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Particle-size segregation within granular materials is of great technological significance
yet it is still very poorly understood. There are several causes of segregation, but
this paper focuses on kinetic sieving which is the dominant mechanism in dense
gravity-driven shallow free-surface flows, or, granular avalanches. The segregation
model is derived from a three-phase mixture theory composed of large particles,
small particles and a passive interstitial fluid. Steady-state solutions are constructed
for a normally graded inflow in a steady uniform flow field. This problem is of
fundamental interest, because it shows how an unstably stratified layer readjusts into
a stable configuration. Expansion fans and concentration shocks are generated and
sufficiently far downstream inversely graded segregated layers form, with the larger
particles overlying the finer ones. This a good approximation for segregation in flows
with weak diffusive remixing. The distance for complete segregation to occur is shown
to increase with rising fluid density and tends to infinity as its density approaches that
of the grains. If the particles are buoyant then the initial configuration is stable. An
exact time-dependent two-dimensional solution is constructed for plug flow, which
exploits the uncoupling of material columns of grains in the absence of shear. This
yields insight into the nature of more complex numerical solutions for strong shear,
which are computed with a high-resolution shock-capturing numerical scheme.

1. Introduction
Many industrial processes use materials in a granular form, as they are easy to

produce and store. Often grains with dissimilar properties need to be mixed together
or separated from one another and a variety of devices have been designed to do
this. Rotating drums and blenders (e.g. Metcalfe et al. 1995; Shinbrot, Alexander &
Muzzio 1999; Hill et al. 1999; Gray 2001) are often used in the pharmaceutical and
food industry, while rotary kilns and inclined rotating cylinders (e.g. Davidson et al.
2000; Spurling, Davidson & Scott 2001) are favoured by chemical engineers for
sintering, calcination, humidification, oxidation, drying, mixing, induration, reducing,
gas–solid reaction, incineration, heating, cooling and cement production, because
they allow continuous feed. These fields represent a substantial worldwide financial
turnover. Sales in powdered metals alone exceed 6 billion euros in Europe and
another $5 billion in North America. Often the segregation that takes place within
these processes is unintended and unwanted. The effects can range from tablets with
too much, or too little, of an active ingredient (Williams 1968; Staniforth 1982), to
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(a) (b)

Figure 1. Two stills taken from Savage & Lun’s (1988) experiments showing that very sharp
segregation occurs when there is low diffusive remixing. The large (white) and small (black)
particles are homogeneously mixed and flow out of a hopper. They rapidly segregate into
inversely graded layers (a) with a sharp concentration jump between them. Savage & Lun
(1988) used a series of splitter plates to take samples of the particle concentration at different
levels in the flow (b). These show that the there are very high concentrations of large particles
in the upper layers and very large concentrations of small particles in the lower layers.

less effective washing detergents. Despite its importance our physical understanding
of segregation is limited and in most practical situations engineers have to rely on
purely empirical guidelines (Johanson 1978).

There are a number of mechanisms for segregation (Bridgewater 1976; Cooke,
Stephens & Bridgewater 1976), but this paper focuses on particle-size segregation
by kinetic sieving (Middleton & Hampton 1976), which is the dominant mechanism
in dense gravity-driven free-surface flows or granular avalanches (Bridgewater 1976;
Savage & Lun 1988). The process is simple. During an avalanche there are small
fluctuations in the void space between the particles. As a void opens up beneath a
layer of particles, the small particles are more likely to fall into it, because they are
more likely to fit into the available space than the large grains. The fines therefore tend
to drop down towards the base of the flow, and force imbalances drive a reverse flow
of large particles towards the free-surface by a process known as squeeze expulsion.
In dry frictional flows kinetic sieving is so efficient that segregated inversely graded
layers rapidly develop, with very high concentrations of coarse particles separated by
a sharp concentration jump from very high concentrations of fines below. Figure 1
shows two photos from Savage & Lun’s (1988) experiments. A mixture of grains
enters from the hopper on the left and flows down chute. Very rapidly the particles
segregate out to form inversely graded layers with a very sharp concentration jump
between them as can be seen at the bottom of figure 1(a). The segregation was so
sharp, in fact, that this motivated Savage & Lun to treat the interface as a shock. This
sharp transition in the particle concentration was confirmed by detailed concentration
data that was obtained using an array of splitter plates to bin samples from different
layers in the flow (figure 1b). Similar experiments have also been performed by
Vallance & Savage (2000) and they also observed very sharp segregation shocks.
As the flows become more energetic diffusive remixing competes with the kinetic
sieving mechanism to produce a smoothly varying inversely graded layer (Dolgunin &
Ulokov 1995; Jenkins & Yoon 2001). Distributed inversely, or reverse, graded deposits
are often left by large-scale geophysical granular flows such as rockfalls, lahars, debris
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flows and pyroclastic flows (Vallance 2000; Iverson & Vallance 2001), which allows
geologists to distinguish them from normally graded deposits formed as particles
settle out of suspension in quiescent water. In this paper we investigate the weak
diffusive-remixing limit, where the rapid transitions between regions of high and low
concentrations of small/large particles observed in experiments (Savage & Lun 1988;
Vallance & Savage 2000) are replaced by concentration jumps or shocks.

Although considerable theoretical attention has been focused on particle-size
segregation in energetic collisional flows (e.g. Jenkins & Mancini 1987; Jenkins 1998;
Jenkins & Yoon 2001) there has been very little analysis of the kinetic sieving process
in slower dense free-surface flows. The first theory was derived by Savage & Lun (1988)
using statistical mechanics and information entropy ideas. Their model was able to
predict the steady-state particle-size distribution in a steady uniform flow and the
results compared well with an extensive series of experiments. One disadvantage
of Savage & Lun’s (1988) model was that there was no explicit dependence of
the segregation velocities on gravity, even though kinetic sieving is a fundamentally
gravity-driven process. Gray & Thornton (2005) used individual constituent mass and
momentum balances in the framework of a binary mixture theory to formulate a
model for kinetic sieving, which provided a natural way of introducing gravity. The
key idea behind the model was that as the small particles percolated down through
the matrix, the large particles had to support a greater proportion of the overburden
pressure. This suggested a nonlinear partial-intrinsic pressure scaling, which when
combined with a linear frictional resistance to percolation, led to a very simple
mathematical model for kinetic sieving. Gray & Thornton’s (2005) model consists
of a single hyperbolic equation for the volume fraction of small particles, which is
able to predict the complete three-dimensional temporal and spatial evolution of the
particle-size distribution in a prescribed incompressible flow field. This fits naturally
into the structure for models of shallow granular free-surface flows (e.g. Grigorian,
Eglit & Lakimov 1967; Kulikovskii & Eglit 1973; Eglit 1983; Savage & Hutter 1989;
Gray, Wieland & Hutter 1999; Gray, Tai & Noelle 2003), which all assume that
the material is incompressible and the pressure is lithostatic. It is therefore possible
to envisage coupled models to explain some of the complex feedback mechanisms
that particle-size segregation can have on both geophysical flows (Pouliquen, Delour
& Savage 1997; Pouliquen & Vallance 1999; Calder, Sparks & Gardeweg 2000;
Iverson 2003) and in industrial rotating drums and kilns (Zik et al. 1994; Hill &
Kakalios 1995).

