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Additive Gaussian Processes Revisited

Xiaoyu Lu 1 Alexis Boukouvalas 1 James Hensman 1

Abstract

Gaussian Process (GP) models are a class of flex-

ible non-parametric models that have rich rep-

resentational power. By using a Gaussian pro-

cess with additive structure, complex responses

can be modelled whilst retaining interpretabil-

ity. Previous work showed that additive Gaus-

sian process models require high-dimensional in-

teraction terms. We propose the orthogonal ad-

ditive kernel (OAK), which imposes an orthog-

onality constraint on the additive functions, en-

abling an identifiable, low-dimensional represen-

tation of the functional relationship. We connect

the OAK kernel to functional ANOVA decompo-

sition, and show improved convergence rates for

sparse computation methods. With only a small

number of additive low-dimensional terms, we

demonstrate the OAK model achieves similar or

better predictive performance compared to black-

box models, while retaining interpretability.

1. Introduction

Gaussian Processes (GPs) can be used to construct additive

models by using the property that a sum of two GPs results

in a new GP with a kernel function defined as the sum of

the original ones. Using an additive structure in a Gaus-

sian process model is enticing from an explainability stand-

point, since one can use the linear properties of the GP to

perform inference over the added components, which can

yield insights into the data. For datasets with more than one

input dimension, it is straight-forward to build GP models

as a sum of one-dimensional functions, or known pairs (or

triplets, etc.) of interacting inputs. In the statistics litera-

ture, Generalized Additive Models (GAMs) (Hastie & Tib-

shirani, 2017; Wood, 2017), are often built using sums of

splines over either each input independently or over care-

fully selected sets of inputs.
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From the standpoint of explainable and interpretable ma-

chine learning, additive Gaussian processes such as those

considered within Kaufman & Sain (2010); Duvenaud et al.

(2011); Timonen et al. (2021) offer the promise of auto-

matically discovering relevant features and combinations

of features, through learning of a kernel with parameterized

additive structure. In particular, Duvenaud et al. (2011) pro-

posed a kernel which allows additive interactions of all or-

ders, ranging from first order terms to the interactions be-

tween all the features. An efficient computation scheme

was proposed for avoiding the exponentially large sum re-

quired over combinations.

In this work, we build on and challenge the findings of Du-

venaud et al. (2011), where the experimental results sug-

gest that high order terms are required to model some of

the regression and classification datasets. We show that

the dimensionality of the models constructed is consider-

ably higher than necessary: for example, their model of the

8-dimensional pumadyn dataset requires an 8-dimensional

interaction whereas our proposed model requires only 2-

dimensional interactions (see Figure 1). A full comparison

on all the datasets used in Duvenaud et al. (2011) is pro-

vided in Section 5.1: in all cases, we find that a small num-

ber of low-dimensional terms are needed to achieve similar

or better performance. We posit that the high dimensional

nature of their models are due to two issues: an identifi-

ability issue with the summed components; and the way

that the contribution of a component to the overall model is

measured.

We solve the identifiability issue by borrowing an idea from

Durrande et al. (2012), where the components of the addi-

tive model are orthogonalized. We call the resulting ker-

nel orthogonal additive kernel (OAK), which can produce

highly parsimonious models of the datasets studied in Du-

venaud et al. (2011), as well as more recent larger datasets.

Plumlee & Joseph (2018) tackles a slightly different iden-

tifibality issue by proposing a GP whose stochastic part

is orthogonal to the mean part. We measure the contribu-

tion of any component to the overall model using a Sobol

index (Sobol, 1993; Owen, 2014) which is shown to be

analytic for the OAK model. We see in Section 5.1 that

the pumadyn dataset can be modelled using a sum of only

three components – one two-dimensional interaction func-

tion and two one-dimensional functions. These parsimo-

http://arxiv.org/abs/2206.09861v1
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Figure 1. Visualization of the decomposed functions with highest Sobol indices for the pumadyn dataset. On the horizontal axis we plot

different feature xi, on the vertical aixs is its corresponding function fi. For two-way interaction terms, a contour plot is used. Grey bars

represent histograms of input features, black solid lines represent posterior mean GP, blue shaded area represents ± 2 standard deviations

confidence interval from the GP model. R̃ in the brackets represent (normalized) Sobol indices. We can observe that over 99% of the

variance can be explained with only these three terms: two first order terms and one interaction term between them. We reach optimal

model performance with only these three terms (Figure 5).

nious models are highly explainable since each effect of

a component can be examined in a simple plot, yet the

model remains powerful: the predictive performance is on

par with or better than either the original additive model or

a full squared exponential GP model. In a case study on the

SUSY physics dataset (Section 5.2), our method produces

a low dimensional model with only ten one-dimensional

and two-dimensional terms that outperforms the dropout-

based neural network baseline. On another case study of

a contemporary dataset of customer churn (Section 5.3),

our method outperforms the XGBoost baseline whilst pro-

viding low-dimensional components that offer insights into

business problems.

Finally, since the OAK method is using a new kernel within

a standard GP formulation, we are able to scale the method

using sparse GP methods. We show in Section 3.5 that

the scalability of a sparse GP with the OAK kernel is fa-

vorable to that of a squared exponential kernel, since the

eigenspectrum of our low dimensional model is more eas-

ily represented by an inducing point formulation. We build

on recent work (Burt et al., 2019) to show increased conver-

gence rates for sparse GPs with our proposed kernel.

Our main contribution is to combine the orthogonality con-

straint in Durrande et al. (2012) with the additive model

in Duvenaud et al. (2011) that utilizes the Newton-Girard

trick, where computationally complexity scales polynomi-

ally rather than exponentially with the number of features.

We draw the link to functional ANOVA (FANOVA) de-

composition (Owen, 2014; Chastaing & Le Gratiet, 2015;

Ginsbourger et al., 2016) and quantify the contribution of

each component with analytic Sobol indices. We have con-

ducted extensive sets of regression and classification exper-

iments to show its practical value. The resulting model is

parsimonious and interpretable, requiring minimal model

tuning.

The remainder of this manuscript is organized as fol-

lows. In Section 2 we recap the additive model

used in Duvenaud et al. (2011) and propose OAK in

Section 3. We introduce Sobol index in Section 4

and discuss its relationship with functional ANOVA de-

composition and OAK. Experimental results are given

in Section 5 and we conclude in Section 6. Our

code is available at https://github.com/amzn/

orthogonal-additive-gaussian-processes.

2. Background and Related Work

We are interested in modeling output y as a function of D-

dimensional input features x := (x1, · · ·xD) with a hidden

function f(x). Duvenaud et al. (2011) considers building a

GP model with the additive structure:

f(x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2)

+ · · ·+ f12...D(x1, x2, · · ·xD). (1)

In a GP model, the additive structure of the function de-

composition is enforced through the structure of the kernel,

whose decomposition can be constructed as follows: first

assign each dimension i ∈ {1...D} a one-dimensional base

kernel ki(xi, x
′
i); then define the first order, second order

and dth order additive kernel as:

kadd1
(x, x′) = σ2

1

D
∑

i=1

ki(xi, x
′
i) ,

kadd2
(x, x′) = σ2

2

D
∑

i=1

D
∑

j=i+1

ki(xi, x
′
i)kj(xj , x

′
j), (2)

kaddd
(x, x′) = σ2

d

∑

1≤i1≤i2≤···≤id≤D

[

d
∏

l=1

kil(xil , x
′
il)

]

,

with the kernel then constructed by summing over all of the

orders up to the dimensionality of the data. The parameters

σ2
d control the relative importance of high-dimensional and

https://github.com/amzn/orthogonal-additive-gaussian-processes
https://github.com/amzn/orthogonal-additive-gaussian-processes
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low-dimensional functions in the sum: we shall see later in

this work that the high-order terms can be set to zero for

all the datasets we consider using our proposed method, ef-

fectively truncating the sum. Although there can be a very

large number of terms in the kernel, Duvenaud et al. (2011)

proposed an algorithm based on the Newton-Girard iden-

tity to efficiently compute the kernel in polynomial time,

see detailed algorithm in Appendix A.

When it comes to measuring the importance of each inter-

action, Duvenaud et al. (2011) proposed considering the

estimated parameters σ2
d . In Section 3 we show through

a simple example that these parameters are unidentifiable.

We follow a different approach using Sobol indices (e.g.

Sobol, 1993; Muehlenstaedt et al., 2012; Owen, 2014) to

weigh the importance of different components of the con-

struction.

Imposing an orthogonal constraint on additive kernel com-

ponents was proposed by Durrande et al. (2012) and ex-

tended in Durrande et al. (2013) and Märtens (2019). De-

noting the constrained kernel by k̃, the kernel was con-

structed in the form k(x,x′) =
∏D

d=1(1 + k̃d(xd, x
′
d)),

which does not allow for control of the importance of differ-

ent orders, cf. (2), and they did not apply the kernel in the

context of GP regression, so were not able to learn kernel

parameters. Märtens et al. (2019) also extended Durrande

et al. (2012), building low-dimensional latent variable mod-

els where the latent and observed features are orthogonal.

In the current paper, we focus on the interpretability and

parsimony of the orthogonal models for regression and clas-

sification tasks in a practical setting. In particular, we

extend to large numbers of features through the efficient

Newton-Girard procedure of Duvenaud et al. (2011).

3. Orthogonality

With the decomposition in (1), we may learn different mod-

els that give the same predictions: this is due to the non-

identifiability of the summed functions (Ginsbourger et al.,

2008; Märtens, 2019). Assume a two-dimensional prob-

lem:

f(x1, x2) = f1(x1) + f2(x2) , (3)

with the true functional decomposition f1 and f2, then

f(x1, x2) = (f1(x1) + ∆) + (f2(x2)−∆) (4)

is a valid decomposition for any value of ∆. In other

words, there are infinitely many possible decompositions

of f . This is not desirable because it makes interpretability

difficult: which of the decompositions should one choose?

Moreover, higher order terms can absorb effects from lower

order terms and one may learn a model that is more com-

plicated than needed, as we will now illustrate.

