1145/3593856.3595913
https://doi.org/10.1145/3593856.3595913

HotOS ’23, June 22-24, 2023, Providence, RI, USA

non-negligible performance losses [12, 52]. To address that
issue, other systems offer direct hardware access to the en-
clave [7, 55, 58]. Not only does this solution not scale to
large numbers of TEEs, it is also problematic in terms of
security [29]: as we highlight in this paper, driver interfaces
have neither been designed nor implemented for mutual
distrust, and retrofitting distrust into them is hard. The is-
sue is similar for confidential VMs, where traditional device
drivers [20] lack the hardening necessary for confidential
workloads [29]. In the case of confidential VMs, the problem
is even more significant as they are widely publicized as
lift-and-shift solutions reusing traditional driver stacks [20].

Coming up with a satisfying solution is hard because of the
fundamental tug-of-war between security and performance:
security benefits from simpler interfaces, copies, and checks,
whereas performance benefits from lower-level, highly con-
figurable interfaces with zero copies/checks.

In this paper we argue that securing confidential I/O in-
terfaces requires to 1) carefully identify where the host/TEE
trust boundary should be located in the I/O stack, and to 2)
achieve a host/TEE interface that is safe by construction (as
opposed to relying on ad-hoc checks). We discuss alterna-
tive boundaries across the I/O stack (§2.4), based on which
we propose a ternary trust model between the confidential
application, the I/O stack, and the device (§3.1). To achieve
interfaces that are safe by construction, we advocate for
alternative interfaces: analyzing the hardening effort in pop-
ular paravirtualized drivers (§2.5), we hint that hardening
existing interfaces may not be the way to go for achieving
safe and fast confidential I/O. Focusing on networking, we
conclude providing design guidelines to achieve safe confi-
dential I/O and reach different performance, compatibility,
and confidentiality trade-offs (§3.2).

2 CHALLENGES OF CONFIDENTIAL I/O
INTERFACES

2.1 Trust Model

Confidential Workload. The confidential workload (D in
Figure 1) is composed of an application (or part of it), and of a
confidential computing framework. The nature of the frame-
work depends on the type of TEE: in the case of enclaves,
the framework wraps interactions with the untrusted kernel
® and other parts of the application, while in the case of
confidential VMs, the framework is the trusted OS that runs
on top of the untrusted hypervisor . All elements of (D are
trusted in the general case, although, as we describe in §3,
more fine-grained trust relationships can be achieved with
compartmentalization. We aim to protect (D’s confidentiality
and integrity. We consider Denial of Service (DoS) out of
scope, as TEE mechanisms themselves do not support it. We
consider architectural side-channels [11, 24, 28, 60, 67] and

Lefeuvre et al.

NW Card

(o

Network | %eeeeees 3

Confidential 1/0 Interface

Data

Flow

VM (SEV/TDX)
Enclave (SGX)

Hypervisor (SEV/TDX)
Kernel (SGX)

Figure 1: Key components of confidential computing
architectures and confidential I/O boundary.

mechanism-related vulnerabilities [38, 45, 66] out of scope,
as mitigations are orthogonal to our aims.

Host Software. The host software (S has a mutual distrust
relationship with @; i.e., © does not trust (O and @ does
not trust (9. In the general case, (9 includes an 1/O stack and
drivers to interface with the host hardware). In the case
of enclaves, (S is an operating system, while in the case of
confidential VMs it is a hypervisor. The boundary between
(D and © includes the confidential I/O interface.

Host Hardware. The host hardware @) is distrusted by (D
in the general case. It includes networking hardware, disks,
etc. In the case of direct device assignment, as we discuss in
§3.4, part of () may be trusted (or partly trusted) by (.

2.2 Ideal Confidential I/O Properties

Ideal: Interface Safety by Construction. Confidential
I/0O designs must guarantee the confidentiality and integrity
of the confidential workload by construction. This means
designing with two main vulnerability vectors in mind:

o Interface vulnerabilities: the design of the I/O boundary
must avoid or at least minimize vulnerabilities triggered
through interface misuses [13, 33, 34, 61], leading to in-
formation leakage, data corruption, as well as temporal
violations [34], at the exposed protocol layers.

o Observability by the host: the design of the I/O bound-
ary must minimize the amount of non-architectural side-
channels exposed to the host (e.g., I/O metadata, ordering
and types of I/O calls), as these allow the host to infer
information about the TEE [3].

We develop on these two vectors in the following sections.
Unlike traditional I/O interfaces, the host is not trusted, mak-
ing it even more challenging to achieve high performance
and strong security properties.

Ideal: High Performance. Confidential I/O designs must
be capable of handling high throughput and low latencies.
For example, with networking this means saturating a link,

Towards (Really) Safe and Fast Confidential 1/0

i.e, tens of Gbit/s [17, 58]. For storage, this also means through-
puts of 10+ Gbit/s [27].

Ideal: Independence from TEE Implementation. 1/O
designs should be able to plug with the different scenarios
highlighted by §2.1. I/O services can be provided by an OS
kernel as well as by a hypervisor, leveraging a range of tech-
nologies (e.g., enclaves, confidential VMs).