In this paper a three-constituent mixture theory is used to extend the kinetic-sieving
model of Gray & Thornton (2005) by including a passive fluid in the interstitial pore
space between the large and small particles. This extends the model to water-saturated
debris flows (e.g. Iverson 1997, 2003; Iverson & Denlinger 2001) and shows that for
dense fluids significant buoyancy forces can be exerted on the particles, which can
slow, prevent or reverse the segregation.

2. Three-constituent segregation model
2.1. Mixture framework

The granular material is assumed to be composed of a bi-disperse mixture of large
and small particles, whose interstitial pore space is filled with a passive fluid. A three-
constituent continuum mixture theory (e.g. Truesdell 1984; Morland 1992) is therefore
used to model the system, which assumes that every point is simultaneously occupied
by all three phases. This allows overlapping partial density ρν , partial velocity uν and
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partial pressure pν fields to be defined for each constituent ν. The large particles will
be denoted by the superscript ‘l’, the small particles by ‘s’ and the passive fluid by ‘a’.
Each constituent must satisfy individual conservation laws for mass

∂ρν

∂t
+ ∇ · (ρνuν) = 0, (2.1)

and momentum

∂

∂t
(ρνuν) + ∇ · (ρνuν ⊗ uν) = −∇pν + ρν g + βν, (2.2)

where ⊗ is the dyadic product and g is the acceleration due to gravity. The interaction
force βν is the force applied on constituent ν by the other components. As these forces
are internal to the system, Newton’s third law implies that they must sum to zero

β l + βs + βa = 0. (2.3)

The bulk density ρ and bulk pressure p are defined by the sum of the partial quantities
over all constituents

ρ = ρl + ρs + ρa, p = pl + ps + pa. (2.4)

Each constituent occupies a volume fraction Φν per unit mixture volume, and by
definition these sum to unity

Φl + Φs + Φa = 1. (2.5)

It is useful to work with the volume fraction of large and small particles per unit
granular volume rather than per unit mixture volume. Since, the volume fraction of
grains per unit mixture is

Φg = Φl + Φs, (2.6)

the volume fractions of large and small particles per unit granular volume are

φµ = Φµ/Φg, µ = l, s, (2.7)

which also sum to unity

φl + φs = 1. (2.8)

A key element of mixture theory is the relationship between the partial and intrinsic,
or physical, variables, which are measurable. Morland (1992) showed that the partial
velocity and density are related to their intrinsic counterparts by

uν = uν∗ and ρν = Φνρν∗, (2.9)

where the superscript ∗ denotes an intrinsic variable. However, the partial and intrinsic
pressure can be related by any functional relation, so long as (2.4) is not violated.

2.2. The particle-size segregation model

As the particles avalanche downslope and rearrange themselves during the segregation
process, there are small changes in the local volume fraction of the interstitial fluid.
For simplicity, the theory presented here assumes that these variations are small
enough to be neglected and that the volume fraction of granular material, and hence
the volume fraction of the background fluid, is constant

Φg = const ⇒ Φa = const. (2.10)

The large and small particles are assumed to have the same constant intrinsic density,
ρg∗, while the passive fluid is assumed to have a constant density, ρa∗, whose value is
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Figure 2. A diagram showing the coordinate system Oxz with the x-axis pointing down a
chute, which is inclined at an angle ζ to the horizontal. The y-axis is into the plane of the
paper and the z-axis is normal to the slope. Segregation causes inverse grading to develop in
the centre of the avalanche and velocity shear then transports the large grains to the front and
the fines to the rear.

in general different to that of the particles

ρl∗ = ρs∗ = ρg∗ = const, ρa∗ = const. (2.11)

These assumptions imply that the bulk density is constant

ρ = Φgρg∗ + Φaρa∗ = const, (2.12)

which is a reasonable first approximation in many granular free-surface flows (e.g.
Savage & Hutter 1989). The second equation in (2.11) also implies that the fluid
velocity field is incompressible ∇ · ua = 0.

A coordinate system Oxyz shown in figure 2 is defined with the x-axis pointing
down a chute inclined an an angle ζ to the horizontal, the y-axis pointing across the
chute and z-axis being the upward pointing normal. The velocity uν has components
(uν, vν, wν) in the downslope, cross-slope and normal directions. Assuming that the
normal acceleration terms are negligible the bulk momentum balance, obtained by
summing (2.2) over all constituents, reduces to

∂p

∂z
= −ρg cos ζ, (2.13)

in the normal direction, where g is the gravitational acceleration. Since the right-hand
side of (2.13) is constant, the bulk momentum balance may be integrated through the
avalanche depth h, subject to the boundary condition that the pressure is atmospheric
at the free surface, p(h) = patm, to show that the bulk pressure is lithostatic

p = patm + ρg(h − z) cos ζ. (2.14)

The partial and intrinsic fluid pressures are assumed to be related by a linear
volume fraction scaling, which is often used in mixture theory (e.g. Truesdell 1984;
Morland 1992)

pa = Φapa∗. (2.15)

In order for the normal component of the fluid momentum equation (2.2) to reduce
to a hydrostatic balance the interaction drag between the fluid and the grains must
be (e.g. Morland 1992; Coussy, Dormieux & Detournay 1998)

βa = pa∗∇Φa. (2.16)
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Physically this implies that fluid and the particles interact through interfacial pressure
forces, but drag due to their relative motion is neglected. Substituting (2.15) and (2.16)
into the normal component of (2.2) and assuming that the normal acceleration is
negligible implies

∂pa∗

∂z
= −ρa∗g cos ζ. (2.17)