Take a two-dimensional example with true decomposition:

f(x1, x2) = x2
1 − 2x2 + cos(3x1) sin(5x2) . (5)

We sample x1 and x2 uniformly on (−1, 1) and generate

y ∼ f(x1, x2) + ǫ with f in (5) and ǫ ∼ N (0, 0.01).
We then fit an additive GP model (Duvenaud et al., 2011)

with squared exponential base kernels. We learn the ker-

nel parameters and likelihood (noise) variance using maxi-

mum likelihood. The experiment is repeated with 9 random

seeds and three unique local optima (i.e., 3 sets of hyperpa-

rameters) are discovered. We show posterior functions for

one of the local optima in Figure 2 (top) (details in Ap-

pendix I).

In Figure 2 (top) we observe that the functions f1 and

f2 have large (marginal) variance, meaning the model is

less certain in isolating individual effects from other terms.

In Figure 2d, we plot the interaction term with respect

to x1 by taking the average of f12(x1, x2) over x2, i.e.,

EX2
[f12(x1, x2)]. Figure 2e is a similar plot of x2 by

marginalizing out x1. The quadratic shape in Figure 2d

and the linear trend in Figure 2e show that the interaction

term is capturing the individual effect of f1 and f2. In other

words, higher order terms absorb the effect of lower order

terms. The reverse can also be true, see Appendix I.

3.1. GP with Orthogonal Additive Kernel

To mitigate the identifiability problem, we incorporate an

idea from Durrande et al. (2012), where a constraint is

used on each base kernel such that the integral of each

function {fi}Di=1 with respect to the input measure is zero.

For f with non-zero mean, the offset can be modelled

using a constant kernel, resulting in a unique decompo-

sition. Our model takes the same form as (1), except

adding an additional GP f0 with constant kernel. Define

[D] := {1, · · · , D}, we constrain each fi to satisfy the or-

thogonality constraint:

∫

Xi

fi(xi)pi(xi)dxi = 0, (6)

for i ∈ [D], where Xi and pi are the sample space and the

density for input feature xi respectively.

We now describe how we can construct the kernel for each

fi. For each feature i with base kernel ki, it can be shown

that conditioning on Si :=
∫

fi(xi)pi(xi)dxi = 0, the pro-

cess f is another GP with a modified kernel k̃i:

fi(·)
∣

∣

∣

∣

∫

fi(xi)pi(xi)dxi = 0 ∼ GP(0, k̃i), (7)
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Figure 2. Illustration of the non-identifiability of the additive GP model in Duvenaud et al. (2011) on the two-dimensional problem.

Top row: additive GP model; bottom row: OAK model. Red and blue lines represent the true and learned posterior mean functions

respectively, blue shaded area represent ±2 standard deviation. From left to right: posterior of f1 and f2; posterior mean of f12;

marginal plot for f1 in the interaction term (EX2
[f12(x1, x2)]); marginal plot for f2 in the interaction term (EX1

[f12(x1, x2)]). Note

how the quadratic shape in Figure 2a and the linear trend in Figure 2b are captured in the higher order terms (Figure 2d and 2e). OAK

correctly identifies the true additive components with smaller uncertainties. Note that the constant gap between the truth and OAK in

Figure 2f is expected and is captured with the constant kernel.

where

k̃i(xi, x
′
i) =ki(xi, x

′
i)− E[Sifi(xi)]E[S

2
i ]

−1E[Sifi(x
′
i)] ,

E[Sifi(·)] =
∫

pi(xi)ki(xi, ·)dxi ,

E[S2
i ] =

∫ ∫

pi(xi)pi(x
′
i)ki(xi, x

′
i)dxidx

′
i . (8)

We call k̃i the constrained kernel. For higher order interac-

tion terms, we desire the constraint
∫

Xi
fu(xu)pi(xi)dxi =

0 ∀i ∈ u where xu := {xi}i∈u. This is achieved by simply

taking the product of one-dimensional constrained kernels:

for any u ⊆ [D],

k̃u(x, x
′) =

∏

i∈u

k̃i(xi, x
′
i). (9)

A function fu drawn from a GP with the constrained kernel

k̃u satisfies the orthogonality condition assuming indepen-

dent input features, see proof in Appendix B.

Since the orthogonal construction can be achieved by us-

ing sums and products of kernels, we can construct our

model by plugging in the constrained kernel (8) to the sum

structure (2). We call this the Orthogonal Additive Kernel

(OAK). Note that under the orthogonality constraint, the

decomposition in (2) is identifiable since it is precisely the

FANOVA decomposition, see details in Section 4.

3.2. Base Kernel

We choose to use a squared exponential kernel for continu-

ous features as the base kernel due to its analytic solution

with orthogonality constraints. Other kernel choices such

as the Matérn kernel also leads to analytic expressions for

the constrained kernel.

Specifically, for squared exponential base kernel ki
with unit variance and lengthscale li: ki(xi, x

′
i) =

exp
(

− (xi−x′

i)
2

2l2
i

)

, k̃i is analytic and has a closed form so-

lution when the input density pi is Gaussian, mixture of

Gaussian, uniform, categorical, or approximated with the

empirical distribution. We hereby give results in the case

of Gaussian measure: without loss of generality, assuming

one-dimensional x with p(x) = N (µ, δ2) where we drop

subscript i for simplicity, the constrained squared exponen-

tial k̃ is:

k̃(x, x′) := exp

(

− (x− x′)2

2l2

)

− l
√
l2 + 2δ2

l2 + δ2
×

exp

(

− ((x− µ)2 + (x′ − µ)2)

2(l2 + δ2)

)

. (10)

For other forms of input densities, please refer to Appendix

D. For categorical features, we can use the categorical ker-

nel and an empirical input density p (see Appendix C and

E).
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3.3. Normalizing Flow

To satisfy the Gaussian input density assumption, we use

a normalizing flow (Rezende & Mohamed, 2015) to trans-

form continuous input features to have an approximate

Gaussian density. This is achieved by applying a sequence

of bijective transformations on each feature, whose param-

eters are learnt by minimizing the KL divergence between

a standard Gaussian distribution and the transformed input

data. The parameters are then fixed before fitting the OAK

model on the transformed data with approximate Gaussian

densities. For details and ablation studies, see Appendix F

and J.5.

3.4. Illustration

We use the example from (5) to illustrate the constrained

model described above with results given in Figure 2 (bot-

tom). We have found that the GP model with the con-

strained squared exponential kernel is more stable as all

9 runs using different initial configurations converge to

the same hyperparameters as opposed to the unconstrained

model where we have found 3 local optima. We are able to

capture the correct form of first order terms and the interac-

tion component, resulting in a better fit and better calibrated

uncertainty. Note that the constant gap (vertical shift) in

Figure 2f is expected since we constrained each function

to have zero mean with respect to the input density, and a

separate constant kernel is used to capture the gap due to

the non-zero mean of f .

3.5. Sparse GP with Inducing Points

When the number of data points N is big, GP inference

costs O(N3) in computation which is expensive. Varia-

tional inference with sparse GP can be used to reduce the

computational costs to O(NM2) where M is the number

of inducing variables (Titsias, 2009).

Burt et al. (2019) showed that the number of inducing

points M needed for sparse GP regression with normally

distributed inputs in D-dimensional space with the squared

exponential kernel is M = O(logDN).

In practice, one can limit the maximum order of interac-

tions to be D̃ ≤ D. For our additive model, the number of

kernels to be added is therefore
∑D̃

k=1

(

D
k

)

and the number

of inducing points needed is

D̃
∑

k=1

(

D

k

)

O(logkN) = O
((

D

D̃

)

logD̃N

)

.

The number of inducing points needed for OAK is smaller

than that for the non-orthogonal case. We also verify this

empirically on the pumadyn dataset with a 4:1 training-test

split. We compare our model with its non-orthogonal coun-

terpart as in (1) and a sparse GP model with squared ex-

ponential kernel. Results are displayed in Figure 3, where

OAK converges much faster and needs a smaller number of

inducing points to reach same/better test RMSE (additional

experiments can be found in Appendix J.7).

101 102 103

3.5

4

4.5

Number of Inducing Points

R
M

S
E

OAK

Additive

SE

Figure 3. Test RMSE versus number of inducing points for the

pumadyn dataset. Results are averaged over 5 repetitions, shaded

area represents ±1 standard deviation.

4. ANOVA Decomposition and Sobol Indices

Practitioners are often interested in the importance of fea-

tures in predicting the output. For example, f may be ex-

plained using only a small number of features or interac-

tions despite there being a large number of features. Global

sensitivity analysis (Saltelli et al., 2008) is a measure of im-

portance of input features, based on an analysis of variance

(ANOVA) decomposition. Sobol indices (Sobol’, 1990) are

one such measure for attributing value of an output to indi-

vidual features. We will see later that the Sobol indices are

analytic for the OAK model.

Functional ANOVA (FANOVA) (Hoeffding & Robbins,

1948; Stone, 1994; Huang, 1998) decomposes a function

f(x) into the form f(x) =
∑

u⊆[D] fu(xu), where fu only

depends on xj for j ∈ u and is defined recursively by

fu(x) =

∫

X−u

(

f(x)−
∑

v⊂u

fv(xv)

)

dP (x−u), (11)

where f∅(x) = E[f(x)], x−u denotes x excluding xu and

P (x) denotes the distribution of x. Applying the FANOVA

decomposition to our OAK construction in (1) and (8) re-

veals that the functions considered in OAK are precisely

the components of the FANOVA decomposition, see proof

in Appendix G.3. The FANOVA decomposition associates

each component with a variance. This variance is due to

disturbances on the input to the function: we denote it by

Vx[fu]. The orthogonality of OAK leads to the ANOVA

identity (Owen, 2014):

R := Vx[f(x)] =
∑

u⊆[D]

Ru, (12)

where Ru := Vx[fu(x)] is defined as the Sobol index for

feature set u. In other words, each Ru measures how much
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variance is explained by feature set u, measuring the im-

portance of the features. We normalize the Sobol indices

such that they sum up to 1 and denote the normalized Sobol

indices with R̃ in later sections. Similarly to Durrande

et al. (2012), to assess the relative importance of a com-

ponent of our model, we consider the Sobol index of the

posterior mean function associated with that component:

R̃u = Vx[mu(x)]
Vx[m(x)] , where mu and m denote the posterior

mean function of fu and f respectively. In particular,

mu(x) = σ2
|u|

(

⊙i∈uk̃i(xi,Xi)
)

K(X,X)−1y (13)

where K(X,X) denotes the training input covariance

across all inputs, Xi and y denote the i-th column of X

and the vector of output observations, σ2
|u| is the associated

variance parameter for the |u|-th order interaction and ⊙
denotes element-wise multiplication. A similar formula for

sparse GP can also be obtained. The Sobol index associated

with the input set u is therefore

Vx[mu(x)] = σ4
|u|y

⊤K(X,X)−1⊙i∈u (14)
(∫

k̃i(xi,Xi)k̃i(xi,Xi)
⊤dpi(xi)

)

K(X,X)−1y,

since Ex[mu(x)] = 0 due to the orthogonality constraint.