Relaxed: Backwards Compatibility. Confidential work-
loads exhibit generally relaxed backwards compatibility re-
quirements. The cloud infrastructure can be adapted to cater
for safer confidential workloads: major cloud players are
members of the Confidential Computing Consortium [15].
This makes it reasonable to change the hypervisor, or even
push towards hardware changes. For application- and OS-
code, compatibility is generally desirable [12, 39] but reason-
able to trade-off for security and/or performance, ideally in
an iterative manner. There is general awareness that getting
the most out of TEEs cannot be achieved without changes
across the stack [50, 61], and the community has shown
willingness to perform these changes [49].

2.3 Confidential I/0: Divide and Rule

Given the previously-mentioned requirements, we propose
to divide the problem in two parts: 1) at what abstraction
level to place the I/O trust boundary between (M and S), and
2) how to design the I/O interface at the selected level.

P1: Where to Position the I/O Trust Boundary? The
trust boundary between the host and the TEE can be placed
at various levels in the I/O stack. This influences the nature of
the data flowing through the interface. With networking, for
instance, data can be raw packets from the network, a TLS-
encrypted TCP flow, raw UDP packets, etc. For storage, it can
be filesystem operations, block I/Os, etc. Placing the trust
boundary at different levels will expose different trade-offs
influencing both interface vulnerabilities and observability:
important metrics impacted will be the size of the TCB in
the confidential domain (e.g., does it contain or not a large
TCP/IP stack or a filesystem [3]), as well as the complexity of
the driver (e.g., if we get rid of packet layers, we can shave off
sources of complexity like negotiation of MTU, who handles
the checksum, MAC address, etc.). Having control over the
overall design of the interface, we have the ability to choose
at what protocol level we want to position the trust boundary.

P2: How to Design the 1/0 Interface Itself? The design
of the I/O interface itself defines how data is exchanged over
the interface. Many I/O interface designs have been proposed
over the years; MMIO-exposed registers, ring buffers, indi-
rect descriptors, various approaches for zero-copy I/0, etc.
For example, different approaches may or may not share

HotOS ’23, June 22-24, 2023, Providence, RI, USA

pointers and/or indexes in safe manners, e.g., via different
numbers of indirection layers, resulting in more or less re-
silience to interface vulnerabilities [34]. Beyond this, differ-
ent approaches show different control/data path complexity,
resulting in varying degrees of statefulness and complexity
of error paths, all again impacting interface resilience [34].

We now go through these two problems in §2.4 (P1) and
2.5 (P2), highlighting limitations of previous works and mo-
tivating the research paths we propose in §3.

2.4 P1:1/0 Trust Boundary Location

A range of approaches have been explored regarding P1. En-
clave approaches that perform networking via the system call
interface [5, 12, 49, 52] operate at OSI layer 5 (L5, TCP/UDP
flows), as exposed by the OS’s socket abstraction. However,
almost all high-performance approaches [20, 44, 55, 58] work
at layer 2 (L2), exchanging raw Ethernet packets, processed
by the TEE’s own /O stack. Some works [17] also explore
tunneled approaches, encapsulating L2 packets into a TLS
tunnel from a safe network, to hide metadata from the confi-
dential unit’s untrusted host and network.

There are valid reasons for most works to focus on layer
2. First, high-performance approaches build on device pass-
through (enclaves), or high-performance paravirtualized de-
vices (confidential VMs), which both require raw Ethernet
packets. Second, operating at higher layers means that more
observability [3] is exposed to the host, such as the timings
of accept, or the socket configuration options. At layer 2,
the amount of observability is equivalent to what one could
obtain by simply observing the network.

On the other hand, there are also arguments to place the
boundary higher up at layer 5. Even though the network
subsystem (TCP/IP stack, drivers) has been hardened against
network threats over the years, it is ever-growing (about
+20% LoC per major version), and remains widely affected
by remotely-exploitable vulnerabilities (Figure 2). Placing it
within the confidential workload’s TCB is concerning and a
clear violation of the principle of least privilege. Assuming
a secure interface design (P2), if layer 2 is chosen for P1, it
is on the I/O stack that attackers will focus, and its compro-
mise will jeopardize the efforts deployed on securing the
I/O boundary. This also provides strong arguments towards
a confidential I/O boundary at layer 5, assuming suitable
performance can be achieved.

Both layers 2 and 5 are suitable to position the I/0 bound-
ary, as the interfaces can be hardened. This is not the case of
layer 6, above TLS: although similar argumentation on vul-
nerability/size could be made for TLS, assuming an untrusted
TLS component negates the confidentiality of data and opens

HotOS ’23, June 22-24, 2023, Providence, RI, USA

/netRemote CVEs

20029030903290339 0149032901070 T90189039020902 022
Year (year not present = no CVESs)

Figure 2: Remotely-exploitable CVEs in the Linux /net
subsystem over the years.

é 12 | %: proportionally to. all changes
= 21%

6 — 18% —
9 14% 14% 14%
S 4 11% —
5 1%
® 2 1
Z 0

A0 oW %d 009‘6) X*@S\ e(\‘:\‘g\\a(\ges
® qac

Psdd o \:a\\ xAct
pad ™ es e

Figure 3: Distribution of hardening commits to the
Linux paravirtualized networking netvsc driver.