This may also be integrated through the avalanche depth h, subject to the boundary
condition that the pressure is atmospheric at the free surface, to show that the intrinsic
fluid pore pressure is hydrostatic

pa∗ = patm + ρa∗g(h − z) cos ζ. (2.18)

The fluid pressure is transmitted through the entire matrix by surface pressure
interaction forces. It follows that the remaining overburden pressure due to particle–
particle contacts

pg∗ = p − pa∗, (2.19)

and using (2.14) and (2.18)

pg∗ = (ρ − ρa∗)g(h − z) cos ζ. (2.20)

The key idea behind the segregation model is that while the small particles are
falling through the matrix they support less of the overburden pressure pg∗ than
the large particles, which must carry proportionately more of the load. The partial
pressure in the grains therefore consists of a pressure due to the surrounding fluid,
plus a share of the overburden pressure. Thus we propose that

pµ = Φµpa∗ + f µpg∗, µ = l, s, (2.21)

where the factor f µ determines the relative proportion of the overburden carried by
constituents µ = l, s. Specific forms for these factors have been proposed by Gray
& Thornton (2005) and will be discussed in detail later, but the pressure sum (2.4)
requires that f l +f s = 1. The second key assumption in the model is that the particles
experience interparticle friction as they percolate past one another. A direct analogy
with percolation of fluids through a porous matrix suggests a linear rate-dependent
drag (e.g. Morland 1992; Coussy et al. 1998). We postulate mixture interaction terms
of the form

βµ = pa∗∇Φµ + pg∗∇f µ − ρµc(uµ − u), µ = l, s, (2.22)

where c is a dimensional constant and the barycentric granular velocity

u = φlul + φsus . (2.23)

The first term on the right-hand side of (2.22) is a reaction to the surface pressure
forces induced by the fluid in (2.16). The second term is a grain–grain surface
interaction force that ensures that the percolation is driven by an intrinsic gradient −
f µ∇pg∗. The third term provides the linear rate-dependent resistance to relative
motion. Note that the internal interaction forces (2.16) and (2.22) and the pressure
relations (2.15) and (2.21) have been constructed in such a way that they automatically
satisfy the summation conditions (2.3) and (2.4).

Percolation velocities are typically of the same order of magnitude as the bulk
normal velocity, which is much smaller than the downslope and cross-slope velocities
in typical avalanche flows. The granular velocities in the downslope and cross-slope
directions are therefore assumed to be equal to the bulk components

uµ = u, vµ = v, µ = l, s. (2.24)
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An equation for the percolation velocities in the normal direction is obtained by
substituting the partial/intrinsic pressure law (2.21), the interaction drag (2.22) and
the pressure relations (2.14) and (2.18) into the normal component of (2.2) to give

φµwµ = φµw + (f µ − φµ)(ρ̂g/c) cos ζ, µ = l, s, (2.25)

where the relative density difference

ρ̂ =
ρg∗ − ρa∗

ρg∗ . (2.26)

A comparison with the binary mixture theory of Gray & Thornton (2005) shows
that the percolation equation (2.25) contains an additional factor ρ̂ to account for
the presence of the interstitial fluid. The simple two-constituent theory of Gray &
Thornton (2005) can be recovered by assuming that the density of the interstitial
fluid, ρa∗, equals zero, so that ρ̂ = 1. Physically the addition of the passive fluid
creates a buoyancy force on all the grains, which reduces the contact forces between
them. In particular, if the density of the fluid is matched to the density of the particles
to create a neutrally buoyant suspension with ρ̂ = 0, then (2.25) predicts that there
will be no segregation due to kinetic sieving. This is in agreement with experimental
observations of Vallance & Savage (2000), which will be discussed in § 2.4.

The final elements of the segregation model are the nonlinear pressure scalings,
f µ, which determine how the overburden pressure pg∗ is shared between the large
and small particles. The functions satisfy three constraints. They must sum to unity,
f l + f s = 1, and when only one type of particle is present they must carry the entire
overburden pressure, i.e.

f l = 1 when φs = 0,

f s = 1 when φs = 1.

}
(2.27)

Gray & Thornton (2005) proposed that

f l = φl + Bφl(1 − φl),
f s = φs − Bφs(1 − φs),

}
(2.28)

where the non-dimensional factor B > 0 determines the magnitude of the pressure
perturbation away from the hydrostatic. In general, B may be a function of a number
of additional variables, and will lead to inverse grading provided that it does not
change sign in the range 0 < φ < 1. Gray & Thornton (2005) showed that Savage &
Lun’s (1988) kinetic-sieving model can be recast in this form, with a function B that is
dependent on six additional variables. In this paper the simplest possible segregation
model is investigated in which B is constant.

The percolation velocities of the large and small particles relative to the bulk are
obtained by substituting (2.28) into (2.25) to give

wl − w = +qφs,

ws − w = −qφl,

}
(2.29)

where the mean segregation velocity

q = (B/c)ρ̂g cos ζ. (2.30)

An equation for the volume fraction of small particles is obtained by substituting
(2.29) into the mass balance (2.1) and using (2.7) and (2.9) to give

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φsw) − ∂

∂z
(qφsφl) = 0. (2.31)
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This equation describes the processes of advection and particle-size segregation by
kinetic sieving and neglects other effects such as diffusive remixing and density
differences between the particles. It does, however, allow for density differences
between the particles and the interstitial fluid. For the vast majority of cases the fluid
will be air and ρ̂ > 0. In this case the large particles move up and the small particles
move down until they separate out to form sharply segregated inversely graded layers.
A key prediction of this extended theory is that if the particles are neutrally buoyant,
i.e. ρ̂ = 0, then no kinetic sieving will occur. Furthermore, if the relative density
difference is negative, ρ̂ < 0, the particles are buoyant, the direction is segregation is
reversed and normally graded layers are formed. It should be noted that the sharp
segregation predicted in this paper ignores the effects of diffusive remixing, which
smooths out the sharp interfaces into a continuous transitions.