In case of 1) constrained squared exponential kernel and

a Gaussian measure or 2) binary/categorical kernel with

discrete measure, the integral is tractable and can be com-

puted analytically. More details can be found in Ap-

pendix G. Note that the Sobol index is not affected by our

normalizing-flow transformation of the input, see details in

Appendix G.4.

5. Experiments

Our experiment procedure runs as follows: we plug the

OAK kernel in the gpflow1 package, we then perform in-

ference on regression problems with gpflow.GPR (or

gpflow.SGPR for larger datasets); for classification

tasks, we use gpflow.SVGP for inference We place

a Gamma prior on the variance hyperparameters of the

kernel, which are estimated using Maximum a Posterior

(MAP). After learning the hyperparameters, we compute

the Sobol index for each term including all orders of in-

teractions up to the truncated order. Then we rank the im-

portance of each term according to their Sobol indices and

investigate how many terms are needed to give competitive

model performance. Details on the procedure can be found

in Appendix H.

We apply normalizing flows on all continuous features in

our experiments before fitting the GP model, except for the

1
https://github.com/GPflow/GPflow

Concrete dataset where the normalizing flow was not suffi-

cient to transform the data and we have reverted to an em-

pirical measure in this case. Empirically we have found

that the model performance is similar with or without the

normalizing flow, but the resulting model tends to be less

parsimonious without the flow. More details and an abla-

tion experimental study can be found in Appendix J.5.

We validate our model on a range of experiments, includ-

ing a set of regression and classification problems from

datasets used in Duvenaud et al. (2011) and additional UCI

datasets, a large scale SUSY experiment and a Churn mod-

elling problem. In our experiments we found OAK con-

tains lower order terms without loss in predictive accuracy

in contrast to Duvenaud et al. (2011) which finds higher or-

der effects across a range of regression and classification

problems. With OAK, only a small number of terms are

needed in the model despite the large number of features

available.

5.1. Baseline Experiments

We first duplicate the experiments in Duvenaud et al. (2011)

where the number of instances and dimensionality of each

dataset can be found in Appendix J.1. We use five-fold

cross-validation splits and compute test RMSE for regres-

sion and area-under-the-curve (AuC) errors for classifica-

tion datasets. We use a GP with a squared exponential

kernel as a baseline model to compare the performance

of OAK and the unconstrained additive GP model used in

Duvenaud et al. (2011). For regression datasets, we set

D̃ = D; for classification problems, we set D̃ = 4 except

the Sonar dataset with D̃ = 2 for computational considera-

tions. We found no significant differences in performance

between different models, see more details in Appendix J.

Often one is interested in understanding how much each

feature or interaction of features contribute in predicting

the output. For example, one may ask how much does the

3rd order interaction term affect the response, or whether

some feature is more important than others in explaining

the response. We first plot the cumulative Sobol index for

each order of interactions in Figure 4, which is defined as

the sum of Sobol indices for all terms in the same order.

The results indicate that most datasets only need low order

(< 3) interaction terms.

Importantly, despite there being a large number of terms

including all orders of interactions terms, we found that

only a few terms are needed in the model to reach com-

petitive performance. In Figure 5 we plot model perfor-

mance and cumulative Sobol as a function of the number

2For all the classification datasets, the cumulative (normal-
ized) Sobol indices for first order terms are found to be close to
1.

https://github.com/GPflow/GPflow
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Figure 4. Sum of normalized Sobol indices for each interaction order for UCI regression problems, where bars represent one standard

deviation across 5 cross-validation splits. All of the datasets require ≤ 3 order of interactions to explain the variance of the response,

indicating the OAK model is able to find low dimensional representation3 .
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Figure 5. Model performance and cumulative Sobol index versus number of terms added ranked by the Sobol index. We use test RMSE

and area-under-the-curve (AuC) as the evaluation metric for regression problems (top) and classification problems (bottom) respectively.

Red solid lines represent test RMSE (top) and test AuC (bottom), green dashed lines represent cumulative (normalized) Sobol index.

of terms added, where the terms to add are ranked by their

Sobol indices from highest to lowest. We report test RMSE

and AuC for regression and classification problems respec-

tively3 .

For each dataset with dimension D and truncated maxi-

mum order of interaction D̃, the total number of terms is
∑D̃

d=1

(

D
d

)

(127 for autoMPG and 41448 for ionosphere

datasets to give a sense of the scale, details in Appendix

J.2). We can observe the strong correlation between cu-

mulative Sobol index and model performance. Only a few

number of terms are needed before the model converges,

indicating further terms add little value and OAK is able

to find simple representations without loss of model per-

formance. We further verify its parsimony by comparing

the interaction order variance hyperparameter σ2
d , see Ap-

pendix J.4.

In particular, unlike in Duvenaud et al. (2011) where an 8-

dimensional interaction is required, we are able to reach the

same model performance with only two first order terms

and one second order term, which explain > 99% vari-

ance in f . Due to the advantages of low-dimensional rep-

3We used empirical measure for Concrete dataset as its input
feature distributions suggest.

resentation, we can visualise the decomposed functions

with highest Sobol indices easily (Figure 1). For complete-

ness, we have also conducted experiments with the kernel
∏

d(1 + k̃d) used in Duvenaud et al. (2011), but using the

constrained k̃d. We found this kernel is harder to optimize

and numerically less stable; the model performance is sim-

ilar but the resulting model is less parsimonious (see Ap-

pendix J.6).

We conduct further experiments on an extensive range

of benchmark datasets (Salimbeni, 2018) with results dis-

played in Table 1. We show summary statistics includ-

ing the average, median and rank across the datasets. For

regression tasks we report test RMSE and log likelihood

whereas for classification tasks we report test accuracy and

log likelihood. We found the performance of OAK is on

par or better compared with other methods. Detailed perfor-

mance metrics on each dataset can be found in Appendix K.

5.2. SUSY Classification

In the next experiment we tackle a large-scale binary classi-

fication problem. The super-symmetric (SUSY4) dataset

4archive.ics.uci.edu/ml/datasets/SUSY

https://archive.ics.uci.edu/ml/datasets/SUSY
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Regression RMSE

Aggregation OAK Linear SVGP SVM KNN GBM AdaBoost MLP

avg 0.475 6.157 0.478 0.484 0.518 0.455 0.581 0.445
median 0.376 0.736 0.397 0.419 0.454 0.343 0.580 0.361
avg rank 3.583 6.625 4.083 4.208 4.958 3.208 5.750 3.583

Regression Log Likelihood
avg -0.229 -0.946 -0.295 -0.585 -0.638 -0.652 -0.730 -0.891
median -0.409 -1.096 -0.512 -0.609 -0.738 -0.671 -0.875 -0.471
avg rank 5.583 3.625 5.042 4.833 3.917 4.292 3.583 5.125

Classification Accuracy
avg 0.872 0.835 0.859 0.857 0.836 0.870 0.859 0.863
median 0.898 0.832 0.864 0.850 0.863 0.900 0.892 0.873
avg rank 5.569 4.224 4.741 4.500 2.983 5.224 4.207 4.552

Classification Log Likelihood
avg -0.267 -0.338 -0.291 -0.306 -0.899 -0.283 -0.459 -0.306
median -0.280 -0.389 -0.307 -0.352 -1.088 -0.256 -0.584 -0.362
avg rank 5.862 4.276 5.931 4.690 2.138 5.379 2.897 4.828

Table 1. Experimental results on additional benchmark datasets. Average results over 24 regression datasets shown in terms of test RMSE

and log likelihood (top two blocks). Average results over 29 classification datasets shown in terms of accuracy and log likelihood (bottom

two blocks). Higher is better except for RMSE. SVGP=Stochastic Variational GP, using GPflow (Hensman et al., 2015); SVM=Support

Vector Machine, KNN=K-nearest-neighbours, GBM=Gradient Boosting Machine, MLP=Multi-layer Perceptron (all using Scikit-learn

defaults). Results compiled using the Bayesian Benchmarks repo (Salimbeni, 2018). Full results are shown in Appendix K.

contains 5 million instances with 8 low level kinematic

properties, where the task is to predict whether a signal pro-

cess produces super-symmetric particles or not. We trun-

cate D̃ = 2 for computational consideration.
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Figure 6. AuC as a function of number of terms added ranked

by their Sobol indices for the SUSY (left) and Churn modelling

(right) experiments. Red solid lines and green dashed lines repre-

sent test AuC and cumulative (normalized) Sobol respectively.

We use the same training-test split as in Dutordoir et al.

(2020). We fit a sparse variational GP (SVGP) model with

OAK and optimize the variational parameters and hyper-

parameters with natural gradients and Adam respectively.

Number of inducing points and mini batch size are set to

be 800 and 1024 respectively.