‘g gg | %: proportionally to all changes _|
35%

§ 15 - "R 28% g, —
210 ? —
o L 1%
3 2 | <19% <1% o3

" d\e dx\y\ke‘?‘demﬂ Y\a“gdd 009 \\7_3\\0 xea“'“ eS

PO pa pes dd R

Figure 4: Distribution of hardening commits to the
Linux virtio paravirtualized driver family.

for numerous interface vulnerabilities, as the ordering and
integrity of payloads is not guaranteed anymore.

We focused here on networking for the sake of brevity,
but most observations also apply to storage that similarly
has high-level (e.g., filesystem operations) and low-level (e.g.,
block I/Os) components. Overall, there is no confidential
I/O stack approach that combines low TCB (e.g., layer 5
boundary), low observability (e.g., layer 2 boundary), and
high performance (rather bound to layer 2); we sketch an
approach that relies on a dual-boundary system in §3.

2.5 P2: Designing a Secure I/0O Interface

P2 clearly sparks two alternative resolution approaches: hard-
ening existing I/O interfaces, or defining new ones.
Regarding hardening existing interfaces, we observe on-
going efforts on hardening paravirtualized device driver im-
plementations in Linux [43, 64]. These efforts aim to retrofit

Lefeuvre et al.

mutual distrust into paravirtual I/O device drivers, while
remaining compliant to the standards (which were not de-
signed with distrust in mind). As we discuss here, this ap-
proach is fundamentally limited by the need for backwards
compatibility, and by the broad scoping of the standards,
ultimately impacting security and performance.

In order to understand the implications and benefits of
hardening existing drivers, and identify characteristics that
should be focused on in a from-scratch approach, we system-
atically record all ongoing hardening efforts performed on
the VirtIO [48] and NetVSC [62] Linux paravirtual device dri-
vers. We classify each (merged) commit according to the type
of change performed. We record 7 types of changes: adding
checks, adding initialization to memory, adding copies, pro-
tecting against races, restricting features, performing design
changes, or amending previous hardening commits. Figures 3
and 4 show the distribution of commits by category?.

We make four key observations. First, hardening is ex-
tremely error-prone. In the VirtIO case for example, over
40 commits, 12 either revert or amend previous hardening
changes, some of them never to be re-applied. Second, much
of this complexity is coming from the need to support legacy
compatibility features and implementation behaviors. In sev-
eral cases this need for backwards compatibility prevails,
causing the revert of hardening features. Third, the com-
plexity also stems from the large scope of the paravirtual
standards. For instance, VirtIO strives to accommodate both
paravirtual scenarios and hardware implementations all the
same. This results in increased complexity on the control
(or configuration) path, with extensive, stateful configura-
tion protocols that open for non-trivial timing and order-
ing vulnerabilities [34]. The VirtlO standard for example
supports at least two alternative virtqueue (data transport
mechanism) formats, each featuring unique hardening needs.
Finally, performance tends to suffer from the hardening more
than needed: this is due to disabling security features that
bring performance benefits (e.g., in NetVSC), or piggyback-
ing copies on the protocol when the latter wasn’t thought
with them in mind (SWIOTLB [36] in Linux, applied to Vir-
tIO and NetVSC, which copies systematically even in cases
where double fetch is impossible). This increased cost is hard
to avoid when retrofitting distrust within the frame of a
standard that does not mandate it.

Since they are structural and bound to the designs and
motivations of standards, these observations also apply to
unhardened driver implementations such as DPDK or SPDK,
both popular among enclaves [7, 44, 55, 58]. Other works also
explore from-scratch approaches [17], but none of them with
a focus on interface vulnerabilities; as a result, even these

IThe raw data for Figures 2 to 4, along with relevant scripts, is available
open-source at https://github.com/hlef/cio-hotos23-data.

https://github.com/hlef/cio-hotos23-data

Towards (Really) Safe and Fast Confidential 1/0

are prone to similar observations. Overall, no existing stack
tackles interface vulnerabilities by design while maintaining
performance. There is a need for more research to come
up with principled I/O interfaces that, by conception, are
resilient against interface threats, which we sketch in §3.

3 MAKING CONFIDENTIAL I/O RIGHT

We propose a novel confidential I/O design that addresses
the limitations identified in the previous section. Different
I/O types may require different boundary design decisions,
thus for space reasons this section focuses on networking.
We discuss a generalization of our principles in §3.3.

3.1 P1:Plugging at the Right Interface Level

We identify two candidate layers to position the confiden-
tial I/O boundary: L2 (raw Ethernet packet) and L5 (TLS-
encrypted TCP flow). As discussed previously, both can rea-
sonably be hardened or designed with safety in mind, but
neither is ideal: L2 implies a large TCB (I/O stack) in the
confidential unit, and L5 results in richer observability by
the host, among others.

To address that issue, we propose a dual-boundary ap-
proach that yields the best of both worlds: we explore an API
design combining a strong boundary at L2, limiting observ-
ability, and a lightweight one at L5, excluding the I/O stack
from the core TCB. This results in a ternary/nested trust
model: the set of the I/O stack and the rest of the confidential
unit (including the confidential application) does not trust
the outside world (host), yet the I/O stack is not trusted by the
rest of the confidential unit either. The result is an approach
that combines 1) low observability, since a powerful attacker
on the host does not have access to more information than
it would by monitoring the network; with 2) a significantly
lower TCB, raising the bar to compromise the confidential
workload: compromising the I/O stack, whether through pro-
tocol or interface vulnerabilities, only results in increased
observability. The host must now mount multi-stage attacks
to compromise the confidential application. We represent
this intermediate area in Figure 5, alongside other solutions.