2.3. The non-dimensional segregation equation

It is anticipated that this theory will be used in conjunction with existing avalanche
models to compute segregation in shallow granular free-surface flows. The models all
compute the avalanche thickness h and the bulk velocity u and fall into three basic
categories: simple shallow-water-type avalanche theories of Grigorian et al. (1967),
Kulikovskii & Eglit (1973), Eglit (1983) and Gray et al. (2003); Mohr–Coulomb
models of Savage & Hutter (1989) and Gray et al. (1999); and debris-flow models
of Iverson (1997) and Iverson & Denlinger (2001) that incorporate fluid in the pore
space. These theories all assume that the granular material is incompressible, with a
lithostatic pressure distribution through the avalanche depth, which is consistent with
the model presented here. In addition, they assume that typical avalanche lengths L

are much bigger than typical thicknesses H and that the flows are gravity driven.
This gives rise to the scalings

x = Lx̃, z = Hz̃, (u, v, w) =
√

Lg (ũ, ṽ, εw̃), t =
√

L/g t̃, (2.32)

where the aspect ratio ε = H/L � 1 and the non-dimensional variables are denoted
by tildes. Typically percolation velocities are of the same order of magnitude as
normal velocities in the avalanche, so the segregation velocity can be scaled as

q = ε
√

Lg q̃. (2.33)

Substituting these scalings into (2.31), and dropping the tildes on the avalanche
variables and the superscript s for simplicity, the non-dimensional segregation
equation for the small particles becomes

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − Sr

∂

∂z
(φ(1 − φ)) = 0, (2.34)

where the non-dimensional segregation number

Sr =
LBρ̂g cos ζ

cH
√

gL
. (2.35)

Exact steady-state and two-dimensional time-dependent solutions to (2.34) have been
constructed by Gray & Thornton (2005) for a constant-thickness steady uniform flow
with a homogeneously mixed inflow condition. These show the formation of two
concentration shocks that separate pure phases of large and small particles from a
region still at the inflow concentration. Eventually the two shocks meet at a distance
1/Sr downstream and a third slope-parallel shock is formed, which separates the large
particles from the small particles beneath to form a fully separated inversely graded
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Liquid Viscosity Fluid density Relative density
(cP) ρa∗(g cm−3) difference ρ̂

Water 1.0 1.00 0.59
Water–ethanol mixture 3.7 0.94 0.62

Table 1. Summary of the properties of the different interstitial fluids used in the
liquid–particle segregation experiments of Vallance & Savage (2000).

layer. A larger segregation number therefore implies a shorter distance for complete
segregation to occur.

2.4. Comparison with experiments

Gray & Thornton (2005) showed that their exact solutions were in good agreement
with the dry granular segregation experiments of Savage & Lun (1988) and Vallance
& Savage (2000). Experiments with liquid–particle mixtures were also performed by
Vallance & Savage (2000). They used a bi-disperse mixture of 1.44 mm large and
0.99 mm small glass particles of density ρg∗ = 2.49 g cm−3, which were mixed in a
water and a water–ethanol mixture, whose properties are summarized in table 1. The
mass flux was regulated to generate a steady uniform flow of depth 0.9 to 1.5 cm
on slopes ranging from 22◦ to 12.3◦, which developed a uniform solids fraction once
the initial flow front had propagated through the system. Splits were taken at three
different levels in the flows to determine the degree of segregation at four downstream
stations. They found that segregation took place, but that it was not as “dramatic
as in the dry granular flows” and they surmised that the presence of a viscous
fluid inhibited kinetic sieving. Curiously, they found that the segregation was slightly
weaker in water than in the water–ethanol mixture, which 3.7 times more viscous. This
contradicted their initial hypothesis that it was due to viscosity and they suggested
that this might instead be due to the density contrast between the particles and the
fluid. The theory presented in this paper confirms the latter hypothesis. From Gray
& Thornton (2005) the segregation distance xp = 1/Sr . It follows that the ratio of the
segregation distances

xp1

xp2

=
Sr2

Sr1

=
ρ̂2

ρ̂1

� 1.04, (2.36)

where the subscript 1 is used for water and the subscript 2 for the water–ethanol
mixture. Hence, the segregation distance in water is 4 % longer than in the slightly less
dense water–ethanol mixture, as observed. The buoyancy induced by the interstitial
fluid is therefore more important than the effects of viscosity in these high-solids-
fraction experiments. Vallance & Savage (2000) also investigated segregation in
neutrally buoyant fluids. However, they concluded that “there is very little evidence
of size segregation in flows where the fluid and the particles have exactly the same
density”, as the downstream concentrations of small particles stayed at the inflow
concentration to within the level of accuracy of the experiments. This is also consistent
with the model derived here. When the particles and the fluid have the same density,
the relative density difference ρ̂ = 0 and the segregation length therefore tends to
infinity. As far as the authors are aware no experiments have been performed with
buoyant particles to date, but the theory predicts that the direction of segregation
will reverse to create normally graded layers.
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3. Steady-state solutions for normally graded initial conditions
Gray & Thornton’s (2005) exact solutions for the segregation of a homogeneously

mixed inflow were motivated by the experiments and approximate solutions of Savage
& Lun (1988). In practice, it is quite difficult to generate a homogeneous inflow, and
an alternative inflow configuration in which the particles are normally graded, i.e.
with the small particles on top of the large particles, is now considered. This problem
is of fundamental interest because the inflowing particles are unstably stratified and
must adjust into a stable configuration.

3.1. General solution for arbitrary positive velocity fields

Using the uniform flow depth H to scale the height and the inflow velocity magnitude
U to scale the velocity in (2.32), we may assume without loss of generality that the
avalanche is of unit thickness and the integral of the velocity over the depth is equal
to unity, i.e.

∫ 1

0
u(z) dz = 1. Assuming that the particle-size distribution has reached

steady state and substituting the velocity components

u = u(z) � 0, v = 0, w = 0, in 0 � z � 1, x � 0, (3.1)

the non-dimensional segregation equation (2.34) reduces to

∂

∂x
(φu) − Sr

∂

∂z
(φ(1 − φ)) = 0. (3.2)

The inflow concentration is assumed to be normally graded with a pure phase of
small particles lying above a pure phase of large particles

φ(0, z) =

{
1, zr � z � 1,

0, 0 � z < zr,
(3.3)

where zr is the height of the sharp interface at x = 0. In addition, no particles are
allowed through the free surface and base of the flow, which implies that the flux

F = −Srφ(1 − φ) = 0 at z = 0, 1. (3.4)

This is satisfied when either φ = 0 or φ = 1 at the free surface and base of the
avalanche.