Model performance are reported in Table 2 where the OAK

model achieves similar or better performance compared

with other deep learning models. Top 10 important func-

tional components are displayed in Figure 7, which con-

tain five first order terms and five second order terms. In

particular, a signal process is more likely to produce super-

symmetric particles if there is higher missing energy mag-

nitude; higher lepton 1 pT or lower lepton 2 pT. For lepton

1 eta or lepton 2 eta, the probability first increases and then

decreases with increasing values of eta. In Figure 6a we can

SUSY Churn

Method AuC Method AuC

BDT* 0.850 ± 0.003 XGBoost 0.853 ± 0.008

NN* 0.867 ± 0.002 MLP* 0.846 ± 0.013

NNdropout* 0.856 ± 0.001 Sparse MLP* 0.828 ± 0.007

SVGP(SE)* 0.852 ± 0.002 TabTransformer* 0.856 ± 0.005

VISH* 0.859 ± 0.001 TabNet* 0.785 ± 0.024

OAK 0.865 ± 0.0004 OAK 0.856 ± 0.009

Table 2. Performance comparison for SUSY (left) and Churn

modelling (right). The mean AuC is reported with one standard

deviation, with 5 repetitions (SUSY) and 5 cross-validation splits

(Churn) respectively. Larger is better. Results with * are quoted

from Dutordoir et al. (2020) and Huang et al. (2020).

observe that with these 10 terms, we are able to reach the

optimal AuC and capture 96% of the variance in f . This

further shows that the OAK model is able to reach com-

petitive performance while having a simple, interpretable

representation.

5.3. Churn Modelling

Next we look at Churn Modelling problem available from

Kaggle5. This data set contains details of a bank’s cus-

tomers where the goal is to predict whether the customer

leaves the bank or continues to be a customer. There are 10

features including a mix of continuous and categorical vari-

ables such as age, gender, credit score, etc.. We truncate

the maximum order of interactions to be 2 for computa-

tional consideration. We compare model performance with

XGBoost, MLP, TabNet and TabTransformer with the same

training-test split (4:1) as in Huang et al. (2020). Test AuC

are reported in Table 2. We outperform or are as accurate

as all of the baseline models with increased interpretability.

In Figure 6b we observe that only ≈ 5 terms are needed

5www.kaggle.com/shrutimechlearn/churn-modelling

https://www.kaggle.com/shrutimechlearn/churn-modelling
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Figure 7. Decomposition of top 10 important functions for SUSY dataset, ranked by their Sobol indices. Blue shaded area represents

uncertainties with two standard deviation. Grey shaded area represent histograms of input features. R̃ in the brackets denote (normalized)

Sobol index. Missing energy magnitude and lepton 1 pT are the two most important features which explain ≈ 70% of the variance in the

model f , and they both have a positive impact where a signal process is more likely to produces semi-symmetric particles when missing

energy magnitude and lepton 1 pT are high.
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Figure 8. Decomposition of top 5 important functions for Churn dataset, ranked by their Sobol indices. Blue shaded area represents

uncertainties with two standard deviation. R̃ in the brackets denote (normalized) Sobol index. Age is the most important feature in

predicting whether a customer leaves the bank or not, typically as one gets older (but younger than 55), he/she is more likely to leave the

bank. Non-active members, female customers and German customers are more likely to leave the bank compared to their counterparts.

The interaction between age and whether a customer is active also contributes to the probability: older non-active customers and younger

active customers are more likely to churn.

for the model to achieve optimal performance. We plot the

top 5 important features/interactions in Figure 8 based on

Sobol indices, which contain four first order terms and one

interaction term between Age and IsActiveMember with

the following insights: Age is the most important feature

in predicting whether a customer leaves the bank, and gen-

erally the older a person is, more likely they will leave the

bank; more active members are less likely to leave; German

people are more likely to leave compared with French and

Spanish; women are more likely to leave compared with

men. The interaction between Age and IsActiveMember

says that for less active customers, older people are more

likely to leave the bank whereas for active members, older

customers are more likely to stay.

6. Conclusion

In this work, we have proposed a Gaussian process model

with orthogonal additive kernel (OAK) that enables infer-

ence of low-dimensional representations that are identifi-

able and interpretable. The resulting model has an analytic

form for the Sobol indices which can be used to rank im-

portance of features and interactions. We have shown that

the OAK model allows inference of low-dimensional repre-

sentations whilst achieving state-of-the-art predictive per-

formance on a range of both regression and classification

tasks. We are surprised to find out all the datasets we have

experimented with can be modelled using low dimensional

functions.

One limitation of our work is that we implicitly assumed in-

dependence between input features and independent, iden-

tically distributed Gaussian noise. Future work can extend

our approach to non-independent input features and exam-

ine the effect of heteroscedastic noise using latent variable

models. Another interesting direction of work is to extend

OAK to Bayesian optimization and experimental design

leveraging the inferred low-order representation.
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A. Newton-Girard Method for Computing the Interacting Kernel

Algorithm 1 Newton-Girard method for computing the interacting kernel

Input: input dimension D
Input: maximum interaction order D̃
Input: base kernels kd(·, ·), d = 1 . . .D
Input: order variances σl, l = 0 . . . D̃
Data: input data X

Output: kernel matrix K

for d = 1 . . .D do

Kd[i, j] = kd(xi,d, xj,d)
end for

for ℓ = 0 . . . D̃ do

Sℓ =
∑D

d=1 K
ℓ
d

end for

E0 = 1[N,N ]

for ℓ=1. . . D̃ do

Eℓ =
1
ℓ

∑ℓ
k=1(−1)k−1Eℓ−k ⊙ Sk

end for

K =
∑D̃

ℓ=0 σℓ ×Eℓ

B. Orthogonality in Higher Dimension

For higher order terms, recall OAK uses the product of constrained kernels (equation (9)):

k̃u(x, x
′) =

∏

i∈u

k̃i(xi, x
′
i). (15)

We show the product of constrained kernel satisfies the orthogonality constraint in higher dimensions, i.e.,∀i ∈ u,

∫

Xi

fu(xu)pi(xi)dxi = 0 (16)

where each functional component fu has kernel ku.

Proof. By construction, for each function i with constrained kernel k̃i, fi satisfies the orthogonality constraint Si :=
∫

Xi
fi(xi)pi(xi)dxi = 0 (equation (6)), which implies that:

Efi [Si] = 0, Vfi [Si] =

∫

Xi

k̃i(xi,xi)pi(xi)dxi = 0. (17)

To prove
∫

Xi
fu(xu)pi(xi)dxi = 0, it is sufficient to prove the mean and variance of

∫

Xi
fu(xu)pi(xi)dxi with respect to

fu is zero. Since we assume fu has zero mean, the mean Efu

[

∫

Xi
fu(xu)pi(xi)dxi

]

= 0. The variance
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Vfu

[∫

Xi

fu(xu)pi(xi)dxi

]

=

∫

Xi

Efu [fu(xu)
2]pi(xi)dxi

=

∫

Xi

ku(xu,xu)pi(xi)dxi (18)

=
∏

j 6=i

kj(xj , xj)

∫

Xi

ki(xi,xi)pi(xi)dxi = 0.

C. Constrained Categorical Kernel

For categorical input features, we can model f with the categorical kernel as in Hensman (2016), which is constructed by

a positive definite matrix A such that the categorical kernel k(i, j) = Aij where

A = WW⊤ + Diag(κ). (19)

The orthogonality constraint we put on f is
∫

f(x)p(x)dx = 0. Let w be the vector of probability measure of the input

feature, i.e., P(x = i) = wi for i = 1, · · · ,M . Define

B := A− Aw(Aw)⊤

w⊤Aw
, (20)

we claim the kernel with k̃(i, j) = Bij is the constrained categorical kernel. To see this, it is enough to show

Ep(i,j)[k(i, j)] = 0 as shown in (18):

Ep(i,j)[k̃(i, j)] =

M
∑

i=0

M
∑

j=0

k̃(i, j)wiwj = w⊤Aw −w⊤

(

Aww⊤A

w⊤Aw

)

w = 0. (21)

D. Constrained Squared Exponential Kernel

D.1. Gaussian Measure

We prove the constrained squared exponential kernel takes the form in (10) when the input feature has Gaussian density.

Assume squared exponential kernel with lengthscale l and variance σ2, and Gaussian measure p(x) ∼ N (µ, δ2). Denote

S :=
∫

f(x)p(x)dx, by (8) we need to calculate:

Ef [Sf(a)] =

∫

σ2p(x) exp

(

− (x− a)2

2l2

)

dx (22)

=

∫

σ2

√
2πδ2

exp

(

− (x− a)2

2l2

)

exp

(

− (x− µ)2

2δ2

)

dx (23)

=

∫

σ2
√
2πl2N (x; a, l2)N (x;µ, δ2)dx (24)

= σ2

√

l2

l2 + δ2
exp

(

− (a− µ)2

2(l2 + δ2)

)

, (25)

and

Ef [S
2] =

∫ ∫

p(x)p(x′)k(x, x′)dxdx′ (26)

=

∫

σ2

√

l2

l2 + δ2
exp

(

− (x− µ)2

2(l2 + δ2)

)

p(x)dx (27)

= σ2

√

l2

l2 + 2δ2
(28)

where the last equality follows from completing the square.
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D.2. Mixture of Gaussian Measure

We can extend the Gaussian density assumption to other input distributions such as mixture of Gaussians. Suppose a fixed

number of clusters K:

p(x) =
K
∑

k=1

wkN(µk, δk) (29)

where µk, δk are the mean and variance of each cluster.

From (8), two expectations need to be calculated to compute the constrained kernel, the variance Ef [S
2] and the covariance

Ef [Sf(x)] can be computed as

Ef [S
2] =

K
∑

i=1

K
∑

j=1

wiwj lN(µi|µj , l
2 + δi + δj)(2π)

1/2, (30)

Ef [Sf(x)] =

K
∑

k=1

lwkN(x|µk, δk + l2)(2π)1/2 (31)

where l is the kernel lengthscale parameter and we have assumed unit kernel variance parameter for simplicity.