Many design approaches can be taken to enforce the dual
boundary. The I/O stack and the rest of the confidential unit
could run in two separate TEEs (e.g., two enclaves); however
such an additional heavyweight protection domain switch on
the I/O path would unnecessarily hurt latency by introduc-
ing a dual distrust boundary at L5 where only single distrust
is needed, as the I/O stack trusts the rest of the confidential
unit. Thus, a compartment-based approach [35, 41, 65] re-
lying on low-latency memory isolation techniques within
the TEE [25, 51, 52] is more appropriate. In this case, the L2

HotOS ’23, June 22-24, 2023, Providence, RI, USA

% o ° TCB: S o This work

=4 Vv Obs.: XL i % TCB:S

§ Graphene, CCF Obs.: M

= N

[} . . i e P TCB:L

E N ShieldBox, SafeBricks, rkt 'o"’,’ Obs.: M

o ; TCB: XL

LightBox

>«00\,L 3 ° Obs.:s

Performance

Figure 5: Leverage control over P1 to reduce TCB and
observability (Obs.) without hurting performance.

boundary is a strong host-TEE boundary, and the L5 bound-
ary is a lightweight intra-TEE compartment boundary. Per-
formance is preserved, and security is enhanced compared
to an approach without protection at L5.

3.2 P2: Achieving Strong I/0 Boundaries

Hardening L2. In order to achieve a host-TEE boundary at
L2 that is by conception resilient to interface vulnerabilities,
we propose a design based on five main principles:

o Stateless Interface: there are no dependency relationships
across and within data/control plane operations. This con-
siderably simplifies safety reasoning. This means, among
others, eliminating error paths whenever possible: in a
networked confidential workload for instance, failure to
bind() likely should be fatal.

e Copy as a first-class citizen. Copies are part of the proto-
col: they are performed early, but only when necessary,
and avoided when possible (e.g., when double fetches are
absent by design). This improves over legacy approaches
where the copy is typically piggybacked everywhere [36].

o No notifications: these introduce concurrency that is dif-
ficult to protect (Figure 4), and do not contribute to per-
formance under polling scenarios. When polling is not an
option, this must be relaxed; notification handlers are then
designed stateless, idempotent, and thread-safe.

o Zero (re-)negotiation: parameters like MAC address, MTU
size, or who calculates checksums are known at device
startup and can be fixed during deployment. This con-
tributes to a minimal control plane. This does not funda-
mentally preclude live migration, as devices can be hot-
swapped; nevertheless, migration without downtime [63]
remains difficult as it introduces statefulness in the proto-
col that is difficult to secure.

o Safe ring buffer & shared data area: by construction, point-
ers to the ring buffer and shared-data area must be pro-
tected via careful pointer/index masking [14]: the size of
shared memory areas and buffers along with their align-
ment is designed to make these operations efficient/possi-
ble (e.g., alignement at a power of two).

HotOS ’23, June 22-24, 2023, Providence, RI, USA

Further, we explore avenues to maintain high-performance.

e Explore data positioning. Several designs should be ex-
plored: inlining data on the ring buffer together with de-
scriptors, separately in shared memory with mask-protected
pointers, or mask-protected indirect descriptors. If buffers
are stored separately, buffer freeing should be safe by con-
ception, e.g., via control messages, or with a host-TEE
shared memory allocator designed for distrust [40].

e Explore revocation. On the receiving side, we explore avoid-
ing copies safely by un-sharing pages with the host on the
fly; we explore when this becomes faster than copies, and
how to integrate it harmoniously in interface semantics.

Hardening L5. We design L5 to be resilient by design to
interface vulnerabilities based on the following principles:

o Avoid the need to verify pointers. Leverage the single dis-
trust to enforce a trusted component allocates policy [34]:
the application allocates directly in the I/O domain when
sending, and provides the buffer when receiving.

e A mandatory TLS layer guarantees data integrity and con-
fidentiality, notably against attempts to break TCP guar-
antees (e.g., replay attacks, out of order packets, etc.).

Here too we explore a range of performance design choices:

e How can we achieve zero-copy send on the confidential side?
Here too, leverage the single distrust relationship between
the I/O stack and the confidential workload.

e On the receiving side we may need a copy at L5 if we do
not trust the I/O stack. Here too we propose to explore
revocation, as discussed for L2, to eliminate that copy.

3.3 Discussion: Beyond Networking

The two-boundary solution to P1 (§3.1) should map well
to other I/O boundaries that also have observability prob-
lems, e.g., storage [3]. Here, the first boundary would be at a
low-level interface, e.g., disk driver or block layer, and the
second one at a higher level such as file operations. Our ap-
proach to P2 (§3.2) at both layers should also transfer well
to other types of I/O. However, it is likely that it will not
always be possible to rewrite drivers at the lowest level (e.g,
GPU). In this case, rethinking the answer to P1 should be
considered: positioning the boundary just after the driver
by compartmentalizing it may be a valid solution as well.
Compartmentalizing is realistic: it has been advocated to
secure drivers for many years [10, 37, 42, 54] and recently it
is getting increasingly automated [31].