Expanding the derivatives, the segregation equation (3.2) can be written as

u(z)
∂φ

∂x
+ Sr (2φ − 1)

∂φ

∂z
= 0, (3.5)

which is a simple first-order quasi-linear equation. The small particle concentration φ

is equal to a constant φλ on each characteristic curve given by

u(z)
dz

dx
= Sr (2φλ − 1). (3.6)

By defining a depth-integrated velocity coordinate

ψ =

∫ z

0

u(z′) dz′, (3.7)

equation (3.6) can be integrated for a general velocity field, to give the straight line
characteristic

ψ = Sr (2φλ − 1)(x − xλ) + ψλ, (3.8)

in the mapped variables, where (xλ, ψλ) is its starting position. Note that the velocity
has been scaled so that the mapped coordinate ψ = 1 at the free surface z = 1. The
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1

ψ

ψr

1 – ψr

0 xb xp
x

Figure 3. The steady-state solution in depth-integrated velocity coordinates (x,ψ). The
inflow concentration jump is located at (0, ψr ) and the bulk flow is from left to right.
The characteristics are shown as straight thin lines and the arrows show their direction of
propagation. A rarefaction fan is centred at the discontinuity and a series of characteristics
radiate away from it. The front marking the first small particles that propagate downwards
is indicated by the downward bold characteristic emanating from the fan. This reaches the
base at a distance xb = ψr/Sr downstream and a curved (bold) shock wave is generated that
separates the expansion fan from the pure phase of small particles that gather beneath. A
similar situation occurs at the top boundary, where the large particles first reach the surface
at xs = (1 − ψr )/Sr and a curved shock is generated that separates the pure phase of large
particles from the expansion fan. At a distance xp downstream the two shocks meet and a
third slope-parallel shock at height 1−ψr is formed, creating a completely segregated inversely
graded layer.

mapping between the physical and depth-integrated coordinates can be constructed
once the velocity is prescribed, and is well-defined provided u � 0 and any points with
zero velocity are isolated. As a result the depth-integrated velocity transformation
allows solutions to be constructed for a whole class of velocity fields. Specific cases
will be investigated further in § 3.3.

Figure 3 shows how the characteristics propagate downstream from the inflow at
x = 0. The characteristics carry information into the domain and are not to be
confused with the particle paths, which are computed in § 3.2 and are illustrated in
figure 4. Above the inflow discontinuity ψr = ψ(zr ) the particles are all small and
the characteristics propagate upwards with gradient Sr , while below the discontinuity,
where the particles are all large, the characteristics propagate downwards with gradient
−Sr . The void in between has to be filled with information. The only way to do this
with boundary data is to construct a series of characteristics centred at (0, ψr ) with
concentrations varying between 0 and 1, so that the whole of the space is filled as
shown in figure 3. A centred rarefaction fan is therefore formed at (0, ψr ) within
which the concentration

φ =
1

2

(
1 +

ψ − ψr

Srx

)
, |ψ − ψr | < Srx. (3.9)

The φλ = 0 characteristic emanating from the fan propagates down until it reaches
the base of the flow at xb = ψr/Sr . Physically this characteristic represents the
front between a region of purely large particles and the first small particles that
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propagate downwards. Within the avalanche a downward motion of small particles
automatically implies that there is a corresponding upward flux of large particles by
(2.29). However, at the lower boundary, there are no more large particles available
and the flux condition (3.4) implies that the small particles separate out into a pure
phase. This concentration shock then propagates upwards into the domain as more
and more particles separate out.

Gray & Thornton (2005) showed that the segregation equation (3.2) implies that a
shock z = s(x) must satisfy the jump condition

[[φus ′ + Srφ(1 − φ)]] = 0 (3.10)

where s ′ = ds/dx and the jump bracket [[γ ]] = γ + − γ − is the difference of the
enclosed quantity on the forward ‘+’ and rearward ‘−’ sides of the shock. The shock
condition (3.10) can be rearranged to give

u
ds

dx
= Sr (φ

+ + φ− − 1), (3.11)

which is an ordinary differential equation for the height of the shock. This has a similar
structure to the characteristic equation (3.6) and the depth-integrated coordinate
transformation (3.7) implies that mapped shock satisfies

dψ

dx
= Sr (φ

+ + φ− − 1). (3.12)

The shock ψ1, that forms when the lead characteristic φλ = 0 reaches the base, has
a pure phase of small particles on the forward side, φ+ = 1, and the expansion fan
(3.9) on the rearward side. Substituting these into (3.12) implies

dψ1

dx
=

Sr

2

(
1 +

ψ1 − ψr

Srx

)
, (3.13)

which is linear and can be integrated subject to the initial condition that ψ1 = 0 at
x = ψr/Sr to give the height of the bottom shock

ψ1 = ψr + Srx − 2
√

Srψrx. (3.14)

A similar situation develops on the upper side of the expansion fan. The φλ = 1
characteristic marks the front of large particles that propagate upwards into the pure
phase of small particles entering from the inflow. This reaches the free surface ψ = 1
at xs = (1 − ψr )/Sr and a shock ψ2 is formed between a pure phase of large particles
on the forward side, φ+ = 0, and the expansion region (3.9) on the rearward side.
The shock condition (3.12) yields a linear ordinary differential equation which can be
integrated to give

ψ2 = ψr − Srx + 2
√

Sr (1 − ψr )x. (3.15)

The lower shock (3.14) increases in height with downstream distance x, while the
upper shock decreases in height. The two shocks meet at

xp =
1

Sr

(√
ψr +

√
1 − ψr

)2
, ψp = 1 − ψr, (3.16)

and a third shock ψ3 is formed between the large and small particles. In this case the
jump condition (3.12) reduces to dψ/dx = 0, so that the shock

ψ3 = ψp, x � xp, (3.17)
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is parallel to the downstream coordinate. The point xp determines the downstream
location at which complete segregation first occurs. It is proportional to 1/Sr , which,
like the solutions of Gray & Thornton (2005), show that inversely graded layers
form at shorter downstream distances when the segregation number Sr is larger.
The segregation distance also depends on the height of the inflow discontinuity, zr ,
which is qualitatively different to the homogeneous inflow case, where the distance
for complete segregation was independent of the initial concentration. These pure
segregation solutions are a good leading-order approximation to flows with weak
diffusive remixing, replacing rapid smooth transitions with sharp concentration jumps.