E. Constrained Kernel under Empirical Measure

When input densities are far from (mixture of) Gaussian distributions, or categorical kernel is not appropriate, or one wants

to use other kernels, we can use the empirical measure p(x) =
∑M

i=1 wi1x=xi
, where {xi}Mi=1 are the locations of the

feature and {wi}Mi=1 are the associated weights. We can approximate (8) with

Ef [Sf(·)] ≈
M
∑

i=1

wik(x, xi), Ef [S
2] ≈

M
∑

i=1

M
∑

j=1

wiwjk(xi, xj). (32)

F. Normalizing Flow

Specifically, let {xi}Ni=1 be the data for feature x with unknown underlying density px(x). We apply a sequence of K
bijective functions to obtain the transformed features z:

z = fK ◦ fK−1 ◦ f1(x) := g(x). (33)

The density of z can be calculated as:

pz(z) =
1

g′(x)
px(x) ≈

1

N

N
∑

i=1

1

g′(xi)
1x=xi , (34)

where g′ denotes the derivative. We would like z to be as close to standard Gaussian distributed as possible, denote p(z) to

be N (0, 1), we minimize the KL-divergence:

KL(pz(z)||p(z)) = Epz(z)

[

log
pz(z)

p(z)

]

(35)

≈ 1

N

N
∑

i=1

[

log
pz(z

i)

p(zi)

]

(36)

=
1

N

N
∑

i=1

(

(zi)2 − log g′(xi)
)

+ C (37)

where C is some constant and we approximated pz with its empirical distribution. The parameters of g are then learnt by

minimizing this KL divergence.
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G. Sobol Indices

Recall the normalized Sobol index for the posterior mean of fu for u ∈ [D] is:

R̃u =
Vx[mu(x)]

Vx[m(x)]
. (38)

The posterior mean GP with component u is:

mu(x) = σ2
|u| (⊙i∈uki(xi,Xi))K(X,X)−1y (39)

where K(X,X) denotes the training input covariance across all inputs, y denotes the n× 1 vector of output observations,

σ2
|u| is the associated variance parameter for |u|-th order interaction and ⊙ denotes element-wise multiplication. A similar

formula for sparse GP can also be obtained. The posterior variance with respect to the input is therefore

Vx[mu(x)] = Vx

[

σ2
|u| (⊙i∈uki(xi,Xi))K(X,X)−1y

]

= σ4
|u|y

⊤K(X,X)−1cov [⊙i∈uki(xi,Xi)]K(X,X)−1y

= σ4
|u|y

⊤K(X,X)−1 ⊙i∈u

(∫

ki(xi,Xi)ki(xi,Xi)
⊤dpi(xi)

)

K(X,X)−1y. (40)

In case of 1) constrained squared exponential kernel and a Gaussian measure or 2) binary/categorical kernel with discrete

measure, the integral is tractable and can be computed analytically.

G.1. Sobol Index for Constrained Squared Exponential Kernel

To compute the Sobol index, we need to compute the integral in (40). Dropping subscript i for simplicity, as-

sume one-dimensional feature X , squared exponential base kernel with lengthscale l and variance σ2: k(x, x′) =
σ2 exp

(

− 1
2l2 (x− x′)2

)

and Gaussian input density p(x) = N (µ, δ2), recall the constrained squared exponential kernel k̃
is :

k̃(x, x′) := k(x, x′)− σ2l
√
l2 + 2δ2

l2 + δ2
exp

(

− 1

2(l2 + δ2)
((x− µ)2 + (x′ − µ)2)

)

(41)

:= k(x, x′)− k̂(x, x′) (42)

where

k̂(x, x′) :=
σ2l

√
l2 + 2δ2

l2 + δ2
exp

(

− 1

2(l2 + δ2)
((x − µ)2 + (x′ − µ)2)

)

. (43)

Denote a = Xp, b = Xq respectively, The (p, q)-entry is of
∫

k̃(x,X)k̃(x,X)⊤dp(x) in (40) is therefore

∫

p(x)k̃(x, a)k̃(x, b)dx =

∫

p(x)k(x, a)k(x, b)dx (44)

−
∫

p(x)k(x, a)k̂(x, b)dx (45)

−
∫

p(x)k̂(x, a)k(x, b)dx (46)

+

∫

p(x)k̂(x, a)k̂(x, b)dx. (47)

We compute each of the term in following subsections.
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G.1.1. EQUATION (44)

∫

p(x)k(x, a)k(x, b)dx =

∫

p(x)σ4 exp

(

− 1

2l2
(

(x− a)2 + (x− b)2
)

)

dx

= σ4

∫

p(x) exp

(

− 1

2l2
(2x2 − 2(a+ b)z + a2 + b2)

)

dx

= σ4 exp

(

− 1

2l2
(x2 + y2)

)∫

p(x) exp

(

− 1

l2
(x2 − (a+ b)z)

)

dx

= σ4 exp

(

− 1

2l2
(a2 + b2)

)

exp

(

− 1

l2

(

a+ b

2

)2
)

∫

p(x) exp

(

− 1

l2

(

x− a+ b

2

)2
)

dx.

Note

∫

p(x) exp

(

− 1

l2

(

x− a+ b

2

)2
)

dx =
√
πl2
∫

N (z;µ, δ2)N
(

x;
a+ b

2
,
l2

2

)

dx

=
l√

2δ2 + l2
exp

(

− 1

2δ2 + l2

(

µ− a+ b

2

)2
)

.

Hence

∫

p(x)k(x, a)k(x, b)dx =
σ4l√

2δ2 + l2
exp

(

− 1

4l2
(a− b)2

)

exp

(

− 1

2δ2 + l2

(

µ− a+ b

2

)2
)

.

G.1.2. EQUATION (45)

∫

p(x)k(x, a)k̂(x, b)dx =
σ4l

√
l2 + 2δ2

l2 + δ2
exp

(

− 1

2(l2 + δ2)
(b − µ)2

)∫

p(x) exp

(

− (x− a)2

2l2
− (x− µ)2

2(l2 + δ2)

)

dx.

Note

∫

p(x) exp

(

− (x− a)2

2l2
− (x− µ)2

2(l2 + δ2)

)

dx =

∫

p(x) exp

(

− 1

2M−1
(x− c)2 + C

)

dx

=
√
2πM−1 exp

(

−C

2

)∫

N (x;µ, δ2)N (x; c,M−1)dx

=
1√

δ2M + 1
exp

(

−C

2

)

exp

(

− 1

2(δ2 +M−1)
(c− µ)2

)

,

where

M :=
1

l2
+

1

l2 + δ2
, c := M−1

(

µ

l2 + δ2
+

a

l2

)

C :=
a2

l2
+

µ2

l2 + δ2
− c2M.

Hence,

∫

p(x)k(x, a)k̂(x, b)dx =
σ4l

√
l2 + 2δ2 exp(−C/2)

(l2 + δ2)
√
δ2M + 1

exp

(

− 1

2(l2 + δ2)
(b− µ)2

)

exp

(

− 1

2(δ2 +M−1)
(c− µ)2

)

.

G.1.3. EQUATION (46)

By symmetry, this is straight-forward by interchanging a and b in (45).
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G.1.4. EQUATION (47)

∫

p(x)k̂(x, a)k̂(x, b)dx =
σ2l2(l2 + 2δ2)

(l2 + δ2)2
exp

(

− (a− µ)2 + (b− µ)2

2(l2 + δ2)

)∫

p(x) exp

(

− (x− µ)2

(l2 + δ2)

)

dx.

Note

∫

p(x) exp

(

− 1

(l2 + δ2)
(x− µ)2

)

dx =
√

π(l2 + δ2)

∫

N (x;µ, δ2)N
(

x;µ,
l2 + δ2

2

)

dx =

√

l2 + δ2

l2 + 3δ2
.

Hence

∫

p(x)k̂(x, a)k̂(x, b)dx =
σ4l2(l2 + 2δ2)

√
l2 + δ2

(l2 + δ2)2
√
l2 + 3δ2

exp

(

− 1

2(l2 + δ2)
((a− µ)2 + (b − µ)2)

)

.

G.2. Sobol for Empirical Measure

Assume one-dimensional feature x with empirical measure p(x) =
∑M

i=1 wi1x=xi
where M is the number of distinct

empirical locations, wi are the (normalized) empirical weights, xi are the empirical locations for i = 1, · · · ,M . We can

approximate the integral in (40) with

∫

k(X, x)k(X, x)⊤dp(x) ≈
M
∑

i=1

wik(X, xi)k(X, xi)
⊤. (48)

G.3. Proof of FANOVA for OAK

We show in this section that under the asumption that input features are independent, OAK results in the FANOVA decom-

position, i.e., for each u ⊆ [D], fu with k̃u satisfies that

fu(x) =

∫

X−u

(

f(x)−
∑

v⊂u

fv(xv)

)

dP (x−u). (49)

Proof. The right hand side writes

∫

X−u

(

f(x)−
∑

v⊂u

fv(xv)

)

dP (x−u) =

∫

X−u



fu(x) +
∑

v*u

fv(xv)



 dP (x−u)

= fu(xu) +
∑

v*u

∫

X−u

fv(xv)dP (x−u). (50)

For each v * u, if j ∈ [D] \ u, then j ∈ v. It follows from Appendix B that

∫

Xj

fv(xv)dP (xj) =

∫

Xj

fv(xv)pj(xj)dxj = 0.

Under the assumption that input features are independent, P (x−u) factorizes and the integral in equation (50) is 0.

G.4. Invariance of Sobol under Bijective Transformation

Let Z ∼ N (0, 1), and suppose X is a transformation of Z such that z = g(x) where g is an invertible function. First note

the density of X is

p(x) = N (g(x)|0, 1)
∣

∣

∣

∣

dg(x)

dx

∣

∣

∣

∣

. (51)
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One can rewrite a function of x as a function of z, suppose f(x) = h(z) = h(g(x)), the Sobol index for x can be calculated

as

R =

∫

f2(x)p(x)dx (52)

=

∫ ∞

−∞

h2(g(x))p(x)dx (53)

=

∫ ∞

−∞

h2(g(x))p(x)

∣

∣

∣

∣

dg(x)

dx

∣

∣

∣

∣

−1

dz (54)

=

∫ ∞

−∞

h2(g(x))N (g(x)|0, 1)dz (55)

=

∫ ∞

−∞

h2(z)N (z|0, 1)dz, (56)

which is the Sobol index for Z .

H. OAK Method Summary

Choose a truncation order for the model, D̃.

1. For each input dimension, a kernel is assigned:

(a) Continuous features are assigned constrained squared exponential kernels, and transformed through a normaliz-

ing flow to ensure Gaussian input density.

(b) Discrete features are assigned a constrained binary or categorical kernel (see Appendix C).

2. Fit a Gaussian process model with OAK defined in Section 3 and the Newton Girard Trick in Algorithm 1.

(a) For small (N < 1000) regression datasets, we use Exact Gaussian Process regression.