3.4 Discussion: Direct Device Assignment

Even though Direct Device Assignment (DDA) suffers from
the same problems, i.e., the device itself can be malicious, and
the communication channel between the TEE and the device
is exposed to a malicious host, the hardware community has

Lefeuvre et al.

taken a different path in dealing with the problem: extending
PCle, used to interconnect I/O devices, with support for
secure communication and device attestation. Given that the
TEE can attest the device, it can trust it/add it to its TCB.
Also, given that the communication channel between the
TEE and the attested device is encrypted/integrity-protected,
there is no need to harden drivers.

Specifically, the TEE Device Interface Security Protocol
describes an architecture for confidential communication
between TEEs and PCI-attached devices. Here, PCle com-
munications are encrypted using IDE (Integrity & Data En-
cryption) and there is an attestation protocol between the
TEE and device according to SPDM [1] (Security Protocol
and Data Model). Different TEE implementations need to
implement those PCle specs, e.g., Intel’s TDX [2], through a
combination of software and hardware mechanisms.

Despite the performance benefits of directly attached de-
vices, there are limitations in the granularity of partitioning
them; DDA is not a silver-bullet, especially with high over-
subscription, which paravirtual devices can tackle. Security-
wise, DDA is not perfect either: even trusted/attested de-
vices can be compromised (particularly as their complexity
is increasing [19]), and adding them to the trusted TCB is
a trade-off by itself. SR-IOV-specific attacks have also been
described in the past [8, 23, 53, 68, 69], although they are gen-
erally limited to availability threats [23, 53, 69] and covert
channels [8].

4 CONCLUSION

We highlighted the challenging and often ignored problem of
I/O interface safety for TEEs. Studying the hardening effort
in widely used systems by the open source community, we
show that hardening existing interfaces can only lead to a
dead end given the mismatch between the threat model in
confidential computing and the threat model in traditional
virtualization. Instead, we propose domain-specific interfaces
that are easier to harden, can offer both confidential and high-
performance I/O, and can be implemented through a ternary
trust model between the confidential application, the I/O
stack, and the paravirtual device.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insights. We
are also grateful to Jason Wang and Istvan Haller for their
insightful feedback. This work was partly funded by a stu-
dentship from NEC Labs Europe, a Microsoft Research PhD
Fellowship, the UK’s EPSRC grants EP/V012134/1 (UniFaaS),
EP/V000225/1 (SCorCH), and the EPSRC/Innovate UK grant
EP/X015610/1 (FlexCap).

Towards (Really) Safe and Fast Confidential 1/0

REFERENCES

(1]

—_
(=)
=

[10

[t

[11

—

(12]

(13

[t

(14

=

(15

=

[16

—

(17]

[n.d.]. Security Protocol and Data Model (SPDM) Specifica-
tion. https://www.dmtf.org/sites/default/files/standards/documents/
DSP0274_1.2.1.pdf Accessed Jan, 28 2023.

[n.d.]. Software Enabling for Intel® TDX in Support of TEE-I/O. https:
//cdrdv2.intel.com/v1/dl/getContent/742542 Accessed Jan, 28 2023.
Adil Ahmad, Kyungtae Kim, Muhammad Thsanulhaq Sarfaraz, and
Byoungyoung Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem
for Intel SGX.. In Proceedings of the 25th Annual Network & Distributed
System Security Symposium (NDSS’18).

AMD Inc. 2020. AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More. https://www.amd.com/system/files/
TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf Accessed Dec, 19 2022.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Riidiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
linux containers with Intel SGX. In Proceedings of the 12th USENLX Sym-
posium on Operating Systems Design and Implementation (OSDI’16).
Atkinson, R. 1995. Security Architecture for the Internet Protocol.
https://www.rfc-editor.org/rfc/rfc1825 Accessed Jan, 28 2023.
Maurice Bailleu, Jorg Thalheim, Pramod Bhatotia, Christof Fetzer,
Michio Honda, and Kapil Vaswani. 2019. SPEICHER: Securing LSM-
based Key-Value Stores using Shielded Execution. In Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST’19).
Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud
Valafar, and Kevin Butler. 2014. On detecting co-resident cloud in-
stances using network flow watermarking techniques. International
Journal of Information Security 13 (2014).

Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shield-
ing Applications from an Untrusted Cloud with Haven. ACM Trans.
Comput. Syst. 33, 3. https://doi.org/10.1145/2799647

Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Ma-
licious Device Drivers in Linux. In Proceedings of the 2010 USENIX
Annual Technical Conference (USENIX ATC’10).

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand
Exposure: SGX Cache Attacks Are Practical. In Proceedings of the 11th
USENIX Conference on Offensive Technologies (WOOT’17).

Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-
SGX: A Practical Library OS for Unmodified Applications on
SGX. In Proceedings of the 2017 USENIX Annual Technical Confer-
ence (USENIX ATC’17). https://www.usenix.org/conference/atc17/
technical-sessions/presentation/tsai

Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’13). https://doi.org/10.
1145/2451116.2451145

David Chisnall. 2008. The Definitive Guide to the Xen Hypervisor (Sec-
tion 6.3). https://www.informit.com/articles/article.aspx?p=1160234&
seqNum=3 Accessed Feb, 2nd 2023.