3.2. Particle paths

To understand the solution in § 3.1 it is instructive to know how the large and small
grains move through the fan. The particle path of constituent ν is given by solving

dx

dt
= uν,

dy

dt
= vν,

dz

dt
= wν, ν = l, s, (3.18)

where the velocities are given by (2.24) and (2.29). For steady uniform two-dimensional
flows, where the bulk velocity is given by (3.1), these equations can be solved
by rewriting them as u dz/dx = wν and using the depth-integrated coordinate
transformation (3.7) to yield an ordinary differential equation for the mapped particle
path

dψ

dx
= wν, ν = l, s. (3.19)

For the large particles wl = Srφ. It follows that if a large particle enters the chute
at x = 0 with height ψlo ∈ [0, ψr ], with local concentration φ = 0, then the particle
moves downstream at its initial height ψlo until it intersects with the expansion fan at

xlo = (ψr − ψlo)/Sr . (3.20)

Within the expansion fan the concentration is given by (3.9) and the equation for the
particle path reduces to

dψl

dx
=

Sr

2

(
1 +

ψl − ψr

Srx

)
, (3.21)

which is linear and is easily solved subject to the boundary condition that ψl = ψlo

at x = xlo to give the large-particle path

ψl = ψr + Srx − 2
√

Srxlo

√
Srx. (3.22)

This hits the top shock at

xle = (
√

1 − ψr +
√

Srxlo)
2/Sr, ψle = 1 − Srxlo, (3.23)

where it enters the pure phase and moves downstream at constant height ψle. A
series of particle paths for different initial starting heights is shown in figure 4 using
solid curves. Large particles move downstream at constant height until they reach
the fan, where they move up through the avalanche while being swept downstream.
Eventually they cross the top shock and then move downslope at constant height
again.

The small-particle paths can be computed analogously by using the normal velocity
of the small particles ws = −Sr (1 − φ) in (3.19). The small particles start at x = 0 at
a height ψso ∈ [ψr, 1] and at concentration φ = 1. Equation (3.19) implies that they
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xs

1

0 xb xp
x

ψ

ψr

1 – ψr

Figure 4. The steady-state particle paths for the large (solid lines) and small (dot-dash lines)
grains in mapped coordinates. The arrows show the direction of flow.

move downslope at constant height ψso until they intersect with the fan at

xso = (ψso − ψr )/Sr . (3.24)

Within the fan (3.19) implies that the small particles drop down along the paths

ψs = ψr − Srx + 2
√

Srxso

√
Srx, (3.25)

until they meet the bottom shock at

xse = (
√

ψr +
√

Srxso)/Sr, ψse = Srxso, (3.26)

and subsequently move downstream at constant height ψse. The small-particle paths
are also illustrated in figure 4 using dot-dash lines. The large and small particles cross
over within the expansion fan, but otherwise move downslope at constant height.

3.3. Physical solutions

Granular free-surface flows exhibit a range of velocity profiles dependent on the
macroscopic roughness of the topography the avalanche is sliding over. Observations
of geophysical-scale flows (Dent et al. 1998; Keller, Ito & Nishimura 1998) over
fairly ‘smooth’ surfaces show that there is a well-defined slip layer at the base of
the flow and weak shear above. Consequently, many avalanche models assume a
‘plug-flow’ regime. In contrast, small-scale experiments on macroscopically bumpy
slopes show that there is significant shear through the avalanche depth and the mean
velocity scales with the thickness to the 3/2 power (Vallance 1994; Pouliquen 1999).
The leading-order behaviour of many of these velocity fields is captured by a linear
velocity profile of the form

u = α + 2(1 − α)z, 0 � α � 1, (3.27)

which gives plug flow for α = 1, simple shear for α = 0 and a combination of
shear and basal slip for parameter values in between. With this velocity field the
depth-integrated velocity mapping (3.7) implies

ψ = αz + (1 − α)z2, (3.28)
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which has the advantage that it can be easily inverted, i.e.

z =




ψ, α = 1,

−α +
√

α2 + 4(1 − α)ψ

2(1 − α)
, α �= 1,

(3.29)

to give the position of the shocks, expansions and characteristics in physical space.
The solutions are illustrated for three values of α and two values of zr in figure 5(a–f )
for Sr = 1. A contour scale is used to help identify regions of high concentrations of
small particles (light greys) and coarse grains (dark greys). Figure 5(a, b) corresponds
to plug flow. In this case the physical and depth-integrated coordinates are identical,
ψ = z, so the fan is bounded by straight lines and the upper and lower curved
concentration shocks have linear and square-root dependence as defined in (3.15) and
(3.14). The point xp where the two shocks meet, and the grains separate out into
stratified inversely graded layers, is dependent on the height of the inflow discontinuity
zr . Equation (3.16) implies xp = 2 for zr = 1/2, while for zr = 0.7 the shocks meet
slightly earlier at xp = 1.91.

Figure 5(c, d) shows the solutions for linear shear and translation with α = 1/2,
which requires the full quadratic mapping (3.28). The characteristics in the expansion
fan are now curved, rather than straight. This is because as the small particles
percolate down through the matrix their downslope velocity becomes progressively
less, even though the percolation velocity at a given concentration remains constant
by (2.29). Another key feature is that the thickness of the bottom inflowing layer of
large particles is much thinner than the surface outflowing one. This is a direct result
of the velocity shear. In the upper layers of the flow the velocity is much faster than
in the lower layers and so the same mass flux can be achieved with a much thinner
layer of material. The segregation length xp , where the two shock meet, is in almost
the same position for both zr = 0.5 and 0.7. For simple shear, α = 0 (figure 5 e, f ),
the reverse mapping (3.29) reduces to z =

√
x. The lower characteristic, which marks

the first small particles percolating downwards and emanates from the fan, has an
infinite gradient at z = 0, which is caused by the zero velocity at the base of the
avalanche. In addition, the lower shock now has a concave instead of convex profile
and the layer of rapidly moving large particles far downstream is even thinner than
for linear shear and translation. Interestingly, the segregation length is now longer
for zr = 0.7 than for zr = 0.5, at xp = 1.99 and xp = 1.86, reversing the order found
in plug flow. Figure 6 shows how the segregation length Srxp varies as a function of α

and zr . The maximum segregation length Srxp is equal to 2 and this is attained when
ψr = 1/2, or, equivalently, when α = (1/2 − z2

r )/(zr − z2
r ) as shown by the dot-dash

line. The segregation distance is strongly dependent of zr and only weakly dependent
on α.