(b) For larger regression datasets, we use Sparse GP regression (gpflow.SGPR, (Titsias, 2009)).

(c) For classification datasets, we use Variational Inference (Hensman et al., 2015). For datasets with (N > 200),

choose the number of inducing points M = 200, for SUSY and Churn modelling datasets, we choose M = 800.

We place a Gamma prior on the variance hyperparameters of the kernel, which are estimated using MAP. The length-

scales hyperparameters are estimated by maximum likelihood, or by maximising the ELBO, appropriately.

3. Construct the Sobol index for each component and each order according to equation (14), and construct a ranking.

Truncate components when the (normalized) Sobol idex is below some threshold (default 0.01).

4. Compute the posterior over the additive components identified in the above ranking, using equation (13).

5. Predict for test points by summing over the identified components.

I. Two-dimensional Toy Example

Additional experimental results for the two-dimensional example with (unconstrained) squared exponential kernel.
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Figure 9. Two dimensional experimental results for the additive GP model in Duvenaud et al. (2011) with squared exponential kernel for

the remaining two local optima. The red lines represent the true function, blue shaded area represent ±2 standard deviation. From left to

right: posterior of f1; posterior of f2; posterior for the interaction term; marginal plot for f1 in the interaction term (EX2
[f12(x1, x2)]);

marginal plot for f2 in the interaction term (EX1
[f12(x1, x2)]). Note how the quadratic shape in Figure 9a and the linear trend in

Figure 9b are captured in the higher order terms Figure 9d and Figure 9e. Vice Versa, first order terms may also absorb effect from the

interaction, as Figure 9f and Figure 9g show.

J. Baseline Experimental Results

J.1. Baseline Dataset Details

Data AutoMP Housing Concrete Pumadyn Breast Pima Sonar Ionosphere Liver Heart

n 392 506 1030 8192 449 768 208 351 345 297

D 7 13 8 8 9 8 60 32 6 13

Table 3. Number of data and dimensionality of baseline datasets.

J.2. Total Number of Terms for Baseline Datasets

Data AutoMP Housing Concrete Pumadyn Breast Pima Sonar Ionosphere Liver Heart

number of terms 127 8191 255 255 255 162 1830 41448 56 1092

Table 4. Total number of additive terms in baseline datasets.

J.3. Model Performance

Model performance for baseline dataset experiments are displayed in Figure 10, where we compare percentage improve-

ment relative to the baseline model (full GP with squared exponential kernel) for our constrained kernel and the non-

constrained counterparts in Duvenaud et al. (2011). Positive values indicate superior performance compared with the

baseline. Detailed performance on each of the train-split fold can be found in Figure 11, 12, 13 and 14.

J.4. Order Variance Hyperparameter Comparison

We compare the normalized variance hyperparameter
σ2

d∑
D
d=1

σ2

d

of each order d of interaction between OAK and Duvenaud

et al. (2011), as shown in Figure 15 and 16. The results further verify that OAK model is more parsimonious and requires

lower order interactions for all datasets.
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Figure 10. Test RMSE relative improvement compared with GP with squared-exponential kernel for regression (left); and test classifica-

tion percentage error for classification (right). Red and blue boxes represent mean and ±1 standard deviation over 5 train-test folds for

the additive model and OAK model respectively. Horizontal axis represents different datasets; vertical axis represents model percentage

improvement relative to the baseline model. Higher values are better.
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Figure 11. Test RMSE on regression datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK model without normalizing

flow.

J.5. Normalizing Flow Ablation Study

Normalizing flow plays a role similar to data centering: we transform each continuous feature to be closer to Gaussian.

The bijective function in the flow is a composition of shifting, scaling and sinharcsinh transformation. The parameters of

the bijective functions are learned and fixed before fitting the GP model, using only the input data, not in conjunction with

the hyperparametrs. For non-continuous input features we do not apply any transformation, but use the orthogonal discrete

kernel described in Appendix C. We have performed an ablation study and ran experiments on all the baseline datasets

where we standardize the inputs instead of using the flow. The model performance is similar (see Figure 11, 12, 13 and 14)

but the resulting model tends to be less parsimonious, especially for the Housing dataset, see Figure 17 for details.
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Figure 12. Test percenrage error on classification datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK model without

normalizing flow.
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Figure 13. Negative log likelihood on regression datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK model without

normalizing flow.

J.6. Comparison with Kernel in Duvenaud et al. (2011)

The kernel
∏

d(1 + k̃d) restricts the lengthscales and variances of the kernels to be the same for lower and higher order

terms, e.g., if two features are important in their main effect, the interaction between them will also be important, which may

result in a less parsimonious model as higher order terms cannot be downweighted during inference. We have conducted

experiments using this kernel for comparison, with results shown in Figure 18. We found the kernel is harder to optimize

and numerically unstable, the model performance is similar but the resulting model is less parsimonious: e.g., Concrete

dataset needs 3rd order terms (with normalized Sobol indices = 0.71, 0.16, 0.13 for 1st, 2nd and 3rd order respectively, as
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Figure 14. Negative log likelihood on classification datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK model

without normalizing flow.
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Figure 15. Normalized order variance hyperparameter on the UCI regression datasets. Top: kernel used in Duvenaud et al. (2011);

bottom: OAK model. OAK requires lower dimensional orders of interactions with similar performance. Results are averaged over 5

folds.

opposed to 0.971, 0.026, 0.003 with OAK in Figure 4.
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Figure 16. Normalized order variance hyperparameter on the UCI classification datasets. Top: kernel used in Duvenaud et al. (2011);

bottom: OAK model. OAK requires lower dimensional orders of interactions with similar performance. We have truncated the maximum

order of interaction to 4 for Sonar and Ionosphere datasets. Results are averaged over 5 folds.
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Figure 17. Model performance and cumulative Sobol index versus number of terms added ranked by the Sobol index, without normaliz-

ing flow. For regression problems (top), we use test RMSE as the evaluation metric. Note that we did not include result for the Concrete

dataset because the NF was not sufficient to transform the data and we used the empirical measure for it in Figure 5: in this case the

predictive performance was not affected, but the parsimony of the result (i.e. the number of terms needed to reach the same performance)

was. For classification problems (bottom), we use test area-under-the-curve (AuC) metric. Red solid lines represent test RMSE (top)

and test AuC (bottom), green dashed lines represent cumulative (normalized) Sobol index.
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Figure 18. Cumulative Sobol Indices with kernel of the form
∏

d
(1+ k̃d) in Duvenaud et al. (2011) using constrained kernel. The model

performance is similar to OAK but the resulting model tends to be less parsimonious: e.g., Concrete dataset needs 3rd order terms with

normalized Sobol indices = 0.71, 0.16, 0.13 for 1st, 2nd and 3rd order respectively as opposed to 0.971, 0.026, 0.003 with OAK in Figure

4.
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Figure 19. Model performance versus varying number of inducing points on the test set. Results are averaged over 5 repetitions for the

Pumadyn dataset and 10 repetitions for the Churn dataset. Shaded area represents ±1 standard deviation. Note that test ELBO is not

always monotone on the Churn data, we attribute this to the difficulty of finding local optima.

J.7. Number of Inducing Points Needed

When kernels are combined through a product, the eigenspectrum is the outer-product of the spectra of the components

(Corollary 3 in Burt et al. (2019)). This is what leads to the exponential scaling of the number of inducing points with the

dimension of the problem,M = O(logDN). When we add kernels together, the eigenspectrum is simply the concatenation

of the spectrum of each component, so the resulting scaling is linear.

Additional experiments on number of inducing points needed for the pumadyn and Churn datasets can be found in Figure

19. The number of inducing points needed for OAK is smaller than that for the non-orthogonal model and the full GP

model. Note that although the ELBO values are not directly comparable due to the normalizing flow used for some of the

models, we can observe that the OAK model converges much faster than its counterparts.

K. Additional Benchmark Experiments

The evaluation results for the entire set of datasets6 summarized in Table 1 can be found in Tables 5-8. Values outside

[−1000, 1000] are denoted as NaN. Results are averaged over 10 train-test splits, values in brackets represent one standard

deviation.

6Data and code for other methods are taken from https://github.com/hughsalimbeni/bayesian_benchmarks.

https://github.com/hughsalimbeni/bayesian_benchmarks.
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dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

boston 506 13 0.290(0.036) 0.444(0.044) 0.312(0.030) 0.267(0.037) 0.380(0.059) 0.282(0.020) 0.349(0.026) 0.299(0.030)

energy 768 8 0.036(0.010) 0.300(0.034) 0.048(0.005) 0.227(0.027) 0.218(0.029) 0.047(0.005) 0.191(0.006) 0.193(0.020)

naval 11934 14 0.164(0.313) 0.394(0.007) 0.004(0.001) 0.215(0.006) 0.104(0.006) 0.263(0.007) 0.885(0.017) 0.051(0.007)

power 9568 4 0.234(0.009) 0.267(0.008) 0.237(0.009) 0.234(0.009) 0.219(0.008) 0.226(0.008) 0.327(0.012) 0.236(0.009)

winered 1599 11 0.775(0.044) 0.808(0.046) 0.926(0.145) 0.768(0.055) 0.825(0.063) 0.762(0.046) 0.774(0.054) 0.773(0.055)

winewhite 4898 11 0.827(0.079) 0.847(0.033) 0.837(0.084) 0.768(0.021) 0.788(0.020) 0.768(0.020) 0.826(0.022) 0.763(0.023)

protein 45730 9 0.987(0.032) 0.850(0.004) 0.782(0.007) 0.764(0.008) 0.623(0.007) 0.768(0.007) 0.933(0.012) 0.707(0.022)

yacht 308 6 0.032(0.012) 0.608(0.048) 0.048(0.016) 0.419(0.092) 0.668(0.144) 0.044(0.014) 0.103(0.023) 0.244(0.051)

airfoil 1503 5 0.837(0.174) 0.721(0.047) 0.456(0.033) 0.486(0.038) 0.429(0.035) 0.387(0.043) 0.573(0.029) 0.412(0.041)

forest 517 12 1.030(0.100) 1.018(0.106) 0.995(0.025) 1.100(0.139) 1.117(0.142) 1.069(0.131) 1.092(0.093) 1.077(0.115)