Confidential Computing Consortium. 2023. Confidential Computing
Consortium Members. https://confidentialcomputing.io/members/
Accessed Jan, 30 2023.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptol. ePrint Arch. 2016, 86 (2016). https://eprint.iacr.org/2016/086
Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang,
and Kui Ren. 2019. LightBox: Full-Stack Protected Stateful Middlebox
at Lightning Speed. In Proceedings of the 26th ACM SIGSAC Conference

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

HotOS ’23, June 22-24, 2023, Providence, RI, USA

on Computer and Communications Security (CCS’19). https://doi.org/
10.1145/3319535.3339814

Everest Global, Inc. 2021. Confidential Computing - The Next
Frontier in Data Security. https://confidentialcomputing.io/wp-
content/uploads/sites/85/2021/10/Everest_Group_-_Confidential _
Computing_-_The_Next_Frontier_in_Data_Security_-_2021-10-
19.pdf Accessed Dec, 20 2022.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, et al. 2018. Azure Accelerated Net-
working: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI'18).

Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. 2022. Hecate: Lifting
and Shifting On-Premises Workloads to an Untrusted Cloud. In Pro-
ceedings of the 29th ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS’22). https://doi.org/10.1145/3548606.3560592
Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured
Routines: Language-based Construction of Trusted Execution Envi-
ronments. In Proceedings of the 2019 USENIX Annual Technical Con-
ference (USENIX ATC’19). http://www.usenix.org/conference/atc19/
presentation/ghosn

Google, Inc. 2022. Encryption in transit (Whitepaper). https://cloud.
google.com/docs/security/encryption-in-transit Accessed Jan, 28 2023.
Yonatan Gottesman and Yoav Etsion. 2016. NeSC: Self-virtualizing
nested storage controller. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’16).

Johannes Goétzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller.
2017. Cache Attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security (EuroSec’17). https://doi.org/10.1145/
3065913.3065915

Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo Chen.
2022. A Hardware-Software Co-design for Efficient Intra-Enclave Iso-
lation. In Proceedings of the 31st USENIX Security Symposium (USENIX
Security’22). https://www.usenix.org/conference/usenixsecurity22/
presentation/gu-jinyu

Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis-
nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann,
and Alex Richardson. 2015. Clean Application Compartmentaliza-
tion with SOAAP. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS’15). https:
//doi.org/10.1145/2810103.2813611

Gygabyte. 2022. GIGABYTE Leads and Reveals the First PCle 5.0 SSD.
https://www.gigabyte.com/Press/News/2017

Marcus Hahnel, Weidong Cui, and Marcus Peinado. 2017. High-
Resolution Side Channels for Untrusted Operating Systems. In Pro-
ceedings of the 2017 USENLX Conference on Usenix Annual Technical
Conference (USENIX ATC’17).

Felicitas Hetzelt, Martin Radev, Robert Buhren, Mathias Morbitzer, and
Jean-Pierre Seifert. 2021. VIA: Analyzing Device Interfaces of Protected
Virtual Machines. In Proceedings of the 37th Annual Computer Security
Applications Conference (ACSAC ’21). https://doi.org/10.1145/3485832.
3488011

Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena.
2015. Identifying Arbitrary Memory Access Vulnerabilities in Privilege-
Separated Software. In Proceedings of the 20th European Symposium on
Research in Computer Security (ESORICS’15).

Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang,
Gang Tan, Trent Jaeger, and Anton Burtsev. 2022. KSplit: Automating
Device Driver Isolation. In Proceedings of the 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’22). https:
//www.usenix.org/conference/osdi22/presentation/huang-yongzhe

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
https://cdrdv2.intel.com/v1/dl/getContent/742542
https://cdrdv2.intel.com/v1/dl/getContent/742542
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.rfc-editor.org/rfc/rfc1825
https://doi.org/10.1145/2799647
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145
https://www.informit.com/articles/article.aspx?p=1160234&seqNum=3
https://www.informit.com/articles/article.aspx?p=1160234&seqNum=3
https://confidentialcomputing.io/members/
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3319535.3339814
https://doi.org/10.1145/3319535.3339814
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/10/Everest_Group_-_Confidential_Computing_-_The_Next_Frontier_in_Data_Security_-_2021-10-19.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/10/Everest_Group_-_Confidential_Computing_-_The_Next_Frontier_in_Data_Security_-_2021-10-19.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/10/Everest_Group_-_Confidential_Computing_-_The_Next_Frontier_in_Data_Security_-_2021-10-19.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/10/Everest_Group_-_Confidential_Computing_-_The_Next_Frontier_in_Data_Security_-_2021-10-19.pdf
https://doi.org/10.1145/3548606.3560592
http://www.usenix.org/conference/atc19/presentation/ghosn
http://www.usenix.org/conference/atc19/presentation/ghosn
https://cloud.google.com/docs/security/encryption-in-transit
https://cloud.google.com/docs/security/encryption-in-transit
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/usenixsecurity22/presentation/gu-jinyu
https://www.usenix.org/conference/usenixsecurity22/presentation/gu-jinyu
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/2810103.2813611
https://www.gigabyte.com/Press/News/2017
https://doi.org/10.1145/3485832.3488011
https://doi.org/10.1145/3485832.3488011
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe

HotOS ’23, June 22-24, 2023, Providence, RI, USA

(32]

(33]

[34

=

(35

=

(36]

(37

—

(38

[t

(39]

[40

=

[41]

[42

—

[43]

[44

[l

[45

[

[46]

Intel Corporation. 2021. Intel(R) Trust Domain Extensions White
Paper. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-trust-domain-extensions.html Accessed Dec, 19 2022.
Mustakimur Rahman Khandaker, Yuegiang Cheng, Zhi Wang, and
Tao Wei. 2020. COIN Attacks: On Insecurity of Enclave Untrusted
Interfaces in SGX. In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS20).