Experiments show that on low-inclination macroscopically bumpy slopes a steady
uniform flow develops in which the velocity scales with thickness to the 3/2 power
(Vallance 1994; Pouliquen 1999). Recently Silbert et al. (2003) have used molecular
dynamics simulations to investigate these flows and showed that Bagnold’s (1954)
grain inertia regime, in which the shear stress is proportional to the square of the strain
rate, σxz = A2(∂u/∂z)2, had the right constitutive properties. From this they were able
to derive an expression for the downslope velocity profile through the avalanche depth,
which is in excellent agreement with their numerical simulations. Scaling the thickness
on the flow depth and their velocity on the magnitude U = 2(ρg sin ζ )1/2h3/2/(5A)
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Figure 5. Steady-state solutions for the concentration of small particles φ are shown as a
function of the downslope coordinate x and avalanche depth z for Sr = 1. The concentration
is shown using a contour scale with lighter greys corresponding to larger concentrations of
small particles. The bulk flow is from left to right with panels (a, b) corresponding to plug flow
(α = 1), panels (c, d) to linear shear and translation (α = 1/2), panels (e, f ) to simple shear
(α = 0) and panels (g,h) to u = 5[1 − (1 − z)3/2]/3. The solution is plotted for zr = 0.5 (left,
a, c, e, g) and zr = 0.7 (right, b, d, f, h).
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Figure 6. A contour plot of the segregation distance Srxp as a function of the linear velocity
profile parameter α and the initial discontinuity height zr . The dot-dash line shows the points
where the maximum value of Srxp = 2 is attained.

(Gray & Thornton 2005) the non-dimensional velocity profile reduces to

u = 5
3

[
1 − (1 − z)3/2

]
, (3.30)

which yields the mapping

ψ = 5
3
z − 2

3

[
1 − (1 − z)5/2

]
. (3.31)

A direct reverse mapping to get z = z(ψ) is not possible, so explicit solutions for the
shocks and expansions cannot be generated. It is, however, very easy to contour the
solution, by setting up a regular (x, z) grid, working out the value of ψ for each point
and setting the value of φ based on which region of mapped space (x, ψ) the point
lies. The solutions are plotted in figure 5(g, h). In fact, they look very similar to those
for simple shear, as the velocity is zero at the base of the flow so the lower shock
also has a concave profile. The final thickness of the inversely graded layer of large
particles is, however, slightly thicker than for simple shear.

4. Time-dependent solutions for uniform plug flows
Considerable insight into the nature of two-dimensional time-dependent solutions

can be obtained by considering the case of plug flow, which admits a class of
particularly simple solutions. These are based on the physical observation that,
because there is no shear, each material column of grains segregates independently
of all the others. Without loss of generality the plug velocity u0 may be assumed to
equal unity by virtue of the scalings (2.32). Gray & Thornton (2005) showed that the
transformation

t ′ = t − tc, ξ = x − u0t, z′ = z, (4.1)
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with time-shift parameter tc, implies that the segregation equation (2.34) reduces to

∂φ

∂t ′ − Sr

∂

∂z
(φ(1 − φ)) = 0, (4.2)

in the moving frame when the cross-slope derivatives are zero. This has exactly the
same structure as the steady-state segregation equation (3.2) except that u∂/∂x is
now replaced by ∂/∂t ′. The solutions are therefore exactly equivalent to those given
by (3.9), (3.14), (3.15), (3.16) and (3.17) with ψ replaced by z and x by t ′. The
concentration within the expansion fan is therefore

φ =
1

2

(
1 +

z − zr

Sr t ′

)
, |z − zr | < Srt

′, z1 < z < z2, (4.3)

where the shocks

z1 = zr + Srt
′ − 2

√
Srzr t ′, t ′ < tp,

z2 = zr − Srt
′ + 2

√
Sr (1 − zr )t ′, t ′ < tp,

z3 = 1 − zr, t ′ � tp,


 (4.4)

and the triple-point

tp =
1

Sr

(√
zr +

√
1 − zr

)2
. (4.5)

This time-dependent solution for the evolution of the concentration in a column of
material moving downstream with speed u0 is effectively illustrated in figure 5(a, b)
except that x-axis must now be replaced by the t ′-axis.

Each column can be uniquely labelled by its position ξ = x at t = 0 and a two-
dimensional time-dependent solution can be constructed by considering a series of
columns with different time shifts tc = tc(ξ ) and discontinuity heights zr = zr (ξ ). To
give an example of this, we now construct the solution to a problem in which the
material in x � 0 is initially normally graded with the initial discontinuity height
zr = 1/2 and any material that enters the chute at x = 0 is also normally graded with
the same height zr , i.e.

tc = 0, zr = 0.5, for ξ � 0,

tc = −ξ/u0, zr = 0.5, for ξ < 0.

}
(4.6)

The solution generated by (4.1) and (4.3)–(4.6) is illustrated in figure 7. It consists of
two parts. For ξ � 0 a spatially uniform time-dependent expansion wave develops
and shock waves are subsequently generated when the fronts reach the surface
and base of the flow. These then propagate into the domain before they meet
to form a spatially and temporally uniform third concentration shock separating
an inversely graded layer of large particles from the fines beneath. For the
points that enter the chute at time tc = −ξ/u0 the transformation (4.1) implies
that

t ′ = x/u0 for ξ < 0. (4.7)

When this is substituted into the column solution (4.3)–(4.5) we see that the temporal
evolution in moving columns entering the chute is equivalent to a steady-state solution
in a fixed frame of reference. A transition line ξ = 0 therefore moves downstream
at speed u0 and separates the time-dependent solution from the steady-state solution
behind. At time t = 2 the upper and lower shocks meet in the time-dependent
region to form an inversely graded layer and there is no further change in the
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Figure 7. The exact plug-flow solution for the concentration of small particles φ is illustrated
at a sequence of time-steps using the same contour scale as in figure 5. Initially the flow is
normally graded and normally graded material is fed in at x = 0 and flows downstream from
left to right. The solution consists of a time-dependent spatially uniform part that is separated
by a transition line moving downstream at speed u0 from a steady-state region behind. The
parameter zr = 1/2 for all columns and the segregation number Sr = 1.

solution. In plug flow the solution therefore attains a global steady state in finite
time.