parkinsons 195 23 0.373(0.140) 0.871(0.021) 0.635(0.021) 0.544(0.022) 0.384(0.024) 0.245(0.008) 0.587(0.020) 0.283(0.017)

stock 536 11 0.305(0.049) 0.286(0.025) 0.286(0.027) 0.465(0.136) 0.579(0.094) 0.348(0.058) 0.363(0.071) 0.308(0.025)

fertility 100 10 0.799(0.192) 0.900(0.229) 0.975(0.295) 0.975(0.250) 1.055(0.287) 1.032(0.225) 0.904(0.209) 1.020(0.233)

machine 209 7 0.281(0.044) 0.435(0.053) 0.398(0.048) 0.419(0.054) 0.417(0.076) 0.338(0.043) 0.368(0.037) 0.393(0.044)

pendulum 630 9 0.443(0.099) 0.862(0.164) 0.653(0.136) 0.654(0.188) 0.626(0.132) 0.772(0.110) 0.810(0.134) 0.659(0.140)

servo 167 4 0.312(0.069) 0.607(0.068) 0.299(0.074) 0.343(0.060) 0.454(0.070) 0.270(0.070) 0.383(0.062) 0.364(0.060)

wine 178 14 0.449(0.033) 0.564(0.029) 0.469(0.034) 0.440(0.041) 0.562(0.045) 0.461(0.031) 0.620(0.041) 0.436(0.038)

tamielectr 45781 3 1.001(0.005) 1.001(0.005) 1.001(0.005) 1.002(0.005) 1.099(0.007) 1.002(0.005) 1.002(0.005) 1.002(0.005)

kin40k 40000 8 0.581(0.019) 1.000(0.013) 0.682(0.016) 0.205(0.004) 0.392(0.005) 0.842(0.010) 0.939(0.013) 0.187(0.007)

gas 2565 128 0.254(0.078) 112.965(333.613) 0.182(0.041) 0.227(0.101) 0.119(0.037) 0.117(0.029) 0.313(0.025) 0.496(0.595)

keggdirect 48827 20 0.129(0.065) nan 0.109(0.005) 0.102(0.002) 0.097(0.004) 0.094(0.003) 0.201(0.003) 0.199(0.318)

bike 17379 17 0.023(0.008) 0.517(0.008) 0.353(0.006) 0.262(0.008) 0.454(0.011) 0.020(0.001) 0.124(0.004) 0.065(0.008)

pol 15000 26 0.848(0.131) 0.736(0.011) 0.396(0.010) 0.335(0.006) 0.215(0.013) 0.256(0.008) 0.492(0.017) 0.151(0.007)

elevators 16599 18 0.379(0.007) 14.600(21.603) 0.394(0.007) 0.392(0.007) 0.602(0.016) 0.502(0.014) 0.776(0.014) 0.359(0.013)

avg 0.475 6.157 0.478 0.484 0.518 0.455 0.581 0.445

median 0.376 0.736 0.397 0.419 0.454 0.343 0.580 0.361

avg rank 3.583 6.625 4.083 4.208 4.958 3.208 5.750 3.583

Table 5. Test RMSE for regression tasks on additional benchmark datasets, lower is better.

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

boston 506 13 -0.122(0.157) -0.644(0.066) -0.281(0.058) -0.157(0.083) -0.467(0.134) -0.637(0.250) -0.388(0.095) -0.248(0.140)

energy 768 8 1.923(0.308) -0.220(0.114) 1.609(0.081) 0.038(0.159) -0.021(0.254) 1.603(0.154) 0.235(0.035) 0.194(0.117)

naval 11934 14 1.932(1.525) -0.489(0.017) 3.957(0.133) 0.120(0.028) 0.740(0.109) -0.088(0.030) -1.297(0.019) 1.561(0.144)

power 9568 4 0.030(0.037) -0.098(0.031) 0.018(0.036) 0.034(0.038) 0.046(0.056) 0.066(0.042) -0.304(0.037) 0.025(0.037)

winered 1599 11 -1.166(0.059) -1.208(0.060) -1.507(0.517) -1.174(0.095) -1.280(0.121) -1.206(0.099) -1.170(0.081) -1.204(0.109)

winewhite 4898 11 -1.224(0.091) -1.254(0.039) -1.236(0.095) -1.161(0.031) -1.230(0.040) -1.161(0.031) -1.229(0.028) -1.160(0.038)

protein 45730 9 -1.407(0.030) -1.257(0.005) -1.172(0.008) -1.150(0.011) -1.013(0.018) -1.156(0.009) -1.350(0.013) -1.073(0.031)

yacht 308 6 1.320(1.503) -0.929(0.083) 1.715(0.237) -0.614(0.287) -1.152(0.329) -0.597(2.242) 0.799(0.351) -0.090(0.318)

airfoil 1503 5 -1.395(0.600) -1.096(0.070) -0.650(0.072) -0.711(0.093) -0.693(0.149) -0.496(0.139) -0.865(0.054) -0.548(0.119)

forest 517 12 -1.473(0.119) -1.447(0.121) -1.893(0.503) -1.582(0.206) -1.600(0.204) -1.753(0.321) -1.557(0.129) -1.594(0.196)

parkinsons 195 23 -0.415(0.419) -1.282(0.025) -0.976(0.026) -0.813(0.045) -0.555(0.111) -0.012(0.035) -0.886(0.034) -0.243(0.107)

stock 536 11 -0.199(0.111) -0.175(0.079) -0.173(0.078) -1.090(0.975) -0.975(0.287) -1.100(0.687) -0.486(0.331) -0.344(0.164)

fertility 100 10 -1.244(0.239) -1.376(0.362) -1.461(0.425) -1.676(0.735) -1.631(0.538) -3.890(1.808) -1.608(0.608) -2.800(1.437)

machine 209 7 -0.162(0.153) -0.598(0.134) -0.519(0.132) -0.603(0.190) -0.629(0.279) -1.566(0.731) -0.507(0.174) -0.510(0.145)

pendulum 630 9 0.309(0.978) -1.299(0.209) -0.912(0.184) -1.129(0.462) -1.020(0.308) -2.375(0.766) -1.329(0.317) -1.354(0.585)

servo 167 4 -0.402(0.522) -0.929(0.098) -0.265(0.211) -0.400(0.245) -0.783(0.304) -0.418(0.660) -0.513(0.225) -0.432(0.207)

wine 178 14 -0.613(0.068) -0.849(0.054) -0.660(0.070) -0.624(0.127) -0.900(0.129) -0.706(0.109) -0.947(0.075) -0.651(0.143)

tamielectr 45781 3 -1.461(0.117) -1.420(0.005) -1.420(0.005) -1.421(0.005) -1.561(0.010) -1.422(0.005) -1.420(0.005) -1.421(0.005)

kin40k 40000 8 -0.874(0.030) -1.419(0.013) -1.034(0.022) 0.164(0.022) -0.529(0.019) -1.247(0.012) -1.357(0.015) 0.253(0.037)

gas 2565 128 -0.166(0.260) nan 0.292(0.103) -0.051(0.379) 0.646(0.357) -0.101(0.894) -0.275(0.098) -3.604(9.953)

keggdirect 48827 20 0.591(0.526) nan 0.853(0.027) 0.853(0.030) 0.897(0.060) 0.945(0.033) 0.184(0.015) -7.418(25.044)

bike 17379 17 2.416(0.383) -0.759(0.015) -0.379(0.017) -0.085(0.033) -0.688(0.040) 2.468(0.050) 0.666(0.037) 1.315(0.129)

pol 15000 26 -1.246(0.158) -1.112(0.015) -0.506(0.024) -0.327(0.018) 0.052(0.095) -0.058(0.033) -0.710(0.033) 0.348(0.073)

elevators 16599 18 -0.450(0.023) nan -0.488(0.015) -0.489(0.022) -0.975(0.044) -0.733(0.030) -1.196(0.021) -0.397(0.039)

avg -0.229 -0.946 -0.295 -0.585 -0.638 -0.652 -0.730 -0.891

median -0.409 -1.096 -0.512 -0.609 -0.738 -0.671 -0.875 -0.471

avg rank 5.583 3.625 5.042 4.833 3.917 4.292 3.583 5.125

Table 6. Test log likelihood for regression tasks on additional benchmark datasets, higher is better.



Additive GPs Revisited

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

acute-infl 120 7 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.958(0.072) 1.000(0.000)

acute-neph 120 7 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.992(0.025) 1.000(0.000)

bank 4521 17 0.898(0.016) 0.891(0.018) 0.890(0.017) 0.891(0.013) 0.890(0.014) 0.900(0.011) 0.892(0.015) 0.893(0.012)

blood 748 5 0.740(0.007) 0.780(0.055) 0.787(0.051) 0.781(0.050) 0.767(0.041) 0.768(0.041) 0.776(0.046) 0.793(0.043)

chess-krvk 3196 37 0.960(0.021) 0.980(0.005) 0.980(0.006) 0.993(0.004) 0.959(0.007) 0.999(0.001) 0.999(0.001) 0.997(0.003)

congressio 435 17 0.616(0.050) 0.616(0.042) 0.605(0.050) 0.630(0.061) 0.568(0.067) 0.584(0.070) 0.582(0.056) 0.566(0.059)

conn-bench 208 61 0.990(0.019) 0.986(0.030) 0.976(0.038) 0.971(0.032) 0.900(0.054) 1.000(0.000) 1.000(0.000) 0.929(0.053)

credit-app 690 16 0.888(0.067) 0.849(0.051) 0.851(0.045) 0.833(0.036) 0.830(0.044) 0.967(0.025) 0.971(0.016) 0.858(0.037)

cylinder-b 512 36 0.752(0.060) 0.727(0.042) 0.735(0.034) 0.779(0.031) 0.785(0.053) 0.810(0.045) 0.738(0.030) 0.767(0.029)

echocardio 131 11 0.879(0.091) 0.850(0.126) 0.864(0.117) 0.850(0.098) 0.814(0.136) 0.843(0.070) 0.843(0.083) 0.843(0.114)

fertility 100 10 0.900(0.050) 0.900(0.063) 0.920(0.060) 0.920(0.060) 0.910(0.054) 0.860(0.092) 0.870(0.078) 0.890(0.070)