Hugo Lefeuvre, Vlad-Andrei Badoiu, Yi Chien, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. 2023. Assessing the Impact of Inter-
face Vulnerabilities in Compartmentalized Software. In Proceedings
of the 30th Annual Network & Distributed System Security Symposium
(NDSS’23).

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lucian
Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. 2022. FlexOS: Towards Flexible OS Isolation. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22). https:
//doi.org/10.1145/3503222.3507759

Tom Lendacky. 2017. x86/mm: Add DMA support for SEV
memory encryption. https://github.com/torvalds/linux/commit/
d7b417£a08d1187923¢270bc33a3555¢c2fcff8b9 Accessed Feb, 1st 2023.
Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan G6tz. 2004.
Unmodified Device Driver Reuse and Improved System Dependability
via Virtual Machines. In Proceedings of the 6th USENLX Conference on
Operating Systems Design and Implementation (OSDI’04).

Mengyuan Li, Yinqian Zhang, Zhigiang Lin, and Yan Solihin. 2019.
Exploiting Unprotected I/O Operations in AMD Secure Encrypted
Virtualization. In Proceedings of the 28th USENIX Security Symposium
(USENIX Security’19).

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Ridiger Kapitza, Christof Fetzer, and Peter Pietzuch.
2017. Glamdring: Automatic Application Partitioning for Intel SGX. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC’17).

Microsoft Corporation. 2023. snmalloc: Message passing based alloca-
tor. https://github.com/microsoft/snmalloc/tree/main/docs/security
Accessed Feb, 1st 2023.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020.
Retrofitting Fine Grain Isolation in the Firefox Renderer. In Proceedings
of the 29th USENIX Security Symposium (USENIX Security’20). https://
www.usenix.org/conference/usenixsecurity20/presentation/narayan
Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating
System with Kernel Virtualization. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP’13). https://doi.org/
10.1145/2517349.2522719

Andrea Parri. 2022. hv_netvsc: Add validation for untrusted Hyper-V
values. https://lkml.org/lkml/2020/9/16/380 Accessed Jan, 30 2023.
Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
2018. SafeBricks: Shielding Network Functions in the Cloud. In Pro-
ceedings of the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18).

Martin Radev and Mathias Morbitzer. 2021. Exploiting Interfaces of
Secure Encrypted Virtual Machines. In Proceedings of the 4th Reversing
and Offensive-oriented Trends Symposium (ROOTS’20). https://doi.org/
10.1145/3433667.3433668

Kui Ren, Cong Wang, and Qian Wang. 2012. Security Challenges
for the Public Cloud. IEEE Internet Computing 16, 1 (2012). https:
//doi.org/10.1109/MIC.2012.14

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Lefeuvre et al.

Rescorla, E. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. https://www.rfc-editor.org/rfc/rfc8446 Accessed Jan, 28 2023.
Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review 42, 5 (2008), 95-103.
Mark Russinovich et al. 2019. CCF: A Framework for Building Confiden-
tial Verifiable Replicated Services. Technical Report. Microsoft Research
and Microsoft Azure. https://github.com/microsoft/CCF/blob/main/
CCF-TECHNICAL-REPORT.pdf

Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall,
Antoine Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas
Bhatia. 2021. Toward Confidential Cloud Computing. Commun. ACM
64, 6 (2021). https://doi.org/10.1145/3453930

Vasily A. Sartakov, Daniel O’Keeffe, David Eyers, Lluis Vilanova,
and Peter Pietzuch. 2021. Spons & Shields: Practical Isolation for
Trusted Execution. In Proceedings of the 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE’21).
https://doi.org/10.1145/3453933.3454024

Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi
Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient
Multitasking Inside a Single Enclave of Intel SGX. In Proceedings of the
25th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’20). https://doi.org/10.
1145/3373376.3378469

Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. 2015. Se-
curing Self-Virtualizing Ethernet Devices. In Proceedings of
the 24th USENIX Security Symposium (USENLX Security’15).
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/smolyar

Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eg-
gers. 2002. Nooks: An Architecture for Reliable Device Drivers. In
Proceedings of the 10th ACM SIGOPS European Workshop (EW’10).
https://doi.org/10.1145/1133373.1133393

Jorg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod
Bhatotia, and Peter Pietzuch. 2021. Rkt-Io: A Direct I/O Stack for
Shielded Execution. In Proceedings of the 16th European Conference
on Computer Systems (EuroSys’21). https://doi.org/10.1145/3447786.
3456255

The kernel development community. 2023. dm-crypt: Linux kernel
device-mapper crypto target. https://www.kernel.org/doc/html/latest/
admin-guide/device-mapper/dm-crypt.html Accessed Jan, 28 2023.
The kernel development community. 2023. Filesystem-level encryption
(fscrypt). https://www.kernel.org/doc/html/latest/filesystems/fscrypt.
html Accessed Jan, 28 2023.

Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov,
Pramod Bhatotia, and Christof Fetzer. 2018. ShieldBox: Secure Middle-
boxes Using Shielded Execution. In Proceedings of the 2018 Symposium
on SDN Research (SOSR’18). https://doi.org/10.1145/3185467.3185469
Chia-che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada
Popa, and Donald E. Porter. 2020. Civet: An Efficient Java Partitioning
Framework for Hardware Enclaves. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security’20). https://www.usenix.org/
conference/usenixsecurity20/presentation/tsai

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient out-of-Order Execution. In Proceedings of the
27th USENIX Conference on Security Symposium (USENIX Security’18).
Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D.
Garcia, and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security
(CCS’19). https://doi.org/10.1145/3319535.3363206

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1145/3503222.3507759
https://github.com/torvalds/linux/commit/d7b417fa08d1187923c270bc33a3555c2fcff8b9
https://github.com/torvalds/linux/commit/d7b417fa08d1187923c270bc33a3555c2fcff8b9
https://github.com/microsoft/snmalloc/tree/main/docs/security
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/2517349.2522719
https://lkml.org/lkml/2020/9/16/380
https://doi.org/10.1145/3433667.3433668
https://doi.org/10.1145/3433667.3433668
https://doi.org/10.1109/MIC.2012.14
https://doi.org/10.1109/MIC.2012.14
https://www.rfc-editor.org/rfc/rfc8446
https://github.com/microsoft/CCF/blob/main/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/main/CCF-TECHNICAL-REPORT.pdf
https://doi.org/10.1145/3453930
https://doi.org/10.1145/3453933.3454024
https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3373376.3378469
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/smolyar
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/smolyar
https://doi.org/10.1145/1133373.1133393
https://doi.org/10.1145/3447786.3456255
https://doi.org/10.1145/3447786.3456255
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html
https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html
https://doi.org/10.1145/3185467.3185469
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://doi.org/10.1145/3319535.3363206

Towards (Really) Safe and Fast Confidential 1/0

[62] Anthony Velte and Toby Velte. 2009. Microsoft virtualization with
Hyper-V. McGraw-Hill, Inc.

[63] Laurent Vivier. 2022. Virtio-net failover: An introduction. https:
//www.redhat.com/en/blog/virtio-net-failover-introduction Accessed
Jan, 30 2023.

[64] Jason Wang and Ariel Adam. 2022. Hardening Virtio for emerging
security use cases. https://www.redhat.com/en/blog/hardening-virtio-
emerging-security-usecases Accessed Jan, 30 2023.

[65] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W

Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,

Khilan Gudka, Ben Laurie, et al. 2015. CHERI: A hybrid capability-

system architecture for scalable software compartmentalization. In

2015 IEEE Symposium on Security and Privacy (S&P’15).

Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisen-

barth. 2020. SEVurity: No Security Without Integrity : Breaking

(66

=

[67]

[68]

[69]

HotOS ’23, June 22-24, 2023, Providence, RI, USA

Integrity-Free Memory Encryption with Minimal Assumptions. In
2020 IEEE Symposium on Security and Privacy (S&P’20). https:
//doi.org/10.1109/SP40000.2020.00080

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In 2015 IEEE Symposium on Security and Privacy (S&P’15).
https://doi.org/10.1109/SP.2015.45

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad
Zuck. 2021. Rowhammering Storage Devices. In Proceedings of the 13th
ACM Workshop on Hot Topics in Storage and File Systems (HotStorage
"21). https://doi.org/10.1145/3465332.3470871

Zhe Zhou, Zhou Li, and Kehuan Zhang. 2017. All Your VMs Are Dis-
connected: Attacking Hardware Virtualized Network. In Proceedings of
the 7th ACM Conference on Data and Application Security and Privacy
(CODASPY’17). https://doi.org/10.1145/3029806.3029810

https://www.redhat.com/en/blog/virtio-net-failover-introduction
https://www.redhat.com/en/blog/virtio-net-failover-introduction
https://www.redhat.com/en/blog/hardening-virtio-emerging-security-usecases
https://www.redhat.com/en/blog/hardening-virtio-emerging-security-usecases
https://doi.org/10.1109/SP40000.2020.00080
https://doi.org/10.1109/SP40000.2020.00080
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/3465332.3470871
https://doi.org/10.1145/3029806.3029810

	Abstract
	1 Introduction
	2 Challenges of Confidential I/O Interfaces
	2.1 Trust Model
	2.2 Ideal Confidential I/O Properties
	2.3 Confidential I/O: Divide and Rule
	2.4 P1: I/O Trust Boundary Location
	2.5 P2: Designing a Secure I/O Interface

	3 Making Confidential I/O Right
	3.1 P1: Plugging at the Right Interface Level
	3.2 P2: Achieving Strong I/O Boundaries
	3.3 Discussion: Beyond Networking
	3.4 Discussion: Direct Device Assignment

	4 Conclusion
	References