5. Numerical solutions for time-dependent flows with shear
Solutions to more complex problems can be computed by solving the segregation

equation (2.34) with a high-resolution shock-capturing method. Gray & Thornton
(2005) developed a TVD Lax Friedrichs scheme for (2.34), using Godunov-type
operator splitting (e.g. LeVeque 2002), that was based on the general algorithms of
Yee (1989) and Tóth & Odstrcil (1996). This method has been tested against the
exact plug-flow solution of § 4 and is now used to compute solutions to some complex
segregation problems with shear.
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5.1. Chute initially normally graded

Suppose that initially the granular material is normally graded with all the small
particles overlying the coarse grains

φ(0, x, z) =

{
1, zr � z � 1,

0, 0 � z � zr,
x � 0, (5.1)

as in the exact solution for plug flow. This is solved subject to the boundary conditions
that the inflow discontinuity also lies at the same height zr and that there is no normal
flux of small particles out of the free surface or the base of the avalanche (3.4). The
solution for a velocity field given by α = 1/2, which has both linear shear and basal
slip, is shown in figure 8. The numerical solution has many similarities with both
the two-dimensional time-dependent plug-flow solution and the steady-state solutions
of § 3. As the initial distribution is independent of the downslope coordinate x the
time-dependent part of the solution, which evolves from the initial conditions, is in
fact identical to plug flow, while the material that flows onto the chute creates a
steady-state region, which is identical to the solution in figure 5(c). Between the two
regions there is a complex transition. For t < 1/2, as the fan propagates towards
the boundaries, the transition starts parallel to the z-axis and slowly tips over to the
right in response to the shear. Once the upper and lower shocks are generated the
transition widens into a relaxation zone as the solution matches the time-dependent
and steady-state shocks, which, as opposed to plug flow, now lie at different heights.
At t = 2 the upper and lower shocks meet and a third shock is produced, which
lies at height z3 = 1/2 in the initially uniform region. As the transition propagates
further downslope the two steady-state shocks meet just before t = 2.5 to produce
a steady-state shock that lies at z3 = (

√
6 − 1)/2. The third shock has a fairly linear

transition region between these two regions, which is advected downstream and out
of the domain by t = 3.5. The solution therefore reaches a local steady state, but the
mismatch persists and eventually breaks far downstream.

5.2. Chute initially filled with large particles

The evolution towards the local steady state can be markedly different. Consider now
the alternative case in which the chute is initially filled with large particles

φ(0, x, z) = 0, 0 < z < 1, x � 0, (5.2)

subject to the same boundary conditions (3.3) and (3.4) as before. For plug flow the
solution would look similar to figure 7 except that the time-dependent region would
be replaced by a constant uniform state of large particles. When there is a velocity
gradient, the small particles are progressively sheared across the top of a region of
large grains beneath and immediately start to percolate down through the matrix
as shown in figure 9. By t = 0.5 a complex transition region develops between the
steady-state solution to the left and the constant uniform state of large particles to
the right, which appears to consist of an additional unsteady shock and an expansion
fan. Once the lower characteristic reaches the base a pure region of small (white)
particles separates out at the bottom (t = 1) and a lower finite-length unsteady shock
develops. This grows in size and eventually cuts off the unsteady transition expansion
between t = 2.5 and 2.6, to leave the steady-state fan behind. The unsteady expansion
is eroded and disappears by t = 3 to leave a concentration jump between the large
particles above and the fines beneath. This is swept downstream and eventually breaks
far downslope, but a local steady state is attained by t = 3.5.
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Figure 8. The numerical solution for the concentration of small particles φ is shown using a
contour scale at a series of time-steps for a chute initially filled with normally graded material
with the small particles overlying the large ones. A linear velocity profile with basal slip
(α = 1/2) transports the material downslope from left to right and normally graded material
is fed onto the chute at x = 0 to replenish the avalanche. The discontinuity height zr = 1/2
and the segregation number Sr = 1.
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Figure 9. The numerical solution for the concentration of small particles φ is shown using a
contour scale at a series of time-steps for a chute that was initially filled with large particles. A
linear velocity profile with basal slip (α = 1/2) transports the material downslope from left to
right and normally graded material is fed onto the chute at x = 0 to replenish the avalanche.
The discontinuity height zr = 1/2 and the segregation number Sr = 1.
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6. Discussion and conclusions
The framework of mixture theory has been used to derive a model for particle-

size segregation by kinetic sieving in shallow gravity-driven granular free-surface
flows. The material is composed of large particles, small particles and a passive
interstitial fluid that allows buoyancy effects to be incorporated into the final
segregation equation (2.34). This represents a significant extension of the simple
two-phase theory of Gray & Thornton (2005). Exact steady-state solutions have been
constructed for a discontinuous normally graded inflow condition with general steady
uniform velocity fields. These show the formation of expansion fans, concentration
shocks and inversely graded completely segregated layers sufficiently far downstream.
The distance for complete segregation to occur is inversely proportional to the
segregation number Sr and is dependent on the inflow discontinuity height zr . This
is in marked contrast to the homogeneous inflow solutions of Gray & Thornton
(2005), which were only dependent on Sr . As the density of the interstitial fluid is
increased, the relative density difference ρ̂ decreases, so Sr decreases and complete
segregation occurs further downstream. If the density of the fluid and the grains
match, then segregation by kinetic sieving is inhibited altogether. This is in agreement
with the experiments of Vallance & Savage (2000), but it should be noted that
segregation in other more energetic systems may occur in the absence of gravity
due to spatial gradients in the energy of the granular velocity fluctuations (e.g.
Louge et al. 2000; Jenkins & Yoon 2001). If the relative density difference ρ̂ changes
sign, so that the particles are buoyant, the direction of segregation is reversed and
normally graded layers will be formed sufficiently far downstream. The solutions
constructed in this paper ignore the effects of diffusive remixing, which tend to
smooth out sharp concentration gradients and jumps. The solutions are nevertheless
a very good leading-order approximation for segregation in flows with weak diffusive
remixing.

A high-resolution shock-capturing method (Gray & Thornton 2005) has been
used to compute the evolution of the small-particle concentration with strong shear
in two space dimensions and time. Many of the flow features can be explained
with the insight gained from some simple exact solutions for plug flow that exploit
the decoupling of material columns in the absence of downslope velocity gradients
through the avalanche depth. Essentially the solutions consist of a downstream region,
where the uniformity of the initial conditions implies that the solution is exactly that
predicted by plug flow, and a steady-state upstream region, which are separated by
an evolving transition zone that propagates downslope with increasing time. The
dynamics of the transition regions are extremely complex, with the development of
unsteady propagating shocks and expansion fans. However, the system is suitably
robust to suggest that the segregation equation (2.34) may be coupled to existing
models for dry granular free-surface flows (e.g. Grigorian et al. 1967; Kulikovskii &
Eglit 1973; Eglit 1983; Savage & Hutter 1989; Gray et al. 1999; Gray et al. 2003)
to compute the development of the particle-size distribution and allow feedback onto
the flow. In particular, the inclusion of a passive fluid now allows the model to be
incorporated into water-saturated debris-flow models such as those of Iverson (1997)
and Iverson & Denlinger (2001).
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