haberman-s 306 4 0.758(0.089) 0.755(0.087) 0.765(0.089) 0.745(0.065) 0.694(0.070) 0.713(0.101) 0.745(0.087) 0.745(0.070)

heart-hung 294 13 1.000(0.000) 0.997(0.010) 0.997(0.010) 0.970(0.023) 0.863(0.055) 1.000(0.000) 1.000(0.000) 0.990(0.015)

hepatitis 155 20 0.819(0.071) 0.794(0.097) 0.856(0.056) 0.844(0.075) 0.819(0.076) 0.812(0.079) 0.787(0.098) 0.844(0.075)

hill-valle 1212 101 0.483(0.048) 0.556(0.043) 0.484(0.043) 0.493(0.040) 0.507(0.031) 0.520(0.036) 0.517(0.038) 0.526(0.061)

horse-coli 368 26 0.824(0.039) 0.832(0.055) 0.824(0.057) 0.830(0.053) 0.781(0.052) 0.830(0.051) 0.792(0.042) 0.814(0.057)

ilpd-india 583 10 0.697(0.045) 0.702(0.050) 0.685(0.056) 0.681(0.072) 0.666(0.050) 0.649(0.039) 0.669(0.045) 0.649(0.042)

mammograph 961 6 0.830(0.024) 0.831(0.022) 0.836(0.023) 0.833(0.031) 0.802(0.038) 0.837(0.028) 0.827(0.028) 0.823(0.035)

molec-biol 106 58 0.964(0.060) 0.900(0.086) 0.900(0.103) 0.918(0.086) 0.927(0.089) 1.000(0.000) 1.000(0.000) 0.873(0.109)

monks-1 556 7 0.988(0.016) 0.629(0.046) 0.825(0.051) 0.845(0.042) 0.893(0.040) 0.995(0.008) 0.986(0.013) 0.973(0.022)

monks-2 601 7 0.685(0.062) 0.646(0.066) 0.652(0.055) 0.662(0.082) 0.754(0.070) 0.611(0.074) 0.567(0.038) 0.733(0.060)

monks-3 554 7 0.977(0.014) 0.714(0.067) 0.963(0.028) 0.955(0.018) 0.889(0.047) 0.988(0.011) 0.954(0.033) 0.968(0.024)

mushroom 8124 22 0.998(0.003) 0.953(0.006) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)

musk-1 476 167 1.000(0.000) 0.992(0.014) 0.988(0.019) 0.973(0.013) 0.904(0.038) 0.996(0.012) 0.996(0.012) 0.990(0.014)

musk-2 6598 167 0.998(0.004) 1.000(0.000) 1.000(0.000) 0.998(0.002) 0.977(0.006) 1.000(0.000) 1.000(0.000) 1.000(0.000)

oocytes me 1022 42 0.846(0.024) 0.784(0.022) 0.838(0.020) 0.779(0.022) 0.722(0.035) 0.780(0.025) 0.755(0.040) 0.841(0.023)

oocytes tr 912 26 0.837(0.015) 0.774(0.035) 0.822(0.039) 0.823(0.034) 0.728(0.062) 0.817(0.035) 0.778(0.036) 0.830(0.027)

ozone 2536 73 0.973(0.011) 0.972(0.007) 0.972(0.009) 0.972(0.010) 0.971(0.011) 0.970(0.009) 0.973(0.008) 0.970(0.008)

parkinsons 195 23 0.985(0.023) 0.795(0.085) 0.895(0.099) 0.890(0.062) 0.935(0.045) 0.970(0.046) 0.930(0.046) 0.930(0.051)

avg 0.872 0.835 0.859 0.857 0.836 0.870 0.859 0.863

median 0.898 0.832 0.864 0.850 0.863 0.900 0.892 0.873

avg rank 5.569 4.224 4.741 4.500 2.983 5.224 4.207 4.552

Table 7. Test accuracy for classification tasks on additional benchmark datasets, higher is better.

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

acute-infl 120 7 -0.003(0.000) -0.057(0.007) -0.001(0.000) -0.018(0.001) -0.000(0.000) -0.000(0.000) -0.057(0.091) -0.032(0.008)

acute-neph 120 7 -0.003(0.003) -0.032(0.009) -0.001(0.000) -0.019(0.001) -0.000(0.000) -0.000(0.000) -0.085(0.256) -0.017(0.004)

bank 4521 17 -0.248(0.024) -0.271(0.029) -0.262(0.027) -0.286(0.029) -1.143(0.224) -0.235(0.020) -0.646(0.002) -0.282(0.035)

blood 748 5 -0.491(0.023) -0.469(0.071) -0.469(0.070) -0.505(0.070) -1.861(0.769) -0.524(0.090) -0.677(0.005) -0.473(0.073)

chess-krvk 3196 37 -0.078(0.041) -0.056(0.009) -0.051(0.011) -0.020(0.008) -0.232(0.088) -0.010(0.015) -0.010(0.007) -0.020(0.018)

congressio 435 17 -0.655(0.040) -0.697(0.100) -0.650(0.041) -0.666(0.026) -2.172(1.056) -0.699(0.064) -0.687(0.003) -0.803(0.175)

conn-bench 208 61 -0.040(0.026) -0.090(0.070) -0.084(0.092) -0.077(0.040) -0.208(0.073) -0.000(0.000) -0.000(0.000) -0.189(0.117)

credit-app 690 16 -0.280(0.126) -0.365(0.083) -0.369(0.085) -0.377(0.070) -1.182(0.552) -0.111(0.074) -0.583(0.008) -0.363(0.080)

cylinder-b 512 36 -0.475(0.055) -0.533(0.059) -0.532(0.033) -0.463(0.045) -0.888(0.375) -0.392(0.049) -0.654(0.007) -0.530(0.149)

echocardio 131 11 -0.358(0.170) -0.394(0.185) -0.376(0.157) -0.423(0.167) -1.107(1.274) -0.444(0.273) -0.584(0.024) -0.385(0.202)

fertility 100 10 -0.380(0.134) -0.341(0.213) -0.296(0.115) -0.298(0.123) -1.546(1.799) -0.561(0.484) -0.633(0.039) -0.362(0.239)

haberman-s 306 4 -0.532(0.099) -0.531(0.093) -0.530(0.106) -0.540(0.094) -1.468(1.395) -0.570(0.157) -0.679(0.009) -0.540(0.114)

heart-hung 294 13 -0.007(0.002) -0.044(0.016) -0.008(0.016) -0.063(0.035) -1.088(0.817) -0.000(0.000) -0.000(0.000) -0.046(0.023)

hepatitis 155 20 -0.414(0.105) -0.389(0.100) -0.346(0.065) -0.352(0.077) -1.306(0.798) -0.531(0.159) -0.570(0.046) -0.362(0.130)

hill-valle 1212 101 -0.694(0.001) -0.650(0.013) -0.693(0.000) -0.694(0.001) -1.498(0.294) -0.708(0.027) -0.693(0.004) -0.675(0.013)

horse-coli 368 26 -0.406(0.077) -0.455(0.101) -0.433(0.085) -0.422(0.074) -1.609(0.776) -0.388(0.104) -0.666(0.007) -0.517(0.154)

ilpd-india 583 10 -0.555(0.028) -0.548(0.040) -0.548(0.036) -0.605(0.053) -1.695(0.679) -0.633(0.078) -0.636(0.011) -0.582(0.056)

mammograph 961 6 -0.386(0.048) -0.419(0.041) -0.406(0.043) -0.403(0.046) -1.278(0.543) -0.386(0.056) -0.665(0.005) -0.409(0.063)

molec-biol 106 58 -0.149(0.172) -0.211(0.138) -0.203(0.136) -0.196(0.171) -0.283(0.100) -0.000(0.000) -0.000(0.000) -0.363(0.186)

monks-1 556 7 -0.027(0.017) -0.618(0.044) -0.307(0.066) -0.389(0.083) -0.546(0.235) -0.040(0.012) -0.569(0.013) -0.159(0.038)

monks-2 601 7 -0.549(0.063) -0.648(0.044) -0.638(0.048) -0.589(0.056) -0.676(0.398) -0.653(0.085) -0.679(0.007) -0.505(0.056)

monks-3 554 7 -0.067(0.037) -0.453(0.089) -0.091(0.054) -0.149(0.059) -0.543(0.255) -0.048(0.022) -0.638(0.008) -0.095(0.033)

mushroom 8124 22 -0.009(0.021) -0.135(0.009) -0.002(0.001) -0.000(0.000) -0.000(0.000) -0.003(0.000) -0.483(0.006) -0.001(0.000)

musk-1 476 167 -0.015(0.011) -0.058(0.039) -0.056(0.054) -0.079(0.035) -0.340(0.206) -0.045(0.136) -0.115(0.345) -0.079(0.073)

musk-2 6598 167 -0.008(0.015) -0.004(0.001) -0.001(0.000) -0.006(0.006) -0.127(0.059) -0.002(0.005) -0.004(0.013) -0.002(0.000)

oocytes me 1022 42 -0.368(0.078) -0.454(0.024) -0.391(0.049) -0.467(0.032) -1.541(0.433) -0.459(0.028) -0.675(0.007) -0.397(0.066)

oocytes tr 912 26 -0.382(0.034) -0.488(0.052) -0.416(0.054) -0.408(0.051) -1.224(0.552) -0.417(0.052) -0.674(0.003) -0.370(0.044)

ozone 2536 73 -0.107(0.035) -0.087(0.025) -0.082(0.023) -0.098(0.028) -0.372(0.150) -0.093(0.025) -0.523(0.043) -0.128(0.056)

parkinsons 195 23 -0.065(0.050) -0.320(0.094) -0.207(0.102) -0.253(0.090) -0.150(0.043) -0.256(0.399) -0.439(0.047) -0.196(0.041)

avg -0.267 -0.338 -0.291 -0.306 -0.899 -0.283 -0.459 -0.306

median -0.280 -0.389 -0.307 -0.352 -1.088 -0.256 -0.584 -0.362

avg rank 5.862 4.276 5.931 4.690 2.138 5.379 2.897 4.828

Table 8. Test log likelihood for classification tasks on additional benchmark datasets, higher is better.
